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Abstract

In this paper, we revive the use of old-fashioned hand-

crafted video representations for action recognition and put

new life into these techniques via a CNN-based halluci-

nation step. Despite of the use of RGB and optical flow

frames, the I3D model (amongst others) thrives on com-

bining its output with the Improved Dense Trajectory (IDT)

and extracted with its low-level video descriptors encoded

via Bag-of-Words (BoW) and Fisher Vectors (FV). Such a

fusion of CNNs and handcrafted representations is time-

consuming due to pre-processing, descriptor extraction, en-

coding and tuning parameters. Thus, we propose an end-

to-end trainable network with streams which learn the IDT-

based BoW/FV representations at the training stage and are

simple to integrate with the I3D model. Specifically, each

stream takes I3D feature maps ahead of the last 1D conv.

layer and learns to ‘translate’ these maps to BoW/FV rep-

resentations. Thus, our model can hallucinate and use such

synthesized BoW/FV representations at the testing stage.

We show that even features of the entire I3D optical flow

stream can be hallucinated thus simplifying the pipeline.

Our model saves 20–55h of computations and yields state-

of-the-art results on four publicly available datasets.

1. Introduction

Action Recognition (AR) pipelines have transitioned

from the use of handcrafted descriptors [13, 54, 31, 64, 65,

66] to CNN models such as the two-stream network [56],

3D spatio-temporal features [60], spatio-temporal ResNet

[17] and the I3D network pre-trained on Kinetics-400 [4].

Such CNNs operate on RGB/optical flow videos thus failing

to capture some domain-specific information which sophis-

ticated low-level representations capture by design. One

prominent example are Improved Dense Trajectory (IDT)

descriptors [66] which are typically encoded with Bag-of-

Words (BoW) [57, 12] or Fisher Vectors (FV) [47, 48] and

fused with CNNs [21, 8, 9, 67, 10] at the classifier which

improves results due to several sophisticated steps of IDT:

∗Both authors contributed equally.

(i) camera motion estimation, (ii) motion descriptor model-

ing along motion trajectories estimated by the optical flow,

(iii) pruning inconsistent matches, (iv) focusing on human

motions via a human detector, (v) combination of IDT with

powerful and highly complementary to each other video de-

scriptors such as Histogram of Oriented Gradients (HOG)

[22, 31], Histogram of Optical Flow (HOF) [13] and Mo-

tion Boundary Histogram (MBH) [65] e.g., HOF and MBH

contain zero- and first-order motion statistics [66].

However, extracting dense trajectories and correspond-

ing video descriptors is costly due to several off-line/CPU-

based steps. Motivated by this shortcoming, we propose

simple trainable CNN streams on top of a CNN network

(in our case I3D [4]) which learn to ‘translate’ the I3D

output into IDT-based BoW and FV global video descrip-

tors. We can even ‘translate’ the I3D RGB output into I3D

Optical Flow Features (OFF). At the testing stage, our so-

called BoW, and FV and OFF streams (on top of I3D) are

able to hallucinate such global descriptors which we feed

into the final layer preceding a classifier. We show that

IDT/OFF representations can be synthesized by our net-

work thus removing the need of actually computing them

which simplifies the AR pipeline. With a handful of convo-

lutional/FC layers and basic CNN building blocks, our rep-

resentation rivals sophisticated AR pipelines that aggregate

features frame-by-frame e.g., HOK [8] and rank-pooling

[21, 9, 67, 10]. Below, we detail our contributions:

I. We are the first to propose that old-fashioned IDT-based

BoW and FV global video descriptors can be learned

via simple dedicated CNN-streams at the training stage

and simply hallucinated for classification with a CNN

action recognition pipeline during testing.

II. We show that even the I3D optical flow stream can be

easily hallucinated from the I3D RGB stream.

III. We study various aspects of our model e.g., the count

sketch [49] of features to avoid overfitting when fusing

several streams and Power Normalization [38, 37, 39]

to prevent so-called burstiness in BoW, FV and CNNs,

and we perform several experiments on four datasets.

Sections 2 and 3 introduce the background, notations and

concepts. Sections 4 and 5 present our method and results.
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Figure 1: The overview of our pipeline. We remove the prediction and the last 1D conv. layers from I3D RGB and optical flow streams,

concatenate (⊕) the 1024×7 feature representations X(rgb) and X(opt.), and feed them into our Fisher Vector (FV), Bag-of-Words (BoW),

and the High Abstraction Features (HAF) streams followed by the Power Normalization (PN) blocks. The resulting feature vectors ψ̃(fv1),

ψ̃(fv2), ψ̃(bow) and ψ(haf) are concatenated (⊕) and fed into our Prediction Network (PredNet). By!, we indicate that the three Mean

Square Error (MSE) losses are only applied at the training stage to train our FV (first- and second-order components) and BoW hallucinating

streams (indicated in dashed red). By%, we indicate that the MSE losses are switched off at the testing stage. Thus, we hallucinate ψ̃(fv1),

ψ̃(fv2) and ψ̃(bow), and pass them to PredNet together with ψ(haf) to obtain labels y. The original training FV and BoW feature vectors

(used only during training) are denoted by ψ(fv1), ψ(fv2) and ψ(bow), while P are count sketch projecting matrices (see text for details).

