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Abstract

One-class learning is the classic problem of fitting a
model to data for which annotations are available only for
a single class. In this paper, we propose a novel objec-
tive for one-class learning. Our key idea is to use a pair of
orthonormal frames — as subspaces — to “sandwich” the
labeled data via optimizing for two objectives jointly: i)
minimize the distance between the origins of the two sub-
spaces, and ii) to maximize the margin between the hyper-
planes and the data, either subspace demanding the data to
be in its positive and negative orthant respectively. Our pro-
posed objective however leads to a non-convex optimization
problem, to which we resort to Riemannian optimization
schemes and derive an efficient conjugate gradient scheme
on the Stiefel manifold.

To study the effectiveness of our scheme, we propose
a new dataset Dash-Cam-Pose, consisting of clips with
skeleton poses of humans seated in a car, the task being
to classify the clips as normal or abnormal; the latter is
when any human pose is out-of-position with regard to say
an airbag deployment. Our experiments on the proposed
Dash-Cam-Pose dataset, as well as several other stan-
dard anomaly/novelty detection benchmarks demonstrate
the benefits of our scheme, achieving state-of-the-art one-
class accuracy.

1. Introduction

There are several real-world problems in which it may be
easy to characterize the normal operating behavior of a sys-
tem or collect data for it, however may be difficult or some-
times even impossible to have data when a system is at fault
or is improperly used. Examples include but not limited to
an air conditioner making an unwanted vibration, a network
attacked by an intruder, abnormal patient conditions such
as heart rates, an accident captured in a video surveillance
camera, or a car engine firing at irregular intervals, among
others [ 1]. In machine learning literature, such problems
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Figure 1. A graphical illustration of classical OC-SVM and SVDD
in relation to our proposed BODS and GODS schemes. The
blue points show the given one-class data, the red-points are out-
liers, and decision boundary of each method is shown by orange
curves/lines.

are usually called one-class problems [4, 44], signifying the
fact that we may be able to have unlimited supply of labeled
training data for one-class (corresponding to the normal op-
eration of the system), but do not have any labels or train-
ing data for situations corresponding to abnormalities. The
main goal of such problems is thus to learn a model that fits
to the normal set, such that abnormalities can be character-
ized as outliers of this model.

Classical solutions for one-class problems are mainly
extensions to support vector machines (SVMs), such as
the one-class SVM (OC-SVM) that maximizes the mar-
gin of the discriminative hyperplane from the origin [46].
There are extensions of this scheme, such as the least-
squares one-class SVM (LS-OSVM) [14] or its online vari-
ants [58] that learn to find a tube of minimal diameter that
includes all the labeled data. Another popular approach is
the support-vector data description (SVDD) that finds a hy-
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persphere of minimum radius that encapsulates the training
data [51]. There have also been kernelized extensions of
these schemes that use the kernel trick to embed the data
points in a reproducible kernel Hilbert space, potentially
enclosing the ‘normal’ data with arbitrarily-shaped bound-
aries.

While, these approaches have shown benefits and have
been widely adopted in several applications [ 1], they have
drawbacks that motivate us to look beyond prior solutions.
For example, the OC-SVM uses only a single hyperplane,
however using multiple hyperplanes may be beneficial and
provide a richer characterization of the labeled set, as also
recently advocated in [56]. The SVDD scheme makes a
strong assumption on the spherical nature of the data dis-
tribution, which may be seldom true in practice. Further,
using kernel methods may impact scalability. Motivated by
these observations, we propose a novel one-class classifica-
tion objective that: (i) learns a set of discriminative and or-
thogonal hyperplanes, as a subspace, to model a multi-linear
classifier, (ii) learns a pair of such subspaces, one bounding
the data from below and the other one from above, and (iii)
minimizes the distances between these subspaces such that
the data is captured within a region of minimal volume (as
in SVDD). Our framework generates a piecewise linear de-
cision boundary and operates in the input space.

Albeit these benefits, our objective is non-convex due to
the orthogonality constraints. However, such non-convexity
fortunately is not a significant concern as the orthogonal-
ity constraints naturally place the optimization objective on
the Stiefel manifold [17]. This is a well-studied Rieman-
nian manifold [6] for which there exist efficient non-linear
optimization methods at our disposal. We use one such
optimization scheme, dubbed Riemannian conjugate gradi-
ent [1], which is fast and efficient.

