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Abstract

Multi-view action recognition targets to integrate com-

plementary information from different views to improve

classification performance. It is a challenging task due

to the distinct gap between heterogeneous feature domains.

Moreover, most existing methods neglect to consider the in-

complete multi-view data, which limits their potential com-

patibility in real-world applications. In this work, we pro-

pose a Generative Multi-View Action Recognition (GM-

VAR) framework to address the challenges above. The ad-

versarial generative network is leveraged to generate one

view conditioning on the other view, which fully explores

the latent connections in both intra-view and cross-view as-

pects. Our approach enhances the model robustness by em-

ploying adversarial training, and naturally handles the in-

complete view case by imputing the missing data. Moreover,

an effective View Correlation Discovery Network (VCDN)

is proposed to further fuse the multi-view information in

a higher-level label space. Extensive experiments demon-

strate the effectiveness of our proposed approach by com-

paring with state-of-the-art algorithms1.

1. Introduction

Multi-view approaches [58, 30, 29, 62, 40] explore the

complementary information among different views, where

the views refer to various feature representations, modalities

or sensors. Most existing methods focus on analyzing static

multi-view data (e.g., image, description, and attributes),

while recently, multi-view action recognition [10, 4, 18, 22]

has become attractive and urgent as the increasing multi-

modal sensors are widely deployed in a great number of

real-world applications.

There are two categories in the multi-view action recog-

nition scenario. The first category explores action se-

quences captured by multiple sensors which belonging to

1Code is available on: https://github.com/wanglichenxj/

Generative-Multi-View-Human-Action-Recognition
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Figure 1. Illustration of our GMVAR approach, which is trained on

both RGB and depth views. However, in the test stage, GMVAR

is capable of dealing with different scenarios including complete

multi-view, partially missing view, or even single-view. It is due

to the generative mechanism in our model which significantly ex-

tends the potential applications of our approach.

the same visual modality (e.g., surveillance system usually

captures videos with RGB-only cameras). These methods

assume that actions recorded by different viewpoints (e.g.,

front, back, and top) or distances could provide distinctive

aspects for recognition tasks [4, 18, 22]. The second cate-

gory methods analyze action sequences captured from dif-

ferent types of sensors (e.g., RGB, depth, skeleton, acceler-

ation, trajectory, 3D, and electromyography [26, 32, 34, 50,

52, 53]) and attempt to integrate the complementary infor-

mation among various modalities. For instance, Kinect sen-

sor [61, 33] provides high-quality RGB, depth, and skele-

ton sequences simultaneously, where both depth [1, 54] and

skeleton [39, 44, 59] modalities have been demonstrated

to provide effective and unique motion knowledge for ac-

tion recognition. Electromyography (EMG) signal which

reflects the electrical activity produced by skeletal muscles

is utilized for action/motion analysis [3, 50]. Acoustical and

acceleration are also utilized for multi-view event detection

and action recognition tasks [11, 9].

In this study, we focus on the second category. As shown

in Figure 1, both RGB and depth views are available in the
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Figure 2. Framework of our proposed model. The RGB and depth views first go through the feature encoders E1(·) and E2(·) respectively

to obtain more distinctive representations in the latent subspaces Z1 and Z2. Two generators G1(·) and G2(·) generate representations

conditionally based on the other subspace. This generative mechanism fully explores the feature distribution across Z1 and Z2. Two view-

specific classifiers C1(·) and C2(·) are trained to obtain initial recognition prediction from each view, then the proposed View Correlation

Discovery Network (VCDN), CV CDN (·), is utilized to further enhance the multi-view final prediction. Our model fully reveals the latent

cross-view connection by the generative model in latent subspaces, and further explores the high-level view-correlation knowledge in label

space. Due to the generative model, our model is compatible for both multi-view and single-view scenarios.

training stage while either complete or incomplete views is

available in the test stage. RGB-D action recognition is one

of the most important research directions due to the popu-

larity of depth/3D sensors and the corresponding applica-

tions [61, 23, 19]. It is a challenging task due to the distinct

properties among heterogeneous modalities. Naively fus-

ing multi-view features (e.g., concatenation or summation)

could induce a negative effect and hurt the performance.

