
Fast Object Detection in Compressed Video

Shiyao Wang1,2 ∗ Hongchao Lu1 Zhidong Deng1

Department of Computer Science and Technology, Tsinghua University1

Alibaba Group2

wangshy31@gmail.com luhc15@mails.tsinghua.edu.cn michael@tsinghua.edu.cn

Abstract

Object detection in videos has drawn increasing atten-

tion since it is more practical in real scenarios. Most of the

deep learning methods use CNNs to process each decoded

frame in a video stream individually. However, the free of

charge yet valuable motion information already embedded

in the video compression format is usually overlooked. In

this paper, we propose a fast object detection method by

taking advantage of this with a novel Motion aided Mem-

ory Network (MMNet). The MMNet has two major advan-

tages: 1) It significantly accelerates the procedure of fea-

ture extraction for compressed videos. It only need to run a

complete recognition network for I-frames, i.e. a few refer-

ence frames in a video, and it produces the features for the

following P frames (predictive frames) with a light weight

memory network, which runs fast; 2) Unlike existing meth-

ods that establish an additional network to model motion of

frames, we take full advantage of both motion vectors and

residual errors that are freely available in video streams.

To our best knowledge, the MMNet is the first work that

investigates a deep convolutional detector on compressed

videos. Our method is evaluated on the large-scale Ima-

geNet VID dataset, and the results show that it is 3× times

faster than single image detector R-FCN and 10× times

faster than high-performance detector MANet at a minor

accuracy loss.

1. Introduction

Video is viewed as one of the next frontiers in computer

vision since many real-world data sources are video based,

ranging from visual surveillance [3], human-computer in-

teraction [30] to autonomous driving [46]. In the past five

years, deep learning methods have made historic progress

in still image analysis [37, 41, 14, 39, 55]. Novel CNN

∗The work was done when Shiyao Wang was at Tsinghua University.
1State Key Laboratory of Intelligent Technology and Systems, THUAI,

BNRist, Center for Intelligent Connected Vehicles and Transportation, Ts-

inghua University, Beijing, China.

𝑰𝒕

…
𝒎$%& 𝒎$%' 𝒎(%)

𝑷𝒕%𝟏 𝑷𝒕%𝟐 𝑷𝒕%𝒏

𝒓$%& 𝒓$%' 𝒓$%)

Compressed Video

…

Codec

!"#" !"#" !"#"…

$%&' $%&(

)%&'
)%&(

)%&')%&()%&*

decode decode decode decode

(a) The proposed light-weight MMNet

(b) Traditional Convolutional Detector

Figure 1. (a) The proposed light-weight MMNet accelerates the

CNN inference by using compressed video directly, while (b) most

previous methods for video analysis use heavy computational net-

works to extract features frame by frame.

based frameworks have been proposed for single image ob-

ject detection, including Faster R-CNN [33], R-FCN [7],

SSD [29], YOLO [32] and FPN [26]. Although there has

great success in static image object detection, it still re-

mains a challenging problem for detection in videos. Since

frames may suffer from imaging-related degradations, most

previous works [53, 44, 48, 21, 22] focus on improving

frame-wise detection results. They extract features of the

dense frames by applying existing image recognition net-

works (e.g., ResNet[14]) individually (see the bottom line

in Figure 1), and leverage temporal coherence by feature ag-

gregation or bounding box rescoring. Although these meth-

ods improve final performance, using CNNs to process the

dense frames of videos is computationally expensive while

it becomes unaffordable as the video goes longer.

In order to reduce the redundant computation, [54, 52]

propose methods that run an expensive feature extractor

7104

only on sparse keyframes and then propagate the resulting

deep features to other frames. The key idea for feature prop-

agation among frames is to calculate pixel-wise displace-

ments through FlowNet[8]. However, it pays extra time

for calculating displacements since the FlowNet still com-

poses dozens of convolutional layers. They treat a video

as a sequence of independent images and ignore the fact

that a video is generally stored and transmitted in a com-

pressed data format. The codecs split a video into I-frames

(intra-coded frames) and P/B-frames (predictive frames).

An I-frame is a complete image while a P/B-frame only

holds the changes compared to the reference frame. For

example, the encoder stores the object’s movements mt+k

and residual errors rt+k when it moves across a stationary

background (see the top line in Figure 1). So, consecutive

frames are highly correlated, and the changes are already

encoded in a video stream. Treating them as a sequence of

still images and exploiting different techniques to retrieve

motion cues seem time-consuming and cumbersome.