To evaluate the usefulness of our proposed scheme, we
apply it to the concrete setting of detecting abnormal or
‘out-of-position” human poses [54, 53] in cars; specifically,
our goal is to detect if the passengers or the driver are
seated “out-of-position” (OOP) as captured by an inward
looking dashboard camera. This problem is of at most
importance in vehicle passenger safety as humans seated
OOP may be subject to fatal injuries if the airbags are de-
ployed [43, 36, 25]. The problem is even more serious in
autonomous cars, which may not (in the future) have any
drivers at all to monitor the safety of the passengers. Such
OOP human poses include abnormal positions of the face
(such as turning back), legs on the dashboard, etc., to name
a few. As it may be easy to define what normal seating
poses are, while it may be far too difficult to model abnor-
mal ones, we cast this problem in the one-class setting. As
there are no public datasets available to study this problem,
we propose a novel dataset, Dash-Cam-Pose consisting of
nearly 5K short video clips and comprising of nearly a mil-

lion human poses (extracted using OpenPose [8]). Each clip
is collected from long Internet videos or Hollywood road
movies and weakly-annotated with a binary label signify-
ing if passengers are seated correctly or out-of-position for
the entire duration of the clip.

We showcase the effectiveness of our approach on the
Dash-Cam-Pose dataset, as well as several other popu-
lar benchmarks such as UCF-Crime [50], action recogni-
tion datasets such as JHMDB [23], and two standard UCI
anomaly datasets. Our experiments demonstrate that our
proposed scheme leads to more than 10% improvement in
performance over classical and recent approaches on all the
datasets we evaluate on.

Before moving ahead detailing our method, we summa-
rize below the main contributions of this paper:

1. We first introduce a one-class discriminative subspace
(BODS) classifier that uses a pair of hyperplanes.

2. We generalize BODS to use multiple hyperplanes,
termed generalized one-class discriminative subspaces
(GODS).

3. We propose a new Dash-Cam-Pose dataset for anoma-
lous pose detection of passengers in cars, and

4. We provide experiments on the Dash-Cam-Pose
dataset, as well as four other public datasets, demon-
strating state-of-the-art performance.

2. Background and Related Works

Let D C RY denote the data set consisting of our one
class-of-interest and everything outside it, denoted D, be the
anomaly set. Suppose we are given n data instances D, =
{X1,X2, -+ ,X,} C D. The goal of one-class classifiers is
touse D, to learn a functional f which is positive on D and
negative on D. Typically, the label of D is assumed +1 and
that of D as —1.

In One-Class Support Vector Machine (OC-SVM) [46],
f is modeled as an extension of an SVM objective by learn-
ing a max-margin hyperplane that separates the origin from
the data points in D,. Mathematically, f has the form
sgn(wlx + b), where (w,b) € R? x R! and is learned
by minimizing the following objective:

=1

where ¢;’s are non-negative slacks, b is the hyperplane in-
tercept, and C'is the slack penalty. As a single hyperplane
might be insufficient to capture all the non-linearities asso-
ciated with the one-class, there are extensions using non-
linear kernels via the kernel-trick [460]. However, as is com-
mon with kernelized SVM, such a formulation is difficult
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to scale with the number of data points. Another popular
variant of one-class classifiers is the support vector data de-
scription (SVDD) [51] that instead of modeling data to be-
long to an open half-space of R? (as in OC-SVM), assumes
the labeled data inhabits a bounded set; specifically, the op-
timization seeks the centroid ¢ € R? of a hypersphere of
minimum radius R > 0 that contains all points in D,. Math-
ematically, the objective reads:

.1
min —

n
Jnin 23%02@, st. ||xi — |3 <R?—¢;,Vx; € D,,

i=1
where, as in OC-SVM, the £’s model the slack. There have
been extensions of this scheme, such as the mSVDD that
uses a mixture of such hyperspheres [29], density-induced
SVDD [30], using kernelized variants [52], and more re-
cently, to use subspaces for data description [49]. A ma-
jor drawback of SVDD in general is the strong assump-
tion it makes on the isotropic nature of the underlying data
distribution. Such a demand is ameliorated by combining
OC-SVM with the idea of SVDD in least-squares one-class
SVM (LS-OSVM) [14] that learns a tube around the dis-
criminative hyperplane that contains the input; however,
this scheme also makes strong assumptions on the data
distribution (such as being cylindrical). In Figures 1(a)
and 1(b), we graphically illustrate OC-SVM and SVDD
schemes.