2. Related Work

Below, we describe handcrafted spatio-temporal video

descriptors and their encoding strategies, optical flow, and

deep learning pipelines for video classification.

Handcrafted video representations. Early AR relied on

spatio-temporal interest point detectors [43, 14, 6, 73, 44,

64] and spatio-temporal descriptors [13, 54, 61, 64, 65, 66]

which capture various appearance and motion statistics.

Spatio-temporal interest point detectors were developed

for the task of identifying spatio-temporal regions of videos

rich in motion patterns relevant to classification, thus pro-

viding sampling locations for local descriptors. The number

of sampling points had a significant influence on the pro-

cessing speed due to the volumetric nature of videos. Har-

ris3D [43], one of the earliest detectors, performs a search

for extreme points in the spatio-temporal domain via the

so-called structure tensor and the determinant-to-trace ratio

test. Cuboid [14], a faster detector, applies Gaussian and

Gabor filters in spatial and temporal domains, respectively.

Selective STIP [6] extracts initial key-point candidates with

the Harris corner detector followed by the candidate sup-

pression with a so-called surround suppression mask. Hes-

STIP, a more recent detector, uses integral videos and Hes-

sian matrix to search the scale-space for local maxima of the

signal. Evaluations and further reading on spatio-temporal

detectors can be found in surveys [23, 68, 69].

One drawback of spatio-temporal interest point detectors

is the sparsity of key-points and inability to capture long-

term motion patterns. Thus, a Dense Trajectory (DT) [64]

approach densely samples feature points in each frame to

track them in the video (via optical flow). Then, multiple

descriptors are extracted along trajectories to capture shape,

appearance and motion cues. As DT cannot compensate for

the camera motion, the IDT [66, 65] estimates the camera

motion to remove the global background motion. IDT also

removes inconsistent matches via a human detector.

For spatio-temporal descriptors, IDT employs HOG

[22], HOF [13] and MBH [65]. HOG [22] contains statis-

tics of the amplitude of image gradients w.r.t. the gradi-

ent orientation. Thus, it captures the static appearance cues

while its close cousin, HOG-3D [31], is designed for spatio-

temporal interest points. In contrast, HOF [13] captures his-

tograms of optical flow while MBH [65] captures deriva-

tives of the optical flow, thus it is highly resilient to the

global camera motion whose cues cancel out due to deriva-

tives. Thus, HOF and MBH contain the zero- and first-order

optical flow statistics. Other spatio-temporal descriptors in-

clude SIFT3D [54], SURF3D [73] and LTP [75].

In this work, we follow the standard practice, that is, we

use the Improved Dense Trajectories [64, 8, 10] and we en-

code them together with HOG, HOF, and MBH descriptors

via BoW [57, 12] and FV [47, 48] which we describe below.

Descriptor encoding. BoW [57, 12], a global image rep-

resentation, is likely the oldest encoding strategy for local

descriptors. It consists of (i) clustering with k-means for a

collection of descriptor vectors from the training set to build

so-called visual vocabulary, (ii) assigning each descriptor

to its nearest cluster center from the visual dictionary, and

(iii) aggregating the one-hot assignment vectors via aver-

age pooling. Similar models such as Soft Assignment (SA)

[62, 33] and Localized Soft Assignment (LcSA) [45, 38] use

the Component Membership Probability (CMP) of GMM

to assign each descriptor with some probability to visual

words followed by average or non-linear pooling [38, 70].

In this paper, we chose the simplest BoW model [12]

Figure 2: Hallucinating the Optical Flow Features (OFF).
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with Power Normalization [38] detailed in Section 3. BoW

can be seen as zero-order statistics of FV [47, 48], thus we

also employ FV to capture first- and second-order statis-

tics of local descriptors. FV builds a visual dictionary from

training data via GMM. Then, a displacement/square dis-

placement of each descriptor vector w.r.t. each GMM com-

ponent center is taken, normalized by its GMM standard

deviation/variance to capture the first/second-order terms,

and then soft-assigned via CMP to each GMM component.

Optical flow. As a key concept in AR from videos, optical

flow is the distribution of velocities of movement of bright-

ness pattern across frames [26] such as the pattern of motion

of objects, surfaces and edges in a visual scene caused by

the relative motion between an observer and a scene [27].

Early optical flow coped with small displacements via en-

ergy minimization [26, 46]. However, to capture informa-

tive motions of subjects/objects, optical flow needs to cope

with large displacements [1]. As energy-based methods suf-

fer from the local minima, local descriptor matching is used

in Large Displacement Optical Flow (LDOF) [3]. Recent

methods use non-rigid descriptor matching [72], segment

matching [2] or even edge-preserving interpolation [51].

In this work, we are not concerned with the use of the

newest possible optical flow. Thus, we opt for LDOF [46].

CNN-based action recognition. The success of AlexNet

[40] and ImageNet [53] sparked studies into AR with

CNNs. Early models extracted per-frame representations

followed by average pooling [30] which discards the tem-

poral order. To fix such a shortcoming, frame-wise CNN

scores were fed to LSTMs [15]. Two-stream networks [56]

compute representations per RGB frame and per 10 stacked

optical flow frames. However, a more obvious extension is

to model spatio-temporal 3D CNN filters [29, 60, 17, 63].