Previous research efforts [6, 60, 25, 20, 5] mainly utilize ef-

fective feature extraction approaches to obtain view-specific

representation first, then deploy fusion mechanism to inte-

grate these representations together. However, these meth-

ods assume data are accessible for all the views, yet with-

out considering the practical and common incomplete view

scenarios (e.g., sensor malfunction, equipment deficiency,

and signal loss in data transformation). Hence, their perfor-

mances inevitably degrade when dealing with partial multi-

view data. Moreover, different views could provide class-

level unique distinctiveness, and it is crucial to explore the

correlation across action classes and views to further im-

prove the learning performance.

In this work, we propose a Generative Multi-view Ac-

tion Recognition (GMVAR) framework, which adopts gen-

erative adversarial training as well as a simple yet effective

View Correlation Discovery Network (VCDN) to address

the above challenges. Particularly, two generative networks

are developed to learn the instance-level pairwise cross-

view connection knowledge, which could fully leverage the

complementary information among views. More specifi-

cally, each view’s generator is trained to reproduce its own

latent representation, conditioning on the other view’s in-

formation. By this way, our approach is able to effectively

enrich the multi-view representations, and handle the miss-

ing modality case. Moreover, a View Correlation Discov-

ery Network (VCDN) is designed to learn the higher-level

cross-view correlation in the label space, which further ex-

plores the class-level distinctiveness of the views. Experi-

mental results on three RGB-D video datasets demonstrate

the superiority of our model. The main contributions of our

approach are listed below:

• We proposed a generative multi-view action recog-

nition framework, which can simultaneously handle

complete-view, partial-view, and missing-view scenar-

ios using a unified strategy.

• The adversarial training is encapsulated into our model

to explore the complementary information shared by

different modalities, which works as a regularizer to

enhance the accuracy and robustness of our model.

• A simple yet effective View Correlation Discovery

Network (VCDN) is proposed to learn the intra-view

and cross-view label correlations in the higher-level la-

bel space. It further explores the label information and

significantly improves model performance.

2. Related work

2.1. Multi-view Action Recognition

Multi-view action recognition uses data taken from mul-

tiple views/resources to achieve higher performance. It as-

sumes different views are complementary which provide

extra information and help to distinguish actions. DA-

Net [42] obtains both view-independent and view-specific

representations and utilizes a view classifier to combine the

classification score from each view. PM-GANs [49] de-

ploys generative and feature fusion strategies for inferred
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action recognition. [38] proposed a shared-specific fea-

ture factorization network which effectively fuses RGB and

depth information. [20] presents a joint learning model to

simultaneously explore the shared and feature-specific com-

ponents to improve learning performance. [17] achieves

modality hallucination through shared weights neural net-

work for image classification. [41] proposed a cascaded

residual autoencoder to handle missing view scenario.

[4] fuses the action descriptors by utilizing a Multi-view

Super Vector. [18] designs a novel approach for combin-

ing optical flow into enhanced 3D motion vector fields to

achieve feature fusion. [13] proposes a first-person hand ac-

tion recognition baseline based on 3D hand pose and RGB

view. [63, 43] explores a view-invariant feature extraction

approach which is robust for actions captured from differ-

ent views. Depth view is considered in [1, 54] and there

are skeleton based recognition approaches [39, 44, 59] for

action recognition.

Compared with existing methods, our approach is dif-

ferent in the following two aspects. First, it is a general

multi-view action recognition approach which could handle

complete-view, partial-view, and missing-view scenarios in

a unified framework; second, instead of fusing views in fea-

ture space, our approach explores the correlations residing

in the high-level label space which could deliver more ac-

curate recognition results.

2.2. Generative Adversarial Network (GAN)

GAN [15] consists of two networks: the generator and

the discriminator. The generator is trained to make gen-

erated samples while the discriminator tries to differen-

tiate the samples. Competition strategy drives both net-

works to enhance their abilities. Many GAN variants are

recently proposed. Mode-Regularized GAN [8] introduces

ways to dramatically stabilize the training process. Con-

ditional GAN (CGAN) [28] extends GAN model by adding

extra conditional information (e.g., label knowledge) to reg-

ularize generation process. Auxiliary Classifier GAN (AC-

GAN) [31] combines an auxiliary classifier with CGAN for

image synthesis applications. Ding et al. explore two-stage

conditional generative model for zero-shot learning [12].

Small Object Detection GAN (SOD-MTGAN) [2] gener-

ates high resolution small objects to improve multi-class

detection performance. [55] deploys generative strategy to

handle missing view clustering task, and [40] uses ensemble

strategy to achieve final clustering result. Cycle GAN [64]

utilizes the generative approach and its inverse direction to

achieve unpaired image style translation. However, current

models are mainly (e.g., GAN, CGAN) designed to sub-

jectively diversify images and utilize the human perceptual

aspect (e.g., MS-SSIM [56]) to evaluate the diversity; while

we want to generate representations from one view to an-

other view to solve the multi-view, partial-view, and miss-

ing view problems.