Unlike OC-SVM that learns a compact data model to en-
close as many training samples as possible, a different ap-
proach is to use principal component analysis (PCA) (and
its kernelized counterpart, such as Kernel PCA and Roboust
PCA[7, 15, 20, 38, 60]) to summarize the data by using its
principal subspaces. However, such an approach is usually
unfavorable due to its high computational cost, especially
when the dataset is large. Similar in motivation to the pro-
posed technique, Bodesheim et al. [5] use null space trans-
form for novelty detection and while Liu et al. [34] opti-
mize a kernel-based max-margin objective for outlier re-
moval and soft label assignment. However, their problem
setups are different from ours in that [5] requires multi-class
labels in the training data and [34] is proposed for unsuper-
vised learning.

In contrast to these prior methods, in this paper, we ex-
plore the one-class objective from a very unique perspec-
tive; specifically, to use subspaces as in PCA, however in-
stead of approximating the one-class data, these subspaces
are aligned in such a way as to bound the data in a piecewise
linear manner, via solving a discriminative objective. We
first present a simplified variant of this objective by using
two different (sets of) hyperplanes, dubbed Basic One-class
Discriminative Subspaces (BODS), that can sandwich the
labeled data by bounding from different sides; these hyper-
planes are independently parameterized and thus can be ori-
ented differently to better fit to the labeled data. Note that

there is a similar prior work, termed Slab-SVM [ 18], that
learns two hyperplanes for one-class classification. How-
ever, these hyperplanes are constrained to have the same
slope, which we do not impose in our BODS model, as a
result, our model is more general than Slab-SVM. We ex-
tend the BODS formulation by using multiple hyperplanes,
as a discriminative subspace, which we call Generalized
One-class Discriminative Subspaces (GODS); these sub-
spaces provide better support for the one-class data, while
also circumscribing the data distribution. The use of such
discriminative subspaces has been recently explored in the
context of representation learning on videos in Wang and
Cherian [56] and Wang et al. [57], however demands a sur-
rogate negative bag of features found via adversarial means.
Anomaly Detection: In computer vision, anomaly detec-
tion has been explored from several facets and we refer in-
terested readers to excellent surveys provided in [11, 42]
on this topic. Here we pickout a few prior works that are
related to the experiments we present. To this end, Adam
et al., [2] and Kim et al. [26] use optical flow to capture
motion dynamics, characterizing anomalies. A Gaussian
mixture modelling of people and object trajectories is used
in [32, 48] for identifying anomalies in video sequences.
Saliency is used in [22, 24] and detecting out-of-context
objects is explored in [13, 40] using support graph and
generative models for characterizing normal and abnormal
data. We are also aware of recent deep learning methods
for one-class problems. Feature embeddings (via a CNN) is
explored in [31, 33] minimizing the “in-distribution” sam-
ple distances, so that “out-of-distribution” samples can be
found via suitable distance measures. Differently, we at-
tempt at finding a suitable “in-distribution” data boundary
which is agnostic to the data embedding. A deep variant of
SVDD is proposed in [45], however assumes the one-class
data is unimodal. There are extensions of OC-SVM to a
deep setting in [59, 10, 41]. Due to the immense capacity of
modern CNN models, it is often found that the learned pa-
rameters overfit quickly to the one-class; requiring heuristic
workarounds for regularization or avoiding model collapse.
Thus, deep methods so far have been primarily used as fea-
ture extractors, these features are then used in a traditional
one-class formulation, such as in [10]. We follow this trend.

3. Proposed Method

Using the notation above, in this section, we formally in-
troduce our schemes. First, we present our basic idea using
a pair of hyperplanes, which we generalize using a pair of
discriminative subspaces for one-class classification.

3.1. Basic One-class Discriminative Subspaces

Suppose (w1, b1) and (wa, by) define the parameters of
a pair of hyperplanes respectively; our goal in the basic vari-
ant of one-class discriminative subspace (BODS) classifiers
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is to minimize an objective such that all data points x; be
classified to the positive half-space of (w1,b;) and to the
negative half-space of (wy,bs), while also minimizing a
suitable distance between the two hyperplanes. Mathemati-
cally, BODS can be formulated as solving:

[w 1||2 ||W2H§ —b1 —ba+ Q(&14, &24)

(wl,bl) (w2,b2) 2
£1,62,8>
(h
st (wix; —b1) >n— &y @)
(Wix; —ba) < —m+ &y 3)

diStQ((Wivbl)v(w27b2)) < B,VZ: 1727"' y 1y (4)

where (2) constraints the points such that they belong to
the positive half-space of (w1, b1 ), while (3) constraints the
points to belong to the negative half-space of (wa, by). We
use the notation Q(&1;,82;) = C Y1 (&4 + &2;) for the
slack regularization and n > 0 specifies a (given) classifica-
tion margin. The two hyperplanes have their own parame-
ters, however are constrained together by (4), which aims to
minimize the distance dist between them (by 3). One pos-
sibility is to assume dist to be the Euclidean distance, i.e.,
dist? (w1, b1) , (Wa,b2)) = [[wy — wall3 + (b1 — b2)2.