The recent I3D model [4] draws on the two-stream net-

works, ‘inflates’ 2D CNN filters pre-trained on ImageNet to

spatio-temporal 3D filters, and implements temporal pool-

ing across the inception module. In this paper, we opt for

the I3D network but our proposed layers are independent of

the CNN design. We are concerned with ‘absorbing’ the old

yet powerful IDT representations and/or optical flow fea-

tures into CNN and hallucinating them at the test time.

Temporal aggregation. While two-stream networks [56]

discard the temporal order and others use LSTMs [15],

many AR pipelines address the spatio-temporal aggrega-

tion. Rank pooling [20, 21] projects frame-wise feature

vectors onto a line such that the temporal order of vectors is

preserved along the line. Subspace and kernel rank pooling

[9, 67] use projections into the RKHS in which the temporal

order of frames is preserved. Another aggregation family

captures second- or higher-order statistics [8, 32, 37, 16].

In this paper, we are not concerned with temporal pool-

ing. Thus, we use a 1D convolution (as in I3D [4]).

Power Normalization family. BoW, FV and even CNN-

based descriptors have to deal with the so-called burstiness

defined as ‘the property that a given visual element appears

more times in an image than a statistically independent

model would predict’ [28], a phenomenon also present in

video descriptors. Power Normalization [38, 36] is known

to suppress the burstiness, and it has been extensively stud-

ied in the context of BoW [38, 36, 37, 39]. Moreover, a con-

nection to Max-pooling was found in survey [38] which also

shows that the so-called MaxExp pooling is in fact a detec-

tor of ‘at least one particular visual word being present in

an image’. According to papers [38, 39], many Power Nor-

malization functions are closely related. We outline Power

Normalizations used in our work in Section 3.

3. Background

In our work, we use BoW/FV (training stage), as well as

Power Normalization [38, 37] and count sketches [71].

Notations. We use boldface uppercase letters to express

matrices e.g., M ,P , regular uppercase letters with a sub-

script to express matrix elements e.g., Pij is the (i, j)th el-

ement of P , boldface lowercase letters to express vectors,

e.g. x,φ,ψ, and regular lowercase letters to denote scalars.

Vectors can be numbered e.g., m1, ...,mK or xn, etc.,

while regular lowercase letters with a subscript express an

element of vector e.g., mi is the ith element ofm. Operators

‘;’ and ⊕ concatenate vectors e.g., ⊕i∈IK
vi= [v1; ...;vK ]

while Id denotes an index set of integers {1, ..., d}.

3.1. Descriptor Encoding Schemes

Bag-of-Words [57, 12] assigns each local descriptor x to

the closest visual word from M = [m1, ...,mK ] built via

k-means. In order to obtain mid-level feature φ, we solve:

φ = argmin
φ′

∥

∥x−Mφ′
∥

∥

2

2
,

s. t. φ′ ∈ {0, 1}, 1Tφ′=1.
(1)

Fisher Vector Encoding [47, 48] uses a Mixture of K
Gaussians from a GMM used as a dictionary. It per-

forms descriptor coding w.r.t. to Gaussian components

G(wk,mk,σk) which are parametrized by mixing proba-

bility, mean, and on-diagonal standard deviation. The first-

and second-order features φk,φ
′
k ∈ R

D are :

φk = (x−mk)/σk, φ
′
k = φ2

k−1. (2)

Concatenation of per-cluster features φ∗
k ∈ R

2D forms the

mid-level feature φ ∈ R
2KD:

φ = [φ∗
1; ...;φ

∗
K ] , φ∗

k =
p (mk|x, θ)√

wk

[

φk;φ
′
k/
√
2
]

, (3)

where p and θ are the component membership probabilities

and parameters of GMM, respectively. For each descriptor

x of dimensionality D (after PCA), its encoding φ is of

2KD dim. as φ contains first- and second-order statistics.

8700



3.2. Pooling a.k.a. Aggregation

Traditionally, pooling is performed via averaging mid-

level feature vectors φ(x) corresponding to (local) de-

scriptors x ∈ X from a video sequence X , that is ψ =
avg

x∈X
φ(x), and (optionally) applying the ℓ2-norm nor-

malization. In this paper, we work with either sequences X

(for which the above step is used) or subsequences.

Proposition 1. For subsequence pooling, let X s,t=X 0,t\
X 0,s−1, where X s,t denotes a set of descriptors in the

sequence X counting from frame s up to frame t, where

0 ≤ s ≤ t ≤ τ , X 0,−1 ≡ ∅, and τ is the length of

X . Moreover, let us compute an integral mid-level feature

φ′
t=φ

′
t−1+

∑

x∈X t,t
φ(x) which aggregates mid-level fea-

ture vectors from frame 0 to frame t, andφ′
−1 is an all-zeros

vector. Then, the pooled subsequence is given by:

ψs,t= (φ′
t−φ′

s−1)/(‖φ′
t−φ′

s−1‖2 + ǫ), (4)

where 0 ≤ s ≤ t ≤ τ are the starting and ending frames

of subsequence X
′
s,t ⊆ X and ǫ is a small constant. We

normalize the pooled sequences/subseq. as described next.

3.3. Power Normalization

As alluded to in Section 2, we apply Power Normalizing

functions to BoW and FV streams which hallucinate these

two modalities (and HAF/OFF stream explained later). We

investigate three operators g(ψ, ·) detailed by Remarks 1–3.