In this paper, we propose a fast and accurate object de-

tection method for compressed videos called Motion-aided

Memory Network with pyramidal feature attention (MM-

Net). For a group of successive pictures (GOP) in a video,

it runs the complete recognition network for I-frames, while

a light-weight memory is developed to produce features for

the following P-frames. The proposed MMNet receives the

features of the preceding I-frame as input and fast predicts

the following features by using motion vectors and residual

errors in video streams. Moreover, different from the previ-

ous work that only propagates high-level features, the pro-

posed memory network composes pyramidal features which

enable the model to detect objects across multiple scales. In

summary, the contributions of this paper include:

- We explore inherent motion signals and residual errors

in codecs to align and refine features. Note that the signals

retain necessary motion cues and are freely available.

- We propose a pyramidal feature attention that enables

the memory network to propagate features from multiple

scales. It helps to detect objects across different scales.

- We evaluate the proposed model on the large-scale Im-

ageNet VID dataset [35] and present memory visualization

for further analysis. Our model achieves significant speedup

at a minor accuracy loss.

2. Related work

2.1. Object detection

2.1.1 Object detection from still images

State-of-the-art methods for general object detection consist

of feature networks [25, 37, 40, 14, 39, 18, 6] and detection

networks [11, 10, 13, 33, 7, 26, 36, 27]. [11] is a typical pro-

posal based detector which uses extracted proposals [43].

Faster R-CNN [33] further integrates proposal generation

step into CNNs. R-FCN [7] has comparable performance

and higher speed compared to Faster R-CNN. We use R-

FCN as our baseline and its computation speed is further

improved for video object detection.

2.1.2 Object detection in videos

One of the main-stream methods is based on per-frame

complete detection and improves the detection quality by

leveraging temporal coherence. And the other tries to speed

up the computation by using temporal redundancy.

For high performance, [53, 21, 44, 48, 51, 2] propose

end-to-end learning models to enhance per-frame features.

[53, 44, 51] adopt FlowNet [8] to align and aggregate fea-

tures. [21] provides a novel tubelet proposal network to ef-

ficiently generate spatiotemporal proposals. [48] computes

the correlation between neighboring frames and introduces

a memory module to aggregate their features. [2] uses de-

formable convolutions across time to align the features from

the adjacent frames. [2, 22, 9] are based on detected bound-

ing boxes rather than feature-level aggregation. [12, 23, 22]

propose mapping strategies of linking still image detections

to cross-frame box sequences in order to boost scores of

weaker detections. D&T [9] is the first work to joint learn

ROI tracker along with detector and the tracker is also ex-

ploited to link the cross-frame boxes. All of these men-

tioned works achieve high detection performance but they

use a computationally expensive network to generate per-

frame features.

For fast inference, [54] utilizes optical flow network

for calculating pixel-level correspondence and propagating

deep feature maps from keyframes to other frames. The

flow estimation and feature propagation are faster than fea-

ture networks. Thus, the significant speedup is achieved.[5]

introduces temporal propagation on box-level. They first

produce bounding boxes on keyframes, and then generate

boxes of other frames through a coarse-to-fine network.

[28] propagates feature maps across frames via a convolu-

tional LSTM. They only use appearance features without

explicitly capturing motion cues. Although their model is

faster than existing methods, the performance is much de-

graded. [45, 16, 19] also focus on model accelerating. They

aim to build light-weight deep neural networks which are

unrelated to specific tasks.

2.2. Deep learning model on compressed videos

H.264/MPEG-4 Part 10, Advanced Video Coding [38] is

one of the most commonly used formats for recording, com-

pression and distribution of videos. It is a block-oriented

motion-compensation-based video compression standard

[34]. To our knowledge, only a few prior works applied

deep models directly on compressed videos. [24, 42] utilize

signals from compressed video to produce non-deep fea-

7105

𝑰𝒕

…
𝒓$%&𝒎$%& 𝒎$%(𝒓$%)𝒎$%)𝒓$%(

𝑷𝒕%𝟏 𝑷𝒕%𝟐 𝑷𝒕%𝒏

Compressed Video

𝒃𝒕

𝒃𝒕%𝟏

𝒃𝒕%𝟐

𝒃𝒕%𝒏

…

𝒩010 𝒩010 𝒩010…

𝒎$%& 𝒓$%& 𝒎$%(𝒓$%(
𝒉$%& 𝒉$%(

𝒎$%) 𝒓$%)

𝒄$%& 𝒄$%(
𝒄$%)𝒄$%& 𝒄$%(

𝒄$%& 𝒄$%(𝒄$%)

GOP

𝒇$
5

𝒇$
6

𝒇$
7

𝒄$

𝒩819$

𝒩:8;)

< GOP >

…

Figure 2. The overall framework of the proposed MMNet with pyramidal feature attention. The feature extractor Nfeat only runs on

reference frame It, and the other features of ct+k are generated by the memory network Nmem. Motion vectors mt+k and residual errors

rt+k are fed into the memory network so as to provide motion cues. Finally, all the features in one GOP (group of pictures) are aggregated

to the detection network Nrfcn, producing bounding boxes simultaneously.

tures. [47] resembles our model the most and they aim

to improve both speed and performance on video action

recognition which focuses on producing video-level fea-

tures. But the video object detection needs to produce per-

frame bounding boxes that has per-frame feature quality re-

quirements.