Compared with other generative models, our model

builds connections across views and is designed to com-

plement/boost the feature diversity for classification goal.

Specifically, there are two major differences compared with

other generative models: first, our approach is proposed to

explore the generative strategy in the multi-view scenario.

In addition, we deploy the generative strategy in latent sub-

space instead of raw feature space which hopefully explores

the data structure and obtains more distinctive feature rep-

resentations; second, a triplet loss is deployed to an autoen-

coder which fully utilizes the available supervision infor-

mation to obtain high quality subspace.

3. Our approach

3.1. Preliminaries & Motivation

Given the multi-view training data X1
tr and X2

tr, where

X1
tr ∈ R

d1×ntr and X2
tr ∈ R

d2×ntr are the feature matrices

of two views, where each column represents one instance,

ntr is the training instance number, and d1, d2 are the fea-

ture dimensions of view1 and view2. Ytr ∈ R
dl×ntr is the

one-hot label matrix, where dl is the dimension of the label

space. Correspondingly, X1
te ∈ R

d1×nte , X2
te ∈ R

d2×nte ,

and Yte ∈ R
dl×nte are the test features and the label matri-

ces. Considering some of the test samples only containing

single-view data, thus, the goal of our approach is to pre-

dict the label matrix Yte, when either only single-view (X1
te

or X2
te) or both views (X1

te and X2
te) are available. Gener-

ally, the feature space is much more diverse than the label

space especially in multi-view action recognition scenario.

To this end, we aim to compensate the visual feature and

mitigate the gap between the training and test samples es-

pecially when the other view is not available.

3.2. Subspace Conditional Feature Generation

Inspired by the idea of generative models [15, 28, 31],

we propose the generative networks to synthesize one view

conditioned on the other view. By this way, the gen-

erators learn the cross-view connections and also borrow

shared motion components from other actions which effec-

tively diversifies the generated representations. Moreover,

considering the original visual feature contains high-level

noise, and directly generating features conditioned on visual

space could bring in negative influence to the label predic-

tion [46, 47]. To this end, we further propose a subspace

conditional generative mechanism to utilize the samples

projected into the corresponding subspace for view com-

plementing/augmentation. The framework of our proposed

model is shown in Figure 2. Our approach contains two

generators, G1(·) and G2(·), and their corresponding dis-

criminators, D1(·) and D2(·), which are trained in inverse

direction; meanwhile, two view-specific encoders E1(·) and
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E2(·) are introduced to encode both views from original

feature spaces to the latent subspaces Z1 and Z2, respec-

tively. Moreover, in order to make the projected samples

more distinctive across views, thus, the available label in-

formation associated with the triplet loss function [37] is

utilized, where the goal of triplet loss is to make the pro-

jected representations closer to the samples of the same ac-

tion than it is to any other actions. To this end, the objectives

of E1(·) and E2(·) are introduced below:

LEm
=

M
∑

i=1

max
(

[‖Em(Xa
tri)− Em(Xp

tri)‖
2
2

−‖Em(Xa
tri)− Em(Xn

tri)‖
2
2 + α], 0

)

,

(1)

where M means there are M semi-hard triplets in the given

embeddings and labels, m = {1, 2} indicates E1(·) and

E2(·). Xa
tri , X

p
tri , and Xn

tri represent the i-th training

sample as anchor, positive, and negative respectively. α

is a margin that is enforced between positive and nega-

tive pairs. By this way, the learned subspace could obtain

more distinctive and robust feature representations in the

corresponding subspace compared with the original feature

space. Both E1(·) and E2(·) are implemented by a two-

layer fully-connected network with the LeakyReLU activa-

tion [57] deployed in the first layer.

Then, two generative structures including G1(·), D1(·),
G2(·), and D2(·), are designed for cross-view representa-

tion generation goal. Since the two networks are in sym-

metrical positions and have the same objective equations,

thus, we only discuss G1(·) and D1(·) in this section. In

our model, the first term is the competing approach with

D1(·) and makes the generated samples as real as possible:

LG1d = −Ez∼pz(z) log
(

1−D1

(

G1(z|E1(X
1
tr))

)

)

,

(2)

where z is the noise matrix and E1(X
1
tr) is the learned rep-

resentation as the generation condition of G1(·). Since the

subspaces Z1 and Z2 are changed when encoders E1(·) and

E2(·) are optimized, it is difficult to directly obtain stable

generative results. Thus, we include similarity constraint

which pulls the generated samples and real samples to be

similar in subspace. The objective term is shown as follows:

LG1s = Ez∼pz(z)

(

‖G1(z|E1(X
1
tr))− E2(X

2
tr)‖

2
F

)

.