Remark 1. AsinhE function [39] is an extension of a

well-known Power Normalization (Gamma) [39] defined as

g(ψ, γ)=Sgn(ψ)|ψ|γ for 0<γ≤1 to the operator with a

smooth derivative and a parameter γ′. AsinhE is defined as

the normalized Arcsin hyperbolic function:

g(ψ, γ′)= arcsinh(γ′ψ)/ arcsinh(γ′). (5)

Remark 2. Sigmoid (SigmE), a Max-pooling approxima-

tion [39], is an extension of the MaxExp operator defined

as g(ψ, η) = 1− (1−ψ)η for η > 1 to the operator with

a smooth derivative, a response defined for real-valued ψ

(rather than ψ≥0), a parameter η′ and a small const. ǫ′:

g(ψ, η′)=
2

1+e−η′ψ/(‖ψ‖2+ǫ′)
−1. (6)

Remark 3. AxMin, a piece-wise linear form of SigmE [39],

is given as g(ψ, η′′) = Sgn(ψ)min(η′′ψ/(‖ψ‖2 + ǫ′), 1)
for η′′>1 and a small constant ǫ′.

Despite the similar role of these three pooling operators,

we investigate each of them as their interplay with end-to-

end learning differs. Specifically, limψ→±∞ g(ψ, ·) for As-

inhE and SigmE are ±∞ and ±1, resp., thus their asymptotic

behavior differs. Moreover, AxMin is non-smooth and re-

lies on the same gradient re-projection properties as ReLU.

(a)

(b)

(c)

Figure 3: Stream types used in our network. Figures 3a and 3b

show Fully Connected and Convolutional variants used for the

practical realization of the FV, BoW, OFF and HAF streams. Fig-

ure 3c shows our PredNet. Note that we indicate the type of oper-

ation and its parameters in each block e.g., conv2d and its number

of filters/size, or Power Normalization (PN). Beneath arrows, we

indicate the size of input, intermediate or output representation.

3.4. Count Sketches

Sketching vectors by the count sketch [11, 71] is used for

their dimensionality reduction which we use in this paper.

Proposition 2. Let d and d′ denote the dimensionality of the

input and sketched output vectors, respectively. Let vector

h ∈ Id
d′ contain d uniformly drawn integer numbers from

{1, ..., d′} and vector s ∈ {−1, 1}d contain d uniformly

drawn values from {−1, 1}. Then, the sketch projection ma-

trix P ∈{−1, 0, 1}d′×d becomes:

Pij=

{

si if hi=j,

0 otherwise,
(7)

and the sketch projection p : R
d→R

d′

is a linear operation

given as p(ψ)=Pψ (or p(ψ;P )=Pψ to highlight P ).

Proof. It directly follows from the definition of the count

sketch e.g., see Definition 1 [71].

Remark 4. Count sketches are unbiased estimators:

Eh,s(p(ψ,P (h, s)), p(ψ′,P (h, s))) = 〈ψ,ψ′〉. As vari-

ance Vh,s(p(ψ), p(ψ
′)) ≤ 1

d′

(

〈ψ,ψ′〉2 + ‖ψ‖22‖ψ′‖22
)

,

we note that larger sketches are less noisy. Thus, for every

modality we compress, we use a separate sketch matrix P .

As video modalities are partially dependent, this implicitly

leverages the unbiased estimator and reduces the variance.

Proof. For the first and second property, see Appendix A of

paper [71] and Lemma 3 [49].

4. Approach

Our pipeline is illustrated in Figure 1. It consist of (i) the

Fisher Vector and Bag-of-Words hallucinating streams de-

noted as FV and BoW (shown in dashed red), respectively,
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(ii) the High Abstraction Features stream denoted as HAF,

and (iii) the Prediction Network abbreviated as PredNet.

The role of BoW/FV streams is to take I3D interme-

diate representations generated from the RGB and optical

flow frames and learn to hallucinate BoW/FV representa-

tions. For this purpose, we use the MSE loss between the

ground-truth BoW/FV and the outputs of BoW/FV streams.

The role of the HAF stream is to further process I3D

intermediate representations before they are concatenated

with hallucinated BoW/FV. PredNet fuses the concatenated

BoW/FV/HAF and learns class concepts. Figure 2 shows

our pipeline for hallucinating the OFF representation (I3D

optical flow). Below, we describe each module in detail.

4.1. BoW/FV Hallucinating Streams

BoW/FV take as input the I3D intermediate representa-

tions X(rgb) and X(opt.) of size 1024×7 which were obtained

by stripping the classifier and the last 1D conv. layer of I3D

pre-trained on Kinetics-400. The latter dimension of X(rgb)

and X(opt.) can be thought of as the temporal size. We con-

catenate X(rgb) and X(opt.) along the third mode and obtain

X which has dimensionality 1024×7×2. As FV contains the

first- and second-order statistics, we use a separate stream

per each type of statistics, and a single stream for BoW.

For the practical choice of BoW/FV pipelines, we use ei-

ther a Fully Connected (FC) unit shown in Figure 3a or a

Convolutional (Conv) pipeline in Figure 3b. Thus, we in-

vestigate the following hallucinating stream combinations:

(i) BoW-FC and FV-FC, (ii) BoW-Conv and FV-FC, or (iii)

BoW-Conv and FV-Conv. Where indicated, we also equip

each stream with Power Normalization (PN). For specific

PN realizations, we investigate AsinhE, SigmE, and AxMin

variants from Remarks 1, 2 and 3. Below we detail how we

obtained ground-truth BoW/FV.