It is often found empirically, especially in a one-class
setting, that allowing the weights w;’s to be unconstrained
leads to overfitting to the labeled data; a practical idea is to
explicitly regularize them to have unit norm (and so are the
data point x;’s), i.e., |wi|, = |[wa|l, = 1. In this case,
these weights belong to a unit hypersphere U%~*, which is
a sub-manifold of the Euclidean manifold R?. Using such
manifold constraints, the optimization in (1) can be rewrit-
ten (using a hinge loss variant for other constraints) as fol-
lows, which we term as our basic one-class discriminative
subspace (BODS) classifier.

Pl:= min  a(b,bs)

w1,wa U™
£1,£220,b1,b2

+Z W1 Xz+b1> —fli]++

where using the unit-norm constraints dist? simplifies to
—2W{W2—‘r(b1 —b2>2, and a(bl, bg) = (bl —b2)2 —by—bo.
The notation [ ] stands for the hinge loss. In Figure 1(c),
we illustrate the decision boundaries of BODS model.

—2wi wo + Q&1 &) (5)

3.2. Generalized One-class Discriminative Sub-
spaces

To set the stage, let us first see what happens if we in-
troduce subspaces instead of hyperplanes in BODS. To this
end, let W, Wy € Slf be subspace frames — that is, ma-
trices of dimensions d x K, each with K columns where
each column is orthonormal to the rest; i.e., WlTW1 =

[77+ (WQTXi + b2) +52¢]+7

W2TW2 = Ik, where I is the K x K identity matrix.
Such frames belong to the so-called Stiefel manifold, de-
noted SX, with K d-dimensional subspaces. Note that the
orthogonality assumption on the W’s is to ensure they cap-
ture diverse discriminative directions, leading to better reg-
ularization; further also improving their characterization of
the data distribution. A direct extension of P1 leads to:

P2 := mln dist?, (W1, Ws) + a(by, by) + Q(&15, &)
WeSK £>0,b
. 2
+ Z n — min(W{x; + by) — &;] N (6)

+Z

where distyy is a suitable distance between subspaces, and
b € RX is a vector of biases, one for each hyperplane.
Note that in (6) and (7), unlike BODS, WTx,; + b is a K-
dimensional vector. Thus, (6) says that the minimum value
of this vector should be greater than 7 and (7) says that the
maximum value of it is less than —».

Now, let us take a closer look at the distyw (W1, Wa).
Given that W1, W, are subspaces, one standard possibility
for a distance is the Procrustes distance [12, 55] defined as
mingep, ||[W1 — Wall|| -, where P is the set of K x K
permutation matrices. However, including such a distance
in Problem P2 makes it computationally expensive. To this
end, we propose a slightly different variant of this distance
which is much cheaper. Recall that the main motivation to
define the distance between the subspaces is so that they
sandwich the (one-class) data points to the best possible
manner while also catering to the data distribution. Thus,
rather than defining a distance between such subspaces, one
could also use a measure that minimizes the Euclidean dis-
tance of each data point from both the hyperplanes; thereby
achieving the same effect. That is, we redefine dist%V as:

+ max(W2x; + by) + 521] ) (N

2
- e

disty (W1, W2, by, bo[x) » ®

where now we minimize the sum of the lengths of each
x after projecting on to the respective subspaces; thereby
pulling both the subspaces closer to the data point. Using
this definition of dist%v, we formulate our generalized one-
class discriminative subspace (GODS) classifier as:

. 1 n 2 9
P3 ::Vgnél%‘ F = 3 ;; HW]TXZ + ij2 + a(by, b2)
20,

+ (&1, §20) + % > [n—min(Wix; +by) — fu]i

1
5 0 [t max(Wixi +bo) +6a], . ©)

(3
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Figure 1(d) depicts the subspaces in GODS model in rela-
tion to other methods. As is intuitively clear, using multiple
hyperplanes allows richer characterization of the one-class,
which is difficult in other schemes.