(3)

To this end, the overall objective of G1(·) is represented

as LG1
= LG1d+λLG1s, where λ is the trade-off parameter

to balance the scales across discriminator loss and similarity

loss. G1(·) is a three-layer neural network with a batch nor-

malization layer [21] to normalize input vector and stabilize

the training procedure. The goal of D1(·) is to differentiate

the generated samples and the real samples in subspace Z2.

And the objective function is shown below which manages

to maximize LD1
:

LD1
= EX∼pX(X) logD1

(

E2(X
2
tr)

)

+ Ez∼pz(z) log
(

1−D1

(

G1(z|E1(X
1
tr))

)

)

.
(4)

In our implementation, D1(·) is a three-layer network. The

first layer is a fully connected layer with LeakyReLU activa-

tion [57]. The second layer is a mini-batch [35] layer, which

increases the diversity of the fake samples. The activation

functions of both layers are LeakyReLU and the last layer

is the Sigmoid function to output the real-fake possibility

of the input representations. After the generated representa-

tion is obtained in subspace, both the real and fake represen-

tations are forwarded to the view-specific classifiers C1(·)
and C2(·) to obtain the initial label prediction. The objec-

tive function of the classifiers include two objectives. The

first one is trained to let the classifier predict labels from

real samples:

LCmr
= ‖Ytr − Cm(Em(Xm

tr ))‖
2
F, (5)

where m = {1, 2} indicates the classifiers C1(·), C2(·) and

the encoders E1(·), E2(·). The second one further obtains

generated samples associated with the conditional subspace

representations to improve the robustness and generaliza-

tion of the classifier:

LC1g
= ‖Ytr − C1(G2(z|E2(X

2
tr))‖

2
F, (6)

LC2g
= ‖Ytr − C2(G1(z|E1(X

1
tr))‖

2
F. (7)

To this end, the objective function of Cm(·) is LCm =
βLCmr

+(1−β)LCmg
, where β is the trade-off parameters

and we always set β = 0.5 in our experiments. Cm(·) aims

to minimize LC based on both real and generated features

by benefiting from the augmented features.

3.3. View Correlation Discovery Network (VCDN)

Existing multi-view classification methods [58, 29, 30]

either learn the score weights of each view or try to fuse

the multi-view features in low-level feature space. How-

ever, it is hard to well align various views and easy to cause

negative influence. While, in multi-view action recognition

scenario, we notice that some actions are distinctive in one

view (e.g., Turning Around in RGB view), and others are

distinctive in the other view (e.g., Answering Phone in depth

view). Thus, simply learning the weights of each view can-

not take the full advantage of the view-specific motion char-

acteristics, while exploring the latent relation hidden inside

the label [45, 48] is crucial to obtain higher performance.

To this end, we further propose a simple yet effective

View Correlation Discovery Network (VCDN), CV CDN (·),
to refine the action prediction by exploring the label-

level knowledge across views. Instead of naively av-

eraging/weighting the view-specific classification scores,
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VCDN explores the initial scores and discovers the latent

correlations across different views. To this end, the final

prediction is based on both the view-specific prediction and

the learned across-view label-correlation knowledge.

The framework of CV CDN (·) is shown in Figure 2. Af-

ter the initial classification results are achieved by y1i =
C1(E1(x

1
tri)) and y2i = C2(E2(x

2
tri)), where y1tri ∈ R

dl

and y2tri ∈ R
dl are the initial predictions of the corre-

sponding i-th sample from the two views, x1
tri and x2

tri .