3. Method

3.1. Overview

The proposed motion-aided memory network with pyra-

midal feature attention is presented in Figure 2.

For the input video, we use H.264 baseline profile as il-

lustration since these compression techniques that leverage

consecutive frames are usually similar. H.264 baseline pro-

file contains two types of frames: I- and P-frames. An I-

frame (denoted as It ∈ R
h×w×3) is a complete image. h

and w are the height and width. P-frames are also known as

delta-frames, denoted as Pt+k. They can be reconstructed

by using the stored offsets, called motion vectors mt+k

and residual errors rt+k. Detailed illustration of extract-

ing mt+k and rt+k is presented in Section 3.3.1. In Fig-

ure 2, we show a typical GOP on the top line, denoted as

{It,Pt+1, · · · ,Pt+k, · · · ,Pt+n}.

For the core modules, there are three networks: fea-

ture extractor, memory network and detection network, in-

dicated as Nfeat, Nmem and Nrfcn, respectively. The I-

frame It is fed to the Nfeat in order to generate pyramidal

features f l
t ∈ R

hl
×wl

×cl . l is the index of multiple stages

in a network and wl, hl and cl are the corresponding width,

height and channel numbers. They are sent to the mem-

ory network Nmem so as to fast produce features of the

following frames [ct+1, · · · , ct+n]. The memory network

contains two modules: pyramidal feature attention Natten

(in Section 3.2) and motion-aided LSTM Nm−lstm (in Sec-

tion 3.3.2). Pyramidal feature attention receives f l
t as input

and generate fatten
t that will be propagated to the neighbor-

ing frames. And the motion-aided LSTM transfers the pre-

ceding features by using motion vectors mt+k and residual

errors rt+k. The above procedure is formulated as:

f l
t = Nfeat(It) (1)

ct+k =

{
Natten(f

3
t ,f

4
t ,f

5
t) k = 0

Nm−lstm(ct+k−1,mt+k, rt+k) 1 ≤ k ≤ n

(2)

[bt, bt+1, · · · , bt+n] = Nrfcn([ct, ct+1, · · · , ct+n]) (3)

where [ct, ct+1, · · · , ct+n] denotes the concatenation of the

features of one GOP. It means that Nrfcn will receive the

features within the same GOP, and predict their bounding

boxes [bt, bt+1, · · · , bt+n] simultaneously.

3.2. Pyramidal Feature Attention

Previous methods only propagate high-level feature

maps to the neighboring frames (“res5c relu” in [54]). In

other words, the following P-frames only receive the high-

level semantic features from the reference frame. It is not

friendly for detecting objects at vastly different scales. [26]

utilizes the inherent pyramidal hierarchy of deep CNNs to

detect multi-scale objects. However, their predictions are

independently made on each level. If we employ the method

from still images to videos, we should propagate features

and make predictions on several scales at each timestamp.

On the contrary, we develop a method that adaptively com-

bines the pyramidal features through attention mechanism

within the first memory module (see the first block in Fig-

ure 3). The combined pyramidal features are then sent to

the motion-aided LSTM (see Section 3.3.2).

7106

𝑟"#$

𝑐"#$

ℎ"#$

𝑔"#$ 𝑖"#$

�̂�"#$

𝑜"#$

𝝈 ReLU

ReLU

𝝈 𝝈

M
L
P

S
o
ft
m
a
x

⊗

𝒇"
.

𝒇"
/

𝒇"
0

𝒇"
1""23

𝑟"#4

𝑐"#4

ℎ"#4

𝑔"#4 𝑖"#4

�̂�"#4

𝑜"#4

𝝈 ReLU

ReLU

𝝈 𝝈

W
a
rp

𝑐"#$⟶"#4

ℎ"#$⟶"#4

𝑚"#4

(a) Pyramidal Feature Attention (b) Motion-aided LSTM

𝒩828 𝒩828

W
a
rp

𝑚"#$ℎ9

𝑤9

𝑐9

Figure 3. Light-weight MMNet with pyramidal feature attention. Attention mechanism aims to selectively combine the pyramidal features.

Motion vectors are used to calibrate cell/hidden features before they run through the memory module. Residual errors are employed to

correct appearance changes.

First, we gather the pyramidal features f l
t from differ-

ent stages. A network can be divided into L stages whose

layers produce output maps of the same resolution. We

define one pyramid level for each stage and use the later

stages l = 3, 4, 5 of a network(see Figure 3(a)). We uti-

lize {res3b3 relu, res4b22 relu, res5c relu} of ResNet-101

as the input and transform them into the same dimension:

f̂ l
t = Fembed(f

l
t ,f

L
t), ∀l, 3 ≤ l ≤ L (4)

where Fembed(·) can be implemented as a convolution layer

with the proper stride. The target dimension is the size of

fL
t . Hence, f̂ l

t with different l have the same dimension

which is necessary for the following attention operation.