Ground-truth BoW/FV. To train Fisher Vectors, we com-

puted 256 dimensional GMM-based dictionaries on de-

scriptors resulting from IDT [66] according to steps de-

scribed in Sections 2 and 3.1. We applied PCA to trajec-

tories (30 dim.), HOG (96 dim.), HOF (108 dim.), MBHx

(96 dim.) and MBHy (96 dim.), and we obtained the fi-

nal 213 dim. local descriptors. We applied encoding as

in Eq. (2) and (3), the aggregation from Section 3.2 and

Power Normalization from Section 3.3. Thus, our encoded

first- and second-order FV representations, each of size

256× 213 = 54528, had to be sketched to 1000 dimen-

sions. To this end, we followed Section 3.4, prepared ma-

trices P(fv1) and P(fv2) as in Proposition 2, and fixed both

of them throughout experiments. The sketched first- and

second-order representations ψ′
(fv1) = P(fv1)ψ(fv1) and

ψ′
(fv2) =P(fv2)ψ(fv2) can be readily combined next with

the MSE loss functions detailed in Section 4.5.

For BoW, we followed Section 3.1 and applied k-means

to build a 1000 dim. dictionary from the same descriptors

which were employed to pre-compute FV. Then, the de-

scriptors were encoded according to Eq. (1), aggregated ac-

cording to steps described in Section 3.2 and normalized by

Power Normalization from Section 3.3. Where indicated,

we used 4000 dim. dictionary and thus applied sketching

on such BoW to limit its vector size to 1000 dim.

We note that we use ground-truth BoW/FV descriptors

only at the training stage to train our hallucination streams.

4.2. High Abstraction Features

High Abstraction Features (HAF) take as input the I3D

intermediate representations X(rgb) and X(opt.). Practi-

cal realizations of HAF pipelines are identical to those of

BoW/FV/OFF. Thus, we have a choice of either FC or Conv

units illustrated in Figures 3a and 3b. We simply refer

to those variants as HAF-FC and HAF-Conv, respectively.

Similar to BoW/FV/OFF streams, the HAF representation

also uses Power Normalization and it is of size 1000.

4.3. Optical Flow Features

For pipeline in Figure 2, the I3D intermediate represen-

tation X(rgb) only is fed to hallucination/HAF streams. I3D

Optical Flow Features X(opt.) are pre-computed as the train-

ing ground-truth for the OFF layer (the MSE loss is used).

4.4. Combining Hallucinated BoW/FV/OFF and HAF

Figure 1 indicates that FV (first- and second-order),

BoW and HAF feature vectors ψ̃(fv1), ψ̃(fv2), ψ̃(bow) and

ψ(haf) are concatenated (via operator ⊕) to obtain ψ(tot)

and subsequently sketched (if indicated so during experi-

ments), that is, ψ′
(tot)=P(tot)ψ(tot) which reduces the size

of the total representation from d=4000 to 500≤d′≤2000.

Matrix P(tot) is prepared according to Proposition 2 and

fixed throughout experiments. As sketching is a linear pro-

jection, we can backpropagate through it with ease. When

also hallucinating OFF as in Figure 2, we additionally con-

catenate ψ(off) with other feature vectors to obtain ψ(tot).

PredNet. The final unit of our overall pipeline, PredNet,

is illustrated in Figure 3c. On input, we take ψ(tot) (no

sketching) or (ψ′
(tot)) if sketching is used, pass it via the

batch normalization and then an FC layer which produces a

C dim. representation passed to the cross-entropy loss.

4.5. Objective and its Optimization

During training, we combine MSE loss functions respon-

sible for training hallucination streams with the class. loss:

ℓ∗(X ,y; Θ̄)=
α

|H|
∑

i∈H

∥

∥ψ̃i−ψ′
i

∥

∥

2

2
+ℓ
(

f(ψ′
(tot);Θ(pr)),y;Θ(ℓ)

)

,

where: ∀i∈H, ψ̃i=g(ℏ(X ,Θi), η) ,ψ
′
i=Piψi,

ψ(haf)=g
(

ℏ(X ,Θ(haf)), η
)

,

ψ′
(tot)=P(tot)

[

⊕i∈Hψ̃i;ψ(haf)

]

. (8)
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Figure 4: Optimization. In each step, we have (i) forward/back-

ward passes via BoW/FV (optionally OFF) streams for the MSE

loss followed by (ii) forward/backward passes via BoW/FV (opt.

OFF), and HAF streams and PredNet for the classification loss.