We make a transformation from the two view predictions,

y1tri and y2tri , to obtain an cross-view label-level adjacency

matrix ci by multiplying y2tri and the transpose of y1tri as

ci = y2tri · y
1⊤
tri , where ci ∈ R

dl×dl is the adjacency ma-

trix. By this way, the elements in ci are the multiplica-

tion of the pair-wise predicted scores. Then, the obtained

ci is reshaped to a d2l -dimensional vector and forwarded

to CV CDN (·) to predict the final prediction. To this end,

CV CDN (·) could reveal the latent correlation between the

two views and help the model improve the learning perfor-

mance. Since both label vectors are achieved from real sam-

ples, thus, the objective function can be written as:

LCrr
V CDN

=
ntr
∑

i=1

‖yi − CV CDN (y2tri · y
1⊤
tri )‖

2
2 , (8)

where yi ∈ R
dl is the ground-truth label vector of i-th

sample, and rr means real-real setting. Moreover, since

G1(·) and G2(·) also contain effective cross-view struc-

ture information, thus, we also want this knowledge to

be transferred to CV CDN (·). To this end, we assign the

predicted label vector of the fake representations y1fi =

C1(G2(z|E2(X
2
tri))), and y2fi = C2(G1(z|E1(X

1
tri))) be

utilized in the VCDN training procedure, where y1fi ∈ R
dl ,

and y2fi ∈ R
dl . We deploy both real-fake and fake-real

combinations to design the objective functions:

LCrf
V CDN

=
ntr
∑

i=1

‖yi − CV CDN (y2fi · y
1⊤
tri )‖

2
2 , (9)

LCfr
V CDN

=
ntr
∑

i=1

‖yi − CV CDN (y2tri · y
1⊤
fi

)‖22 . (10)

Then, we obtain the final objective of CV CDN (·):

LCV CDN
= γLCrr

V CDN
+ 1−γ

2 (LCrf
V CDN

+ LCfr
V CDN

),

(11)

where γ is a trade-off parameter which balances the weights

between real and fake label instances for training the clas-

sifiers. CV CDN (·) is a two-layer fully connected network

with Leak-ReLU activation in the first layer.

Our model is an end-to-end model and all networks are

trained simultaneously. It can also be easily deployed to

a wide range of applications. There are two major dif-

ferences compared with other methods: first, a generative

mechanism is utilized to synthesize view information from

the other view, which fully explores the latent connection

across the views; second, a View Correlation Discovery

Network (VCDN) is proposed to fully explore the cross-

view label correlations and improve the learning perfor-

mance. This strategy is effective due to the high correlation

of actions across different views.

4. Experiments

4.1. Multi-View Action Datasets

Berkeley Multimodal Human Action Database

(MHAD) [32] is a comprehensive multimodal human

action dataset. It contains RGB, depth, skeleton, accel-

eration, and audio views. MHAD contains 11 actions

performed by 12 subjects for 5 repetitions of each action,

yielding 660 action sequences in total.

UWA3D Multiview Activity (UWA) [34] is a multi-view

dataset collected by Kinect sensors. There are 10 sub-

jects performed 30 human activities in a continuous manner

without breaks or pauses. The dataset is challenging be-

cause of varying viewpoints, self-occlusion and high simi-

larity among activities.

Depth-included Human Action dataset (DHA) [26] is an

RGB-D multi-model dataset which contains 23 categories

performed by 21 subjects, and there are 483 video clips in

total for training and test. Each actions has RGB images,

human masks and depth data.

In our experiments, we utilize roughly half of the avail-

able samples for training and another half for test. Specif-

ically, there are 254 samples for training and 253 for test

in UWA dataset. 244 samples for training and 283 for test

in MHAD dataset. 240 samples for training and the rest

243 for test in DHA dataset. In the training procedure,

both RGB and depth features are utilized. In the test pro-

cedure, there are three settings including single-view (RGB

or depth) and multi-view (RGB-D) scenarios.

4.2. Multi-view Recognition Baselines

We test our approach in multi-view (RGB-D) scenarios.

In each setting, we also deploy the state-of-the-art methods

to demonstrate the effectiveness of our model. Compari-

son baselines are briefly introduced below. Least Square

Regression (LSR) is a straightforward linear regression

model. The multi-view features are concatenated together

and LSR learns a linear mapping between the feature and

label spaces. Support Vector Machine (SVM) [36] is a

classical and robust classifier which constructs one hyper-

plane or multiple hyperplanes in high-dimensional space to

achieve classification, regression, or other tasks. We utilize

the implementation from [7] for our baseline. Action Vec-

tor of Local Aggregated Descriptor (VLAD) [14] is an ef-

fective action representation that aggregates local convolu-

tional features and the video spatio-temporal content by an
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extension of Net-VLAD layer. It integrates two-stream net-

works and is trainable in an end-to-end framework. Tem-

poral Segment Networks (TSN) [51] proposes a strategy

that combines a sparse temporal sampling with video-level

supervision. In this way, the entire video was learned ef-

fectively while it still achieves accurate and stable perfor-

mance. Weighted Depth Motion Maps (WDMM) [1]

aims to recognize human gestures from depth views, which

is based on linear aggregation of spatio-temporal infor-

mation. It proposed a video summarization procedure

for hierarchical representation, which results in increasing

intra-class similarity and also effectively reduces the inter-

class similarities. Auto-Weight Multiple Graph Learn-

ing (AMGL) [30] is a multi-view classification methods.