Second, we use squeeze operation across the channel

axis to represent features of each scale l at position (i, j):

elt(i, j) =

cL∑

k=1

f̂ l
t(i, j, k),

∀i, j, 1 ≤ i ≤ wL, 1 ≤ j ≤ hL

(5)

where i and j enumerate all spatial locations in the fea-

ture maps. The squeeze operation sums all the elements

across the channel dimension which can be viewed as fea-

ture salience. We call the above outputs “scale descriptors”.

It is inspired by SENet [17], but they use global average

pooling to collect statistics for the spatial dimension.

Finally, we adopt the scale descriptors as input to gen-

erate attention weights in order to adaptively combine the

features from different scales. We define the fused repre-

sentation fatten
t and attention weights αl

t(i, j) as follows:

fatten
t (i, j) =

L∑

l=3

αl
t(i, j)f̂

l
t(i, j)

L∑

l=3

αl
t(i, j) = 1

(6)

The attention weights are produced as follows:

αt(i, j) = softmax(MLP(et(i, j)))

et(i, j) = [e3t (i, j), e4t (i, j), e5t (i, j)]

αt(i, j) = [α3
t (i, j), α

4
t (i, j), α

5
t (i, j)]

(7)

After being processed by the pyramidal feature attention,

fatten
t will be fed into the motion-aligned LSTM.

3.3. Motionaided Memory Network

3.3.1 Motion Vectors and Residual Errors

For compressed data, a P-frame is divided into blocks

known as macroblocks (see Figure 4). The supported pre-

diction block sizes range from 4 × 4 to 16 × 16 sam-

ples. Video encoder adopts a block matching algorithm

[50, 31, 49, 20] to find a block similar to the one it is en-

coding on a previously encoded frame. The absolute source

position and destination position of a macroblock are stored

in the motion vectors. Moreover, if there is not an exact

match to the block it is encoding, the residual errors are

also sent to the decoder.

16×	16

16×	8

8×	16

8×	8

0

0 1

0

1

0 1

2 3

…

source position

destination position

Figure 4. Motion vector represents a macroblock in a picture based

on the position of that in another picture.

In our implementation, we use FFmpeg [1] to extract the

motion vectors and residual errors for each P-frame. When

we obtain the original motion vectors and residuals from

the codecs, we resize them to match the size of the feature

maps hL and wL. And the motion vectors should be further

rescaled by spatial stride since the original values indicate

the movements in the decoded frames.

7107

3.3.2 Motion-aided LSTM

We use LSTM [15] to transfer the features. There are two

modifications to the conventional LSTMs. One is the mo-

tion vector aided feature warping and another is residual

error based new input.

Although the gates in LSTM focus on selecting and up-

dating representations, it is still hard for them to forget the

object after it has moved to a different position [48]. Exper-

iments in Section 4.4 demonstrate this concern. It is called

misaligned features across frames. Hence, we propose a

motion vector based feature warping which helps to cali-

brate cell/hidden features before running through the mem-

ory module (see Figure 3(b)). We warp the feature maps

from the neighboring frames to the current frame as fol-

lows:

ct+k−1→t+k = W(ct+k−1,mt+k)

ht+k−1→t+k = W(ht+k−1,mt+k)
(8)

where ct+k−1 and ht+k−1 are outputs of the memory mod-

ule at time t + k − 1. We set ct and ht to fatten
t and

k ∈ [1, n]. n is the number of P-frames in a GOP. The

warping operation W is similar to [53]. It is implemented

by bi-linear function which is applied on each location for

all feature maps. It projects a location p+∆p in the frame

t+ k − 1 to the location p in the frame t+ k which can be

formulated as:

∆p = mt+k(p)

ct+k−1→t+k(p) =
∑

q

G(q,p+∆p)ct+k−1(q)
(9)

where ∆p is obtained through mt+k. q enumerates all spa-

tial locations in the feature maps ct+k−1, and G(·) denotes

bi-linear interpolation kernel as follow:

G(q,p+∆p) = max(0, 1− ||q − (p+∆p)||) (10)

Hidden features ht+k−1→t+k can also be obtained through

above operations. Then ct+k−1→t+k and ht+k−1→t+k are

used as the input from previous time to the current memory

module.

For conventional LSTMs, the current complete frame

will be used as the new information. In our model, we use

the residual errors as new input. Through the motion vector,

the previous features can be matched to the current state, but

the current representation still lacks some information. So

the video encoder computes the residual errors, whose val-

ues are known as the prediction error and needed to be trans-

formed and sent to the decoder. After spatial alignment, the

residual errors can be used as the complementary informa-

tion which are more crucial than the whole appearance fea-

tures of the complete image. In order to better match the

residual errors from image-level to the feature-level, we use

one convolutional layer to rescale the values.