The above equation is a trade-off between the MSE loss

functions {‖ψ̃i−ψ′
i‖

2

2, i ∈ H} and the classification loss

ℓ(·,y;Θ(ℓ)) with some label y∈ Y and parameters Θ(ℓ)≡
{W ,b}. The trade-off is controlled by a constant α ≥ 0
while MSE is computed over hallucination streams i ∈ H,

and H≡{(fv1), (fv2), (bow), (off)} is our set of halluci-

nation streams which can be modified to multiple/few such

streams depending on the task at hand. Moreover, g(·, η)
is a Power Normalizing function chosen from the family

described in Section 3.3, f(·;Θ(pr)) is the PredNet mod-

ule with parameters Θ(pr) which we learn, {ℏ(·,Θi), i ∈
H} are the hallucination streams while {ψ̃i, i ∈ H} are

the corresponding hallucinated BoW/FV/OFF representa-

tions. Moreover, ℏ(·,Θ(haf)) is the HAF stream with the

output denoted by ψ(haf). For the hallucination streams,

we learn parameters {Θi, i ∈ H} while for HAF, we

learn Θ(haf). The full set of parameters we learn is de-

fined as Θ̄ ≡ ({Θi, i∈H},Θ(haf),Θ(pr),Θ(ℓ)). Further-

more, {Pi, i ∈ H} are the projection matrices for count

sketching of the ground-truth BoW/FV/OFF feature vec-

tors {ψi, i ∈ H} while {ψ′
i, i ∈ H} are the corresponding

sketched/compressed representations. Finally, P(tot) is the

projection matrix for hallucinated BoW/FV/OFF represen-

tations concatenated with each other and HAF, that is, for

ψ(tot) =
[

⊕i∈Hψ̃i;ψ(haf)

]

which results in the sketched

counterpart ψ′
(tot) that goes into the PredNet module f .

Section 3.4 details how to select matrices P . If sketching

is not needed, we simply set a given P to be the identity

projection P =I. In our experiments, we simply set α=1.

Optimization. We minimize ℓ∗(X ,y; Θ̄) w.r.t. parame-

ters of each stream, that is {Θi, i ∈ H} for hallucination

streams, Θ(haf) for the HAF stream, Θ(pr) for PredNet

and Θ(ℓ) for the classification loss. In practice, we perform

a simple alternation over two minimization steps shown in

Figure 4. In each iteration, we perform one forward and

backward pass regarding the MSE losses to update the pa-

rameters {Θi, i ∈ H} of the hallucination streams. Then,

we perform one forward and backward pass regarding the

classification loss ℓ. We update all network streams dur-

ing this pass. Thus, one can think of our network as multi-

task learning with BoW/FV/OFF and label learning tasks.

sp1 sp2 sp3 mean acc.
HAF only 81.83% 80.78% 80.45% 81.02%

HAF+BoW/FV exact 83.00% 82.80% 81.70% 82.50%
HAF+BoW halluc. 82.29% 81.24% 80.98% 81.50%
HAF+FV halluc. 82.68% 81.05% 79.93% 81.22%

HAF+BoW/FV halluc. 82.88% 82.74% 81.50% 82.37%

Table 1: Evaluations of pipelines on the HMDB-51 dataset. We

compare (HAF only) and (HAF+BoW/FV exact) which show the

lower- and upper bound on the accuracy, and our (HAF+BoW/FV

halluc.), (HAF+BoW halluc.) and (HAF+FV halluc.).

Furthermore, we use the Adam minimizer with 10−4 initial

learning rate which we halve every 10 epochs. We run our

training for 50–100 epochs depending on the dataset.

Sketching the Power Normalized vectors.

Proposition 3. Sketching PN vectors increases the sketch-

ing variance (ℓ2-normalized by vec. norms) by 1≤κ≤2.

Proof. Normalize variance V from Remark 4 by the norms

‖ψ‖22‖ψ′‖22. Consider V
(γ) which is the variance for d di-

mensional vectors {(ψγ ,ψ′γ) :ψ ≥ 0,ψ′ ≥ 0} power nor-

malized by Gamma from Remark 1, and divide it accord-

ingly by ‖ψγ‖22‖ψ′γ‖22. For extreme PN (γ→0), we have:

lim
γ→0

V
(γ)=

1

d′
lim
γ→0

(

〈ψγ ,ψ′γ〉2
‖ψγ‖22‖ψ′γ‖22

+1

)

=
2

d′
. (9)

Now, assume that d dimensional ψ and ψ′ are actually ℓ2-

norm normalized. Then, we have the following ratio of vari-

ances:
κ=V/V(γ) = 2/(〈ψ,ψ′〉2+1), (10)

Thus, 1≤κ≤2 depends on (ψ,ψ′), and κ varies smoothly

between [1; 2] for 1 ≤ γ ≤ 0 of Gamma, a monotonically

increasing function. For typical γ = 0.5, we measured for

the actual data that κ≈1.3.

5. Experiments

5.1. Datasets and Evaluation Protocols

HMDB-51 [41] consists of 6766 internet videos over 51

classes; each video has ∼20–1000 frames. Following the

protocol, we report the mean accuracy across three splits.

YUP++ [19] dataset contains so-called video textures. It

has 20 scene classes, 60 videos per class, and its splits con-

tain scenes captured with the static or moving camera. We

follow the standard splits (1/9 dataset for training).

MPII Cooking Activities [52] consist of high-resolution

videos of people cooking various dishes. The 64 distinct

activities from 3748 clips include coarse actions e.g., open-

ing refrigerator, and fine-grained actions e.g., peel, slice,

cut apart. We use the mean Average Precision (mAP) over

7-fold cross validation. For human-centric protocol [7, 9],

we use Faster-RCNN [50] to crop video around humans.