4. Efficient Optimization

In contrast to OC-SVM and SVDD, the problem P3 is
non-convex due to the orthogonality constraints on W and
W,.! However, these constraints naturally impose a ge-
ometry to the solution space and in our case, puts the W’s
on the well-known Stiefel manifold [37] — a Riemannian
manifold characterizing the space of all orthogonal frames.
There exist several schemes for geometric optimization over
Riemannian manifolds (see [!] for a detailed survey) from
which we use the Riemannian conjugate gradient (RCG)
scheme in this paper, due to its stable and fast convergence.
In the following, we review some essential components of
the RCG scheme and provide the necessary formulae for
using it to solve our objective.

4.1. Riemannian Conjugate Gradient

Recall that the standard (Euclidean) conjugate gradient
(CG) method [1][Sec.8.3] is a variant of the steepest de-
scent method, however chooses its descent along directions
conjugate to previous descent directions with respect to the
parameters of the objective. Formally, suppose F'(W) rep-
resents our objective. Then, the CG method uses the fol-
lowing recurrence at the k-th iteration:

Wk — Wk—l + Ak_lak_l, (10)

where A is a suitable step-size (found using line-search)
and o' = —grad F(W* 1) + pF~1aF=2 where
grad F(W*~1) defines the gradient of F' at W*~! and
a®~1 is a direction built over the current residual and con-
jugate to previous descent directions (see [ ][pp.182])).
When W belongs to a curved Riemannian manifold, we
may use the same recurrence, however there are a few im-
portant differences from the Euclidean CG case, namely (i)
we need to ensure that the updated point W* belongs to
the manifold, (ii) there exists efficient vector transports” for
computing o', and (iii) the gradient grad is along tan-
gent spaces to the manifold. For (i) and (ii), we may resort
to computationally efficient retractions (using QR factoriza-
tions; see [1][Ex.4.1.2]) and vector transports [1][pp.182],
respectively. For (iii), there exist standard ways that take as
input a Euclidean gradient of the objective (i.e., assuming
no manifold constraints exist), and maps them to the Rie-
mannian gradients [|][Chap.3]. Specifically, for the Stiefel

Note that the function max (0, min(z)) for z in some convex set is
also a non-convex function.

2This is required for computing a,_; that involves the sum of two
terms in potentially different tangent spaces, which would need vector
transport for moving between them (see [ ][pp.182].

manifold, let Vw F'(W) define the Euclidean gradient of
F' (without the manifold constraints), then the Riemannian
gradient is given by:

grad F(W) = (I- WWHVwF(W).  (11)

The direction grad F'(W) corresponds to a curve along the
manifold, descending along which ensures the optimization
objective is decreased (atleast locally).

Now, getting back to our one-class objective, all we need
to derive to use the RCG, is compute the Euclidean gradi-
ents Vw F'(W) of our objective in P3 with regard to the
variables W ’s; the other variables (such as the biases) are
Euclidean and their gradients are straightforward, and the
joint objective can be solved via RCG on the product mani-
fold comprising the Cartesian product of the Stiefel and the
Euclidean manifolds. Thus, the only non-trivial part is the
expression for the Euclidean gradient of our objective with
respect to the W’s, which is given by:

oF T
oW, =Y xi (W]xi +b1) ~Zi[n — WIx; — b; — &i]
i=1
7 (12)
where i* = h(W]x; + b;), h abstracts argmin; and

—argmax,;, for W; and Wy, respectively, :* denotes the
selected hyperplane index (out of K) and Z;« is a d x K
matrix with all zeros, except +*-th column which is x;.

4.2. Initialization

Due to the non-convexity of our objective, there could
be multiple local solutions. To this end, we resort to the fol-
lowing initialization of our optimization variables, which
we found to be empirically beneficial. Specifically, we first
sort all the data points based on their Euclidean distances
from the origin. Next, we gather a suitable number (de-
pending on the number of subspaces) of such sorted points
near and far from the origin, compute a singular value de-
composition (SVD) of these points, and initialize the GODS
subspaces using these orthonormal matrices from the SVD.

5. One-class Classification

At test time, suppose we are given m data points, and our
task is to classify each of them as belonging to either D or
D. To this end, we use the learned parameters of our prob-
lem P3 as above, and compute the score for each point (us-
ing (9)). Next, we use K-means clustering (we could also
use graph-cut) on these scores with K = 2. Those points
belonging to the cluster with smaller scores are deemed to
belong to D and the rest to D.