After obtaining the warped features and new input, the

memory can generate the new cell features as follow:

gt+k = σ(Wg(ht+k−1→t+k, rt+k)),

it+k = σ(Wi(ht+k−1→t+k, rt+k)),

ĉt+k = ReLU(Wc(ht+k−1→t+k, rt+k)),

ct+k = gt+k ⊗ ct+k−1→t+k + it+k ⊗ ĉt+k

(11)

where ⊕ and ⊗ are element-wise addition and multiplica-

tion, and Wg,Wi and Wc are learnable weights. gt+k can

be regarded as a selection mask and ĉt+k is new informa-

tion that holds complementary representation. ct+k repre-

sents the current frame that will be fed into Nrfcn. Then

the hidden features can be generated:

ot+k = σ(Wo(ht+k−1→t+k, rt+k)),

ht+k = ot+k ⊗ReLU(ct+k)
(12)

Based on this architecture, we can transform former fea-

tures to the current state and they will be passed to the next

step until encountering another new I-frame. Features of

one GOP [ct, ct+1, ct+1, · · · , ct+n] will be sent to the de-

tection network Nrfcn, producing bounding boxes of ob-

jects simultaneously.

4. Experiments

4.1. Dataset preparation and evaluation metrics

We evaluate the proposed MMNet on the ImageNet [35]

object detection from video (VID) dataset. It is split into

3862 training and 555 validation videos. It contains 30

classes labeled with ground truth bounding boxes on all

frames. We report the evaluation of previous state-of-the-art

models on the validation set and use mean average precision

(mAP) as the evaluation metric by following the protocols

in [21, 53, 54]. VID releases both original videos and de-

coded frames. Note that all of the previous state-of-the-art

methods use decoded frames as input. It is the first time to

detect objects on the original videos on VID.

The 30 object categories in ImageNet VID are a subset

of 200 categories in the ImageNet DET dataset. We follow

previous approaches and train our model on an intersection

of ImageNet VID and DET set.

4.2. Training and Evaluation

We perform two phrase training: 1) the model is trained

on the mixture of DET and VID for 12K iterations, with

learning rates of 2.5× 10−4 and 2.5× 10−5 in the first 80K

and 40K iterations, respectively. We use a batch size of 4

on 4GPUs. 2) the motion-aided memory network is inte-

grated into R-FCN, and trained for another one epoch on

VID dataset. In this phase, each GPU holds multiple sam-

ples in one GOP. It is already introduced by Section 3.1.

The feature extractor ResNet101 model is pre-trained for

ImageNet classification as default. In both training and test-

ing, we use single scale images with shorter dimension of

7108

Backbone ResNet-101

Methods (a) (b) (c) (d) (e) (f)

MV?
√ √ √ √

Residual?
√ √ √ √

LSTM?
√ √ √ √ √

Pyramidal Attention?
√

mAP(%)(fast) 27.7 27.3 ↓0.4 38.5 ↑10.8 43.1 ↑15.4 44.2 ↑16.5 43.7↑16.0
mAP(%)(medium) 68.2 68.0 ↓0.2 71.2 ↑3.0 71.5 ↑3.3 72.0 ↑3.8 73.4 ↑5.2
mAP(%)(slow) 82.6 82.2 ↓0.4 83.5 ↑0.9 83.0 ↑0.4 83.6 ↑1.0 84.7 ↑2.1
mAP(%) 66.3 66.1 ↓0.2 70.3 ↑4.0 71.3↑5.0 72.1 ↑5.8 73.0 ↑6.7
Speed(fps) 42.1 41.9 51.3 41.9 41.7 40.5

Table 1. Accuracy of different methods on ImageNet VID validation using ResNet-101 feature extraction networks.

600 pixels. For testing we run the whole recognition net-

work only on I-frame and fast predict the bounding boxes

for the rest frames.

4.3. Ablation Study

In this section, we conduct an ablation study to prove

the effectiveness of the proposed network, including mo-

tion vectors, residual errors, LSTM and pyramidal feature

attention. We use ResNet-101 to extract I-frame features

and adopt different ways to propagate features to the follow-

ing P-frames. The evaluation protocols follow the previous

work [53]. They divide the ground truth objects into three

groups according to their movement speed. They use ob-

ject’ averaged intersection-over-union(IoU) scores with its

corresponding instances in the nearby frames as the mea-

surement. The lower motion IoU(< 0.7) indicates the faster

movement. Otherwise, the larger Motion IoU (score > 0.9)

denotes the object moves slowly. Table 1 also shows the ac-

curacy and runtime speed for the models.