It learns the optimal weight for each graph automatically

without introducing any additive parameters, which is con-

vex and easy to get the global optimal result in a semi-

supervised learning scenario. Multi-view Learning with

Adaptive Neighbours (MLAN) [29] designes an adap-

tive graph-based method which performs semi-supervised

and local structure learning simultaneously. It learns the

ideal weight for each view without any parameter tuning.

Partial-modal Generative Adversarial Networks (PM-

GANs) [49] learns a full-modal representation based on

partial modalities and implements feature-level fusion for

infrared action classification tasks.

4.3. Implementation

We deploy the TSN [51] structure to extract RGB fea-

tures. Each video is divided into 5 segments. A snippet is

randomly chosen from each segment. The ResNet-101 [16]

with weights pre-trained on ImageNet produces class scores

for each snippet. After the training procedure, we sample

3 snippets from each video instead of 25 which is utilized

in TSN since we did not observe significant improvements

(less than 0.5%) between these two configurations. We ob-

tain the final features by concatenating the output of the last

layer. To this end, each video is represented in a 6144-

dimensional feature vector. We utilize WDMM [1] to ex-

tract depth feature. WDMM samples each video in three

three projection views. After that, HOG and LBP are used

to extract the features associated with VLAD and PCA for

feature dimension reduction. We follow a similar scheme

to WDMM [1] and obtain 110-dimensional feature vectors.

As shown in Figure 2, the label vector concatenated with

random noise is set as input to G1(·) and G2(·). We set the

batch size to 64. The Adam optimizer [24] is used for opti-

mization and the learning rates are set to 0.00002, 0.0001,

and 0.0002 for Cm(·), D1/2(·), and G1/2(·) respectively. λ

limits the feature similarity scales which is set to 0.1. In

the training procedure, D1/2(·) and G1/2(·) are pre-trained

to obtain stable initialization, while G1/2(·) is optimized by

minimizing LG1/2s without including LG1/2d at first, and

Method RGB R→D Depth D→R R+D

LSR 67.59 69.17 45.45 37.73 68.77

SVM [36] 69.44 68.53 34.92 34.33 72.72

VLAD [14] 71.54 - - - -

TSN [51] 71.01 - - - -

WDMM [1] - - 46.58 - -

AMGL [30] 69.17 71.54 39.92 35.96 68.53

MLAN [29] 67.19 67.19 33.28 33.61 66.64

PM-GANs [49] - 71.36 - 49.01 -

Ours - 73.53 - 50.35 76.28

Table 1. Action recognition performance on UWA dataset [34]

Method RGB R→D Depth D→R R+D

LSR 96.46 97.17 47.63 42.51 97.17

SVM [36] 96.09 96.80 45.39 45.13 96.80

VLAD [14] 97.17 - - - -

TSN [51] 97.31 - - - -

WDMM [1] - - 66.41 - -

AMGL [30] 96.46 97.11 30.03 29.96 94.70

MLAN [29] 96.05 96.10 41.48 41.25 96.46

PM-GANs [49] - 96.76 - 66.84 -

Ours - 98.23 - 68.32 98.94

Table 2. Action recognition performance on MHAD dataset [32]

Method RGB R→D Depth D→R R+D

LSR 65.02 65.43 82.30 48.56 77.36

SVM [36] 66.11 70.24 78.92 78.18 83.47

VLAD [14] 67.13 - - - -

TSN [51] 67.85 - - - -

WDMM [1] - - 81.05 - -

AMGL [30] 64.61 59.05 72.84 67.33 74.89

MLAN [29] 67.91 67.91 72.96 72.83 76.13

PM-GANs [49] - 68.72 - 76.02 -

Ours - 69.72 - 83.48 88.72

Table 3. Action recognition performance on DHA dataset [26]

after 50 epochs, we switch LG1/2
back and train D1/2(·)

simultaneously with the other networks. The model is im-

plemented using TensorFlow with GPU acceleration.