6. Experiments

In this section, we provide experiments demonstrating
the performance of our proposed schemes on several one-
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class tasks, namely (i) out-of-position human pose detec-
tion using the Dash-Cam-Pose dataset, (ii) human action
recognition in videos using the popular JHMDB dataset,
(iii)) UCF-Crime dataset to find anomalous video events,
(iv) discriminating sonar signals from a metal cylinder and
a roughly cylindrical rock using the Sonar dataset’, and
(v) abnormality detection in a submersible pump using the
Delft pump dataset®. Before proceeding, we first introduce
our new Dash-Cam-Pose dataset.

6.1. Dash-Cam-Pose: Data Collection

Out-of-position (OOP) human pose detection is an im-
portant problem with regard to the safety of passengers in
a car. While, there are very large public datasets for hu-
man pose estimation — such as the Pose Track [21] and
MPII Pose [3] datasets, among others — these datasets are
for generic pose estimation tasks, and neither they contain
any in-vehicle poses as captured by a dashboard camera,
nor are they annotated for pose anomalies. To this end, we
collected about 104 videos, each 20-30 min long from the
Internet (including Youtube, ShutterStock, and Hollywood
road movies). As these videos were originally recorded for
diverse reasons, there are significant shifts in camera angles,
perspectives, locations of the camera, scene changes, etc.

To extract as many clips as possible from these videos,
we segmented them to three second clips at 30fps, which re-
sulted in approximately 7000 clips. Next, we selected only
those clips where the camera is approximately placed on
the dashboard looking inwards, which amounted to 4,875
clips. We annotated each clip with a weak binary label
based on the poses of humans in the front seat (the back
seat passengers often underwent severe occlusions, as a re-
sult, was harder to estimate their poses). Specifically, if all
the front-seat humans (passengers and the driver) are seated
in-position, the clip was given a positive label, while if any
human is seated OOP for the entire 3s, the clip was labeled
as negative. We do not give annotations for which human
is seated in OOP. The in-position and out-of-position crite-
ria are defined loosely based on the case studies in [39, 16],
the primary goal being to avoid passenger fatality due to an
OOP if airbags are deployed.

After annotating the clips with binary labels, we applied
Open Pose [8] on each clip extracting a sequence of poses
for every person. These sequences are filtered for poses be-
longing to only the front seat humans. Figure 2 shows a
few frames from various clips. As is clear from the exam-
ples, the OOP poses could be quite arbitrary and difficult to
model; which is the primary motivation to seek a one-class
solution for this task. In the following section, we detail our
data preparation and evaluation scheme. Some statistics of
the dataset are provided in Table 1.

https://www.kaggle.com/ac

http://homepage.tudelft.nl

Dash-Cam-Pose Dataset
Total # clips 4875

% of clips with OOP poses | 28.5%
Total # poses 1.06M
Total # OOP poses 310,996

Table 1. Attributes of the proposed Dash-Cam-Pose dataset.

6.2. Dash-Cam-Pose: Preparation and Evaluation

Suitable representation of the poses is important for us-
ing them in the one-class task. To this end, we explore two
representations, namely (i) a simple bag-of-words (BoW)
model of poses learned from the training set, and (ii) using
a Temporal Convolutional Network (TCN) [27] which uses
residual units with 1D convolutional layers, capturing both
local and global information via convolutions for each joint
across time. For the former, we 1024 pose centroids, while
for the latter the poses from each person in each frame are
vectorized and stacked over the temporal dimension. The
TCN model we use has been pre-trained on the larger NTU-
RGBD dataset [47] on 3D-skeletons for the task of human
action recognition. For each pose thus passed through TCN,
we extract features from the last pooling layer, which are
256-D vectors for each clip.

We use a four-fold cross-validation for evaluating on
Dash-Cam-Pose. Specifically, we divide the entire dataset
into four non-overlapping splits, each split consisting of ap-
proximately 1/4-th the dataset, of which roughly 2/3rd’s are
the labeled positive and the rest are OOP. We use only the
positive data in each split to train our one-class models.
Once the models are trained, we evaluate on the held out
split. For every embedded-pose feature, we use the binary
classification accuracy against the annotated ground truth
for measuring performance. The evaluation is repeated on
all the four splits and the performance averaged.