Charades [55] consist of of 9848 videos of daily indoors

activities, 66500 temporal annotations and 157 classes.
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static dynamic mixed mean acc.
HAF only 92.03% 81.67% 89.07% 87.59%

HAF+BoW/FV exact 93.30% 89.82% 92.41% 91.84%
HAF+BoW halluc. 92.69% 85.93% 92.41% 90.34%
HAF+FV halluc. 92.69% 88.15% 91.48% 90.77%

HAF+BoW/FV halluc. 93.15% 89.63% 92.31% 91.69%

Table 2: Eval. of pipelines on YUP++. See Table 1 for the legend.

sp1 sp2 sp3 mean acc.
HAF-Conv+BoW/FV-FC halluc. 81.96% 80.39% 80.52% 80.95%
HAF-FC+BoW/FV-Conv halluc. 82.42% 81.30% 81.50% 81.74%
HAF-FC+BoW/FV-FC halluc. 82.88% 82.74% 81.50% 82.37%

Table 3: Evaluations of pipelines on the HMDB-51 dataset. We

compare (HAF+BoW/FV halluc.) approach on different architec-

tures used for HAF and BoW/FV streams such as (FC) and (Conv).

5.2. Evaluations

We start our experiments by investigating various aspects

of our pipeline and then we present our final results.

HAF, BoW and FV streams. Firstly, we ascertain the

gains from our HAF and BoW/FV streams. We evaluate the

performance of (i) the HAF-only baseline pipeline without

IDT-based BoW/FV information (HAF only), (ii) the HAF-

only baseline with exact ground-truth IDT-based BoW/FV

added at both training and testing time (HAF+BoW/FV ex-

act), and (iii) the combined HAF plus IDT-based BoW/FV

streams (HAF+BoW/FV halluc.). We also perform evalua-

tions on (iv) HAF plus IDT-based BoW stream (HAF+BoW

halluc.) and HAF plus IDT-based FV stream (HAF+FV

halluc.) to examine how much gain IDT-based BoW and

FV bring, respectively. As Section 4.1 suggests that each

stream can be based on either the Fully Connected (FC) or

Convolutional (Conv.) pipeline, we firstly investigate the

use of FC unit from Figure 3a, that is, we use HAF-FC,

BoW-FC and HAF-FC streams. PredNet also uses FC. For

ground-truth FV, we use 1000 dim. sketches.

Table 1 presents results on the HMDB-51 dataset. As

expected, the (HAF only) is the poorest performer while

(HAF+BoW/FV exact) is the best performer determining

the upper limit on the accuracy. Hallucinating (HAF+BoW

halluc.) outperforms (HAF+FV halluc.) marginally. We

expect FV to perform close to BoW due to the signifi-

cant compression with sketching by factor ∼ 52.5×. Ap-

proaches (HAF+FV/BoW halluc.) and (HAF+BoW/FV ex-

act) achieve the best results, and outperform (HAF only)

by 1.35% and 1.48% accuracy. These result show that our

hallucination strategy (HAF+FV/BoW halluc.) can mimic

(HAF+BoW/FV exact) closely. Our 82.37% accuracy is the

new state of the art. Below we show larger gains on YUP++.

Table 2 presents similar findings on the YUP++ dataset.

Our (HAF+FV halluc.) brings the improvement of ∼ 2.2
and ∼ 6.5% over (HAF+BoW halluc.) and (HAF only)

on scenes captured with the moving camera (dynamic).

Our (HAF+BoW/FV halluc.) yields ∼ 8.0% over (HAF

only) thus demonstrating again the benefit of hallucinating

BoW/FV descriptors. The total gain for (HAF+BoW/FV

halluc.) over (HAF only) equals 4.1%. Our (HAF+FV/BoW

halluc.) matches results of (HAF+BoW/FV exact) without

explicitly computing BoW/FV during testing. Below, we

investigate different architectures of our streams.

Fully Connected/Convolutional streams. Figures 3a and

3b show two possible realizations of HAF, BoW and FV

streams. While FC and Conv. architectures are not the only

possibilities, they are the simplest ones. Table 3 shows that

using FC layers (FC) for HAF and BoW/FV streams, de-

noted as (HAF-FC+BoW/FV-FC halluc.) outperforms Con-

volutional (Conv) variants by up to ∼1.5% accuracy. Thus,

we use only the FC architecture in what follows.

Sketching and Power Normalization. As PredNet uses FC

layers (see Figure 3c), we expect that limiting the input size

to this layer via count sketching from Section 3.4 should

benefit the performance. Moreover, as visual and video rep-

resentations suffer from so-called burstiness, we investigate

AsinhE, SigmE and AxMin from Remarks 1, 2 and 3.

Figure 5a investigates the classification accuracy on the

HMDB-51 dataset (split 1) when our HAF and BoW/FV

feature vectors {ψ̃i, i ∈ H} and ψ(haf) (described in Sec-

tions 4.4 and 4.5) are passed via Power Normalizing func-

tions AsinhE, SigmE and AxMin prior to concatenation (see

Figure 1). From our experiment it appears that all PN func-

tions perform similarly and improve results from the base-

line 82.29% to ∼ 83.20% accuracy. We observe a similar

gain from 93.15% to 94.44% acc. on YUP++ (static). In

what follows, we simply use AsinhE for PN.

Figure 5b illustrates on the HMDB-51 dataset (split 1)

that applying count sketching on concatenated HAF and

BoW/FV feature vectors ψ(tot), which produces ψ′
(tot) (see

Section 4.5 for reference to symbols), improves results from

82.88% to 83.92% accuracy for d′ = 2000. This is ex-

pected as reduced size of ψ′
(tot) results in fewer parameters

of the FC layer of PredNet and less overfitting. Similarly,

for the YUP++ dataset and the split (static), we see the per-

formance increase from 93.15% to 94.81% accuracy.