Method (a) and (b): Method(a) adopts LSTMs to trans-

form features. It is a conventional solution and we regard

it as our baseline. However, without explicit motion cues,

LSTMs are unable to automatically align features from pre-

vious frames, leading to poor performance (66.3%mAP in

Table 1), especially for fast moving objects (27.7% mAP).

In method (b), without motion alignment, the residual errors

even hurt the result (66.1% mAP).

Method (c) and (d): These methods utilize motion vec-

tor to warp(/align) the features. Residual errors or LSTMs

aim to learn complementary features. we find that {motion

vector + residual error} is a practical solution because it has

the least computational cost (51.3 fps) with comparable ac-

curacy (70.3%). For the fast moving objects, the result is

improved from 27.7% to 38.5 %. It also proves that motion

information encoded in the compressed videos is valuable

for modeling differences among frames.

Method (e) and (f): These methods are based on motion-

aided memory network with/without pyramidal feature at-

tention. Method (e) only propagates high-level feature maps

of the top layer and Method (d) delivers pyramidal features

to the memory network. We find pyramidal features can

further improve the performance with little higher runtime

complexity.

To sum up, the motion vector and residual errors are nec-

essary for modeling the motion among consecutive frames.

They can speed up the detection procedure. Besides, LSTM

is employed to filter out unnecessary information and com-

plement new information. Moreover, propagation of pyra-

midal features can further improve the detection accuracy.

Consequently, these modules are capable of promoting the

final feature representations collaboratively.

4.4. Visualization

Visualization of Memory. We attempt to take a deeper

look at intermediate features learned by motion-aided mem-

ory network. In Figure 5, there are three typical video snip-

pets. For example, in video #2, the left part consists of de-

coded frames {It, · · · ,Pt+2, · · · ,Pt+5, · · · ,Pt+7}. The

car in video moves from left to the middle. We compare the

visualization results of mis-aligned and motion-aided mem-

ory.

The features in the middle part are learned by LSTM.

Although the gates within LSTM are designed for learning

the changes among historical information and new input, it

is incapable of aligning the spatial features across frames.

It cannot capture motion cues only depended on appearance

features. The right part presents the motion-aided mem-

ory network. Features of {Pt+2,Pt+5,Pt+7} are all based

on It. The MMNet receives codecs information as input,

aligns and corrects the propagated features. The neurals of

7109

Figure 5. Memory visualization. Each example contains original frames, (a) mis-aligned memory and (b) motion-aided memory. Motion

information is quite necessary for feature propagation. It helps MMNet align the feature when the objects move to a different position.

high response in the heapmap move from the left to the mid-

dle as the original car.

From the above comparison, motion information is ex-

tremely important for feature propagation. It helps to align

features when the objects move to a different position. Thus

the motion-aided memory network can calibrate features

and alleviate inaccurate localizations.

Visualization of FlowNet and Motion Vector. In order

to show the differences of motion cues between the flow

estimation and motion vectors, we visualize two examples

and their results in Figure 6. Each of the two examples con-

tains the original short snippet, results of FlowNet [8, 54]

and motion vectors (We use the tool provided with Sintel[4]

to visualize the above motion information).

The main advantage of motion vector is freely available.

It requires no extra time or models to retrieve motion in-

formation because it has already been encoded in the com-

pressed video. From the results in Figure 6, even the mo-

tion vector is not as meticulous as FlowNet, it is able to

model the motion tendency of objects. All the features of

frame Pt+1, Pt+3, Pt+5, Pt+7, Pt+9 are propagated from

the I-frame It by utilizing motion vectors, rather than us-

ing heavy computational network. Moreover, the bounding

boxes location and recognition results are reasonable by the

guidance of motion cues, and sometimes even exceed the

flow estimation results.

Figure 6. Visualization of FlowNet and Motion Vector. The FlowNet in [54] is capable of building detailed model information. And the

motion vector can quickly provide the motion cues which helps to speed up detection procedure in most situations.

7110

Methods Method mAP(%)

Single Frame R-FCN[7] 73.6

Box
Propagation

ST-Lattice[5] 77.8

TCNN[22] 73.8

Seq-NMS [12] 52.2

TCN[23] 47.5

Feature
Propagation

MANet[44] 78.1

FGFA[53] 76.5

DFF[54] 73.1

TPN[21] 68.4

Mobile[28] 54.4

Ours (MMNet) 73.0(41fps)

∼76.4(10fps)

Ours (+PostProc.) 74.8(55fps)

∼79.2(8fps)

Table 2. Performance comparison with state-of-the-art systems on the

ImageNet VID validation set. The mean average precision (in %) over

all classes is shown.