6.3. Public Datasets

JHMDB dataset: is a video action recognition dataset [23]
consisting of 968 clips with 21 classes (illustrative frames
are provided in Figure 3). To adapt the dataset for a one-
class evaluation, we use a one-versus-rest strategy by choos-
ing sequences from an action class as “normal” while those
from the rest 20 classes are treated as “abnormal”. To eval-
uate the performance over the entire dataset, we cycle over
the 21 classes, and the scores are averaged. For representing
the frames, we use an image-net [28] pre-trained VGG-16
model and extract frame-level features from the ‘fc-6’ layer
(4096-D).

UCF-Crime dataset: is the largest publicly available real-
world anomaly detection dataset [50], consisting of 1900
surveillance videos and 13 categories such as fighting, rob-
bery, as well as several “normal” activities. Illustrative
video frames from this dataset and their class labels are
shown in Figure 3. To encode the videos, we use the state-
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Figure 2. Frames from our proposed Dash-Cam-Pose dataset. The leftmost frame has poses in-position (one-class), while the rest of the

frames are from videos labeled out-of-position.

Brush Hair  Sit Stealing

Figure 3. Some examples from JHMDB (left-two) and UCF-Crime
(right-two) datasets, with respective categories.

of-the-art Inflated-3D (I3D) neural network [9]. Specifi-
cally, video frames from non-overlapping sliding windows
(8 frames each) is passed through the I3D network; features
are extracted from the ‘Mix_5¢’ network layer, that are then
reshaped to 2048-D vectors. For anomaly detections on the
test set, we first map back the features classified as anoma-
lies by our scheme to the frame-level and apply the official
evaluation metrics [50].

Sonar and Delft pump dataset: are two UCI datasets, hav-
ing 208 and 1500 data points respectively, and two classes.
We directly adopt the raw feature (60-D and 64-D) without
any feature embedding. We keep the train/test ratio as 7/3
while keeping the original proportion of each class in each
set. We randomly pick train/test splits and the evaluation is
repeated 5 times and performances averaged.

6.4. Evaluation Metrics

On the UCF-Crime dataset, we follow the official eval-
uation protocol, reporting AUC as well as the false alarm
rate. For other datasets, we use the F1 score to reflect the
sensitivity and accuracy of our classification models. As
the datasets we use - especially the Dash-Cam-Pose — are
unbalanced across the two classes, having a single perfor-
mance metric over the entire dataset may fail to characterize
the quality of the discrimination for each class separately,
which is of primary importance for the one-class task. To

this end, we also report True Negative Rate TN R = %,
Negative Predictive Value NPV = %, and F1 =
2XxTNRxNPV

TNRinpy - alongside standard F1 scores.

6.5. Ablative Studies
Synthetic Experiments: To gain insights into the inner

workings of our schemes, we present results on several 2D
synthetic toy datasets. In Figure 4, we show four plots with

(a) BODS-Gaussian (b) GODS-Gaussian (c) GODS-Arbitrary

Figure 4. Visualizations of subspaces found by BODS (leftmost)
and GODS on various data distributions.

100 points distributed as (i) Gaussian and (ii) some arbitrary
distribution®. We show the BODS hyperplanes in the first
plot, and the rest two plots show the GODS 2D subspaces
with the hyperplanes belonging to each subspace shown in
same color. As the plots show, our models are able to ori-
ent the subspaces such that they confine the data within a
minimal volume. More results are provided in the supple-
mentary materials.

Parameter Study: In Figure 5, we plot the influence of in-
creasing number of hyperplanes on four of the datasets. We
find that after a certain number of hyperplanes, the perfor-
mance saturates, which is expected, and suggests that more
hyperplanes might lead to overfitting to the positive class.
We also find that the TCN embedding is significantly bet-
ter than the BoW model (by nearly 3%) on the Dash-Cam-
Pose dataset when using our proposed methods. Surpris-
ingly, S-SVDD is found to perform quite inferior against
ours; note that this scheme learns a low-dimensional sub-
space to project the data to (as in PCA), and applies SVDD
on this subspace. We believe, these subspaces perhaps are
common to the negative points as well that it cannot be suit-
ably discriminated, leading to poor performance. We make
a similar observation on the other datasets as well.