Since VLAD and TSN are specifically designed for ac-

tion recognition in RGB view (single view), thus, we follow

the same protocol to pre-process the action data and run the

code provided by the authors and report the highest perfor-

mance. The same strategy is also used to evaluate WDMM

in depth view. For general classification algorithms, we

utilize the RGB features extracted from TSN, and depth

features from WDMM since these methods are new and

achieve high performance in RGB and depth representation

learning respectively. To evaluate the SVM and LSR per-

formance in multi-view scenario, we concatenate both RGB

and depth features after normalization and achieve a single

feature vector for classification. Since AMGL and MLAN

are designed for multi-view learning, thus, we input RGB

and depth features separately and evaluate the performance.

PM-GANs utilizes one view to complement another view

for classification in the test stage, and we follow the same
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Setting UWA MHAD DHA

RGB-C1 69.18 96.42 68.15

Depth-C2 45.28 63.05 79.79

RGBD-Fea-En-Con 68.78 96.82 70.85

RGBD-Fea-Ori-Con 69.22 97.32 70.83

RGBD-Lab-Con 70.38 96.28 80.95

RGBD-Lab-Ave 71.84 97.56 83.28

RGBD-Lab-Wei 71.15 97.17 83.95

RGBD-VCDN (Ours) 74.07 98.06 84.32

Table 4. Recognition performance of our model and the modified

fusion strategies in both low-level feature space and high-level la-

bel space. It demonstrates the effectiveness of the VCDN frame-

work which considerably improves the performance. (Please note

that the performance is lower than our complete model since we

removed the generative module for a fair comparison.)

Dataset 1-layer 2-layer 3-layer 4-layer VCDN

UWA 74.31 74.70 73.52 75.10 76.28

MHAD 97.83 97.88 96.47 95.76 98.94

DHA 86.01 87.24 85.19 82.72 88.72

Table 5. Classification performance of our VCDN model com-

pared with the multi-layer neural networks.

setting and evaluation in our experiments.

4.4. Performance Analysis

The experimental results are shown in Table 1, Table 2,

and Table 3, where RGB, Depth, and R+D indicate the clas-

sification accuracy of single RGB view, single depth view,

and RGB-D views respectively. Since our model condi-

tionally generates another view based on the available view,

thus we show R→D and D→R which indicate these settings

(e.g., R→D means the depth view is conditionally generated

by RGB view).To prove the effectiveness of the generated

view, we deploy the pseudo feature which is the average

feature from the training samples as the “generated” view

of and forward to SVM, AMGL, and MLAN baselines. The

results are also shown in the same column of the tables.

From the results, we observe that in the single-view

scenario, our model achieves the highest performance. In

D→R scenario, our generative strategy gains averagely 3%
improvements in all baseline datasets. For other pseudo fea-

ture baselines, only parts of the results have slight improve-

ments (e.g., 0.5%) while others are even lower than the

single-view scenario. Therefore, the consistent pseudo fea-

ture cannot provide any extra distinctive information for im-

proving classification performance, and concatenating the

available and generated features directly (with/without nor-

malization) could even hurt the data structure and diminish

final recognition performance. These results demonstrate

the effectiveness of the generative strategy of our model.

For the multi-view recognition scenario, which means

both the RGB and depth views are available, the genera-

tive strategy further augments the feature distribution which
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Figure 3. Recognition performance as the training epoch increases

in UWA3D dataset [34]. The shadow lines indicate the exact

performances per iteration. It shows that our VCDN framework

achieves the highest performance after tens of iterations and keeps

stable eventually. It demonstrates the robustness and stability of

VCDN in this multi-view scenario.

helps both view-specific classifier and the VCDN frame-

work. The results shown in column R+D illustrate that our

model further improves the accuracy which is considerably

higher than any single view scenario.

4.5. Ablation Study

To prove the effectiveness of VCDN, we utilize several

feature/label fusion strategies to achieve multi-view classifi-

cation. In addition, to avoid the influence of the augmented

samples from the generative components, we first evaluate

our model without including any generated samples. The

result is shown in Table 4. The first two lines show the

single-view baseline performance from the view-specific

classifier C1(·) and C2(·); RGBD-Fea-Ori-Con indicates

the performance when the straightforward feature concate-

nation approach is processed; RGBD-Fea-En-Con indicates

the obtained features are concatenated together from E1(·),
E2(·) and then goes through a network which has the