70

71

72

73

74

75

76

77

78

79

80

0 5 10 15 20 25 30 35 40 45 50 55 60

FGFA

DFF

MANet

MMNet

MMNet

+seq-NMS

MMNet

+seq-NMS

+ Interpolation

R-FCN

mAP(%)

fps

Per-frame Detection

TCNN - TCSVT’17

FGFA - ICCV’17

MANet - ECCV’18

Feature Propagation

DFF - CVPR’17

MMNet – Ours

Detection Backbone

R-FCN - NIPS’16

Combination with

Box Postprocessing

seqNMS – arxiv’16

Interpolation - CVPR’18

(component of ST-Lattice)

Figure 7. The detailed speed and accuracy of some typical

methods. The runtime is measured on an NVIDIA Titan X

Pascal GPU.

For flow estimation, the motion information is more

smooth. It has superior performance when the object is

small and unclear. But this model composes dozens of con-

volutional layers. For each neighboring frame, it should

calculate the FlowNet first, which seems not elegant.

To sum up, FlowNet is capable of building detailed mo-

tion information. And the motion vector can quickly pro-

vide the motion cues which help to speed up detection. This

comparison shows the potential of compressed video based

detection methods. It fully exploits the codec information

and makes the model more elegant.

4.5. Comparison with stateoftheart systems

In this section, we show the runtime speed and perfor-

mance of the related methods in Table 2 and Figure 7. In

Table 2, the methods are divided into three groups: single

frame baseline [7], box-level and feature-level propagation.

We also present the detailed accuracy-runtime tradeoff of

baseline methods whose performance is above 70% mAP

in Figure 7. And the runtime includes the cost of data pre-

processing.

From the comparison in Figure 7, we find that:

Per-frame detection (yellow): MANet[44] has the best

performance among these previous works, whereas it takes

about 260ms to detect for one frame. All of these per-frame

detectors use heavy computational networks (<10fps);

Feature propagation(purple): After producing features on

a keyframe, DFF [54] propagates features by using flow es-

timation. Compared with DFF, our model achieves better

performance on both accuracy and runtime speed.

Box postprocessing(blue): The box-level propagation is

complementary with feature-level propagation. We select

two typical methods seq-NMS[12] and interpolation (part of

ST-Lattice) [5] as baselines. When we combine them with

our MMNet, they steadily push forward the performance

envelope.

To sum up, the MMNet performs well in both accuracy and

speed, and it can be easily incorporated with box-level post-

processing methods.

5. Conclusions

In this paper, we propose a fast object detection model

incorporating motion-aided memory network called MM-

Net. It can be directly applied to compressed videos. Dif-

ferent from the previous work, we use motion information

stored and transmitted within a video stream, rather than

building another model to retrieve motion cues. We use the

I-frame as the reference frame, and explore the memory net-

work to transfer features to next P-frames. All these oper-

ations are designed with respect to compressed videos. We

conduct extensive experiments, including ablation study, vi-

sualization and performance comparison, demonstrating the

effectiveness of the proposed model.

Acknowledgments

This work was supported in part by the National Key

R&D Program of China under Grant No.2017YFB1302200,

by TOYOTA TTAD-2019-08, by DeepBlue AI China, and

by Joint Fund of NORINCO Group of China for Advanced

Research under Grant No.6141B010318.

7111

References

[1] Ffmpeg. https://github.com/FFmpeg/FFmpeg.

[2] Gedas Bertasius, Lorenzo Torresani, and Jianbo Shi. Object

detection in video with spatiotemporal sampling networks.

In ECCV, pages 331–346, 2018.

[3] Michael Bramberger, Andreas Doblander, Arnold Maier,

Bernhard Rinner, and Helmut Schwabach. Distributed em-

bedded smart cameras for surveillance applications. Com-

puter, 39(2):68–75, 2006.

[4] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and

Michael J Black. A naturalistic open source movie for op-

tical flow evaluation. In European Conference on Computer

Vision, pages 611–625. Springer, 2012.

[5] Kai Chen, Jiaqi Wang, Shuo Yang, Xingcheng Zhang, Yuan-

jun Xiong, Chen Change Loy, and Dahua Lin. Optimizing

video object detection via a scale-time lattice. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 7814–7823, 2018.

[6] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,

Shuicheng Yan, and Jiashi Feng. Dual path networks. CoRR,

abs/1707.01629, 2017.

[7] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

Advances in neural information processing systems, pages

379–387, 2016.

[8] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick van der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2758–2766, 2015.

[9] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Detect to track and track to detect. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3038–3046, 2017.

[10] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

580–587, 2014.

[12] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachan-

dran, Mohammad Babaeizadeh, Honghui Shi, Jianan Li,

Shuicheng Yan, and Thomas S Huang. Seq-nms for video

object detection. arXiv preprint arXiv:1602.08465, 2016.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

37(9):1904–1916, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[17] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018.

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2261–2269, 2017.