6.6. State-of-the-Art Comparisons

In Tables 2, we compare our variants to the state-of-the-
art methods. As alluded to earlier, for our Dash-Cam-Pose
dataset, as its positive and negative classes are unbalanced,
we resort to reporting the F'1 score on the negative set. As
is clear from the table, our variants outperform prior meth-

5The data follows the formula f(x) = /z * (z + sign(randn) *
rand), where randn and rand are standard MATLAB functions.
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Figure 5. Performance of our method on various datasets for an increasing number of subspaces.

Table 2. Average performances on the four datasets, where Dash-Cam-Pose use the F'1 score while the rest use F'1 score as evaluation
metric (classification accuracy is shown in the brackets). K-OC-SVM and K-SVDD are the RBF kernelized variants.

Method Dash-Cam-Pose_.BOW | Dash-Cam-Pose_ TCN | JHMDB Sonar Pump

OC-SVM [16] 0.167 (0.517) 0.279(0.527) 0.301 (0.568) | 0.578 (0.459) | 0.623(0.482)
SVDD [51] 0.448 (0.489) 0.477(0.482) 0.407 (0.566) | 0.605 (0.479) | 0.813 (0.516)
K-OC-SVM [46] | 0.327 (0.495) 0.361(0.491) 0.562 (0.412) | 0.565 (0.429) | 0.601 (0.499)
K-SVDD [51] 0.476 (0.477) 0.489 (0.505) 0.209 (0.441) | 0.585 (0.474) | 0.809 (0.529)
K-PCA [20] 0.145 (0.502) 0.258 (0.492) 0.245 (0.557) | 0.530(0.426) | 0.611 (0.416)
Slab-SVM [ 18] 0.468 (0.568) 0.498 (0.577) 0.643 (0.637) | 0.600 (0.619) | 0.809 (0.621)
LS-OSVM [14] 0.234 (0.440) 0.246(0.460) 0.663(0.582) | 0.643 (0.466) | 0.831 (0.448)
S-SVDD [49] 0.325 (0.490) 0.464 (0.500) 0.642 (0.498) | 0.637 (0.500) | 0.865 (0.500)
BODS 0.523 (0.582) 0.532 (0.579) 0.725 (0.714) | 0.677 (0.662) | 0.823 (0.714)
GODS 0.553 (0.629) 0.584 (0.601) 0.777 (0.752) | 0.762 (0.775) | 0.892 (0.755)

2 5508 datasets are balanced, we report the F1 scores. Overall,
510 -GODS the experiments clearly substantiate the performance ben-
g g["LS-OSVM efits afforded by our method on the one-class task. In the
e glft:/ g\l:/)M Figure 6, we demonstrate the time consumption for training
S Al different models. It can be seen that the GODS & BODS al-
g , gorithm are not computationally expensive than other meth-
& e — — ods, while being is empirically superior (Table 2).

0 T T
1102030 50 80 100
Number of Training Samples (in hundred)

Figure 6. Training time of each method with increasing number of
training samples.

200

Method AUC | False alarm rate
Random 50.00 -

Hasan et al. [19] 50.60 27.2
Luetal. [35] 65.51 3.1
*Wagqas et al. [50] | 75.41 1.9
Sohrab et al. [49] | 58.50 10.5
BODS 68.26 2.7
GODS 70.46 2.1

Table 3. Performances on UCF-Crime dataset. *Setup is different.

ods by a considerable margin. For example, using TCN,
GODS is over 30% better than OC-SVM; even we outper-
form the kernelized variants by about 20%. Similarly, on
the JHMDB and the other two datasets, GODS is better
than the next best method by about 3-13%, associated with a
significant improvement for the classification accuracy (by
over 10%). As the classes used in the test set for these

In Table 3, we present results against the state of the art
on the UCF-Crime dataset using the AUC metric and false
alarm rates (we use the standard threshold of 50%). While,
our results are lower than [50], their problem setup is com-
pletely different from ours in that they use weakly labeled
abnormal videos as well in their training, which we do not
use and which as per definition is not a one-class problem.
Thus, our results are incomparable to theirs. On other meth-
ods for this dataset, our methods are about 5-20% better.

7. Conclusions

In this paper, we presented a novel one-class learning
formulation using subspaces in a discriminative setup, these
subspaces are oriented in such a way as to sandwich the
data. Due to the non-linear constraints optimization prob-
lem that ensues, we cast the objective in Riemannian con-
text however, for which we derived efficient numerical so-
lutions. Experiments on a diverse collection of five datasets,
including our new Dash-Cam-Pose dataset, demonstrated
the usefulness of our approach achieving state-of-the-art
performances.
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