same structure as CV CDN (·); while RGBD-Lab-Con de-

notes the concatenated labels from C1(·), C2(·) and also

goes through the same structure classifier as CV CDN (·);
meanwhile, RGBD-Lab-Con shows the performance when

the obtained labels from C1(·) and C2(·) are averaged; in

addition, RGBD-Lab-Wei shows the weighted sum of C1(·)
and C2(·) where the weight is learned simultaneously in the

training process; and the last line is our VCDN model. In

this experiment, we show the performance of fusing view

information in both low-level (e.g., RGBD-Fea-En-Con and

RGBD-Fea-Ori-Con) and high-level (e.g., RGBD-Lab-Con

and RGBD-Lab-Con). To further prove the effectiveness of

VCDN, we concatenate the outputs and forward to a deeper

network (i.e., 2,3,4-layer structures). The results (Table 5)

show 2-layer structure tends to be enough. However, it still

works worse than our VCDN. The result indicates that mul-
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Figure 4. Performance of our GMVAR approach with (solid lines)

and without (dashed lines) the generative strategy in DHA dataset.

Different colors indicate different settings. The shadow lines indi-

cate the exact performances per iteration. It demonstrates that the

generative model does learn the cross-view connection knowledge

and further improves the recognition performance.

tiple views knowledge does provide extra distinctive fea-

tures for action recognition; while high-level fusion per-

forms better than low-level fusion due to the significant dif-

ference across views, and our VCDN achieves the best per-

formance since it fully explores the label correlations.

Following the previous experimental setting, we further

visualize the recognition performance as the training epoch

increases, and the result is shown in Figure 3, where we

observe that most fusion strategies cannot outperform the

highest single-view classification performance. We assume

that simply feature level fusion cannot provide clear distinc-

tive clue for classifier, and it is too difficult to capture the

correlation by itself; while label average approach achieves

slight improvement which indicates the high-level fusion

performs well in multi-view action scenario; meanwhile,

our approach achieves the highest performance and keeps

stable after around 100 epoch which further demonstrates

the effectiveness of the VCDN model.

We evaluate our GMVAR with and without the genera-

tive strategy to prove its effectiveness in our model. Fig-

ure 4 shows the recognition accuracy of GMVAR with

and without the generative model in single-view (RGB and

depth) and multi-view (RGB-D) settings on DHA dataset.

From the results, we observe that the generative strategy in-

deed improves the performance of all settings considerably.

Moreover, we changed the GAN module to a mapping mod-

ule for further comparison. In this case, one modality is a

mapping of the other, and the obtained performance (i.e.,

UWA: 74.52%, MHAD: 98.23%, DHA: 88.07%) is lower

than the model with the generative model. We assume GAN

captures better feature distribution and diversifies the train-

ing space to achieve higher performance.

Furthermore, we visualize the distribution of the real and

generated representations of the test samples in Z1 and Z2
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Figure 5. t-SNE [27] visualization results of the real and the gen-

erated test sample representations in Z1 and Z2 respectively. The

solid circles and the cross marks indicate the real and generated

representations, and different colors denote different action cate-

gories. We observe that real and generated representations which

belong to the same category are close to each other. It illustrates

that the generative model is capable to “recover” one view condi-

tioned on the other view. And it further demonstrates the effec-

tiveness of the generative strategy in this multi-view scenario.

by t-SNE [27] method respectively. The results are in Fig-

ure 5 which illustrate that the real and generated represen-

tations which belong to the same action category are close

to each other and vice-versa. It indicates that this genera-

tive approach effectively learns the across-view correlations

in the subspace which can accurately generate similar rep-

resentations to complement/augment the other view. And

the view-specific classifiers associated with the proposed

VCDN further utilizes the knowledge to improve the action

recognition performance.

5. Conclusion

We proposed a novel Generative Multi-View Action

Recognition (GMVAR) framework in this paper. A gen-

erative mechanism is designed to generate one view condi-

tioned on the other view. By this way, the comprehensive

cross-view motion structure knowledge can be revealed.

Due to this generative strategy, our model works well in

single-view and missing-view scenarios which are difficult

for other multi-view approaches. Moreover, we proposed

an effective View Correlation Discovery Network (VCDN)

which further explores the cross-view correlation in high-

level label space and obtains more accurate classification

results. Evaluation of three multi-view action datasets and

extensive ablation studies show the effectiveness of both

generative model and VCDN framework. All experimen-

tal results illustrate that our GMVAR is an effective, accu-

rate, robust framework, and compatible with a wide range

of multi-view action recognition tasks.
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