[19] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[20] Changsoo Je and Hyung-Min Park. Optimized hierarchi-

cal block matching for fast and accurate image registration.

Signal Processing: Image Communication, 28(7):779–791,

2013.

[21] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie

Yan, Xihui Liu, and Xiaogang Wang. Object detection in

videos with tubelet proposal networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 727–735, 2017.

[22] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin

Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui Wang,

Xiaogang Wang, et al. T-cnn: Tubelets with convolutional

neural networks for object detection from videos. IEEE

Transactions on Circuits and Systems for Video Technology,

2017.

[23] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang

Wang. Object detection from video tubelets with convolu-

tional neural networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

817–825, 2016.

[24] Vadim Kantorov and Ivan Laptev. Efficient feature extrac-

tion, encoding, and classification for action recognition. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2593–2600, 2014.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[26] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,

Bharath Hariharan, and Serge J. Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 936–944, 2017.

[27] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,

and Piotr Dollár. Focal loss for dense object detection. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 2999–3007, 2017.

[28] Mason Liu and Menglong Zhu. Mobile video object de-

tection with temporally-aware feature maps. arXiv preprint

arXiv:1711.06368, 2017.

7112

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016.

[30] Jawad Nagi, Frederick Ducatelle, Gianni A Di Caro, Dan

Cireşan, Ueli Meier, Alessandro Giusti, Farrukh Nagi,

Jürgen Schmidhuber, and Luca Maria Gambardella. Max-

pooling convolutional neural networks for vision-based hand

gesture recognition. In 2011 IEEE International Confer-

ence on Signal and Image Processing Applications (ICSIPA),

pages 342–347. IEEE, 2011.

[31] Yao Nie and Kai-Kuang Ma. Adaptive rood pattern search

for fast block-matching motion estimation. IEEE Transac-

tions on Image processing, 11(12):1442–1449, 2002.

[32] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 779–788, 2016.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[34] Iain EG Richardson. H264/mpeg-4 part 10 white pa-

per—prediction of intra macroblocks. Internet Citation, Apr,

30, 2003.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[36] Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick.

Training region-based object detectors with online hard ex-

ample mining. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 761–769,

2016.

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[38] Anastasis A. Sofokleous. Review: H.264 and MPEG-4 video

compression: Video coding for next-generation multimedia.

Comput. J., 48(5):563, 2005.

[39] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A. Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Proceed-

ings of the Thirty-First AAAI Conference on Artificial Intelli-

gence, February 4-9, 2017, San Francisco, California, USA.,

pages 4278–4284, 2017.

[40] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2818–2826, 2016.

[42] B. Ugur Töreyin, A. Enis Çetin, Anil Aksay, and M. Bil-

gay Akhan. Moving object detection in wavelet compressed

video. Sig. Proc.: Image Comm., 20(3):255–264, 2005.

[43] Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gev-

ers, and Arnold W. M. Smeulders. Selective search for ob-

ject recognition. International Journal of Computer Vision,

104(2):154–171, 2013.

[44] Shiyao Wang, Yucong Zhou, Junjie Yan, and Zhidong Deng.

Fully motion-aware network for video object detection. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 542–557, 2018.

[45] Zhenyang Wang, Zhidong Deng, and Shiyao Wang. Accel-

erating convolutional neural networks with dominant convo-

lutional kernel and knowledge pre-regression. In European

Conference on Computer Vision, pages 533–548. Springer,

2016.

[46] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer.

Squeezedet: Unified, small, low power fully convolu-

tional neural networks for real-time object detection for au-

tonomous driving. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops,

pages 129–137, 2017.

[47] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Manmatha,

Alexander J Smola, and Philipp Krähenbühl. Compressed

video action recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6026–6035, 2018.

[48] Fanyi Xiao and Yong Jae Lee. Video object detection with an

aligned spatial-temporal memory. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 485–

501, 2018.

[49] Jiheng Yang, Baocai Yin, Yanfeng Sun, and Nan Zhang. A

block-matching based intra frame prediction for h. 264/avc.

In 2006 IEEE International Conference on Multimedia and

Expo, pages 705–708. IEEE, 2006.

[50] Shan Zhu and Kai-Kuang Ma. A new diamond search al-

gorithm for fast block-matching motion estimation. IEEE

transactions on Image Processing, 9(2):287–290, 2000.

[51] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. To-

wards high performance video object detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7210–7218, 2018.

[52] Xizhou Zhu, Jifeng Dai, Xingchi Zhu, Yichen Wei, and Lu

Yuan. Towards high performance video object detection for

mobiles. arXiv preprint arXiv:1804.05830, 2018.

[53] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen

Wei. Flow-guided feature aggregation for video object detec-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 408–417, 2017.

[54] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen

Wei. Deep feature flow for video recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2349–2358, 2017.

[55] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018.

7113