Comparisons with other methods. Below we present our

final results and we contrast them against the state of the

art. Table 4 shows results on the HMDB-51 dataset. For

γ′, η′, η′′
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Figure 5: Evaluations of (fig. 5a) Power Normalization and (fig.

5b) sketching on the HMDB-51 dataset (split 1 only).
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sp1 sp2 sp3 mean acc.
HAF only 81.83% 80.78% 80.45% 81.02%

HAF+BoW/FV halluc. 83.46% 82.61% 81.37% 82.48%

ADL+ResNet+IDT 74.3% [67] STM Network+IDT 72.2% [18]
ADL+I3D 81.5% [67] Full-FT I3D 81.3% [4]

Table 4: Evaluations of (top) our (HAF+BoW/FV halluc.) and

(bottom) comparisons to the state of the art on HMDB-51.

static dynamic mixed
mean mean
stat/dyn all

HAF only 92.03% 81.67% 89.07% 86.8% 87.6%
HAF+BoW/FV halluc. 94.81% 89.63% 93.33% 92.2% 92.6%

T-ResNet [19] 92.41% 81.50% 89.00% 87.0% 87.6%
ADL I3D [67] 95.10% 88.30% - 91.7% -

Table 5: Evaluations of (top) our (HAF+BoW/FV halluc.) and

(bottom) comparisons to the state of the art on YUP++.

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP
HAF+BoW halluc. 73.9 71.6 76.2 70.7 76.3 71.9 63.4 71.9%

HAF+BoW halluc.+SK/PN 73.9 75.8 72.2 73.9 77.0 73.6 68.8 73.6%
HAF* only 74.6 73.2 77.0 75.1 76.1 75.6 71.9 74.8%

HAF*+BoW halluc. 78.8 75.0 84.1 76.0 77.0 78.3 75.2 77.8%
HAF*+BoW hal.+MSK/PN 80.1 79.2 84.8 83.9 80.9 78.5 75.5 80.4%
HAF•+BoW hal.+MSK/PN 80.8 80.9 85.0 83.9 82.0 79.8 79.6 81.7%

ditto+OFF hal. 81.2 81.2 84.9 83.4 84.2 78.9 79.1 81.8%
I3D+BoW MTL• 79.1 78.1 83.6 78.7 79.1 78.6 76.5 79.1%

KRP-FS 70.0% [9] KRP-FS+IDT 76.1% [9] GRP 68.4% [7] GRP+IDT 75.5% [7]

Table 6: Evaluations of (top) our (HAF+BoW halluc.) pipeline

without sketching/PN, with sketching/PN (SK/PN). The (HAF*

only) is our baseline without the BoW stream, (*) denotes human-

centric pre-processing while (MSK/PN)in pipeline (HAF*+BoW

hal.+MSK/PN) denotes multiple sketches per BoW followed by

Power Norm (PN). (bottom) Other methods on the MPII dataset.

HAF HAF+BoW/ HAF+BoW/FV/OFF HAF+BoW/FV/OFF HAF+BoW/FV/OFF
only FV exact halluc. +MSK×2/PN halluc. +MSK×4/PN halluc. +MSK×8/PN
37.2 41.9 42.0 42.2 43.1

Table 7: Evaluations of our methods on the Charades dataset.

our method, we used sketching ofψ(tot) with d′=2000 and

PN. Our (HAF+BoW/FV halluc.) model yields 82.48% acc.

which beats results in the literature to the best of our knowl-

edge. If we tune PN per split, our results reach 82.78% ac-

curacy. However, we do not advise such tuning due to dan-

ger of overfitting. We note that we outperform more com-

plex methods such as Adversarial Discriminative Learning

(ADL) with I3D [67] and Fully Fine-Tuned I3D [4].

Table 5 shows results on the YUP++ dataset. Our

(HAF+BoW/FV halluc.) model yields very competitive re-

sults on the static protocol and outperforms competitors on

the dynamic and mixed protocols. With 92.2% mean accu-

racy over static and dynamic scores (mean stat/dyn), we out-

perform more complex ADL+I3D [67] and T-ResNet [19].

Table 6 shows results for the MPII dataset for which

we use HAF with/without the BoW (4000 dim.) halluci-

nation stream (no FV stream). As MPII contains subse-

quences, we use integral pooling from Prop. 1. Our basic

model (HAF+BoW halluc.) scores ∼ 71.9% mAP. Apply-

ing sketching and PN (HAF+BoW halluc.+SK/PN) yields

73.6% mAP. Unlike GRP+IDT [7] and KRP-FS+IDT [9],

our first two experiments do not use any human- or motion-

centric pre-processing. With human-centric crops, denoted

with (*), our baseline without BoW (HAF* only) achieves

74.8% mAP. The model with BoW (HAF+BoW halluc.)

scores 77.8% mAP. By utilizing 4 sketches for BoW and

4 BoW streams with Power Normalization (HAF*+BoW

hal.+MSK/PN), we obtain 80.4% mAP.

Hallucinating Optical Flow. For (HAF•+BoW hal.+MSK/

PN) in Table 6, we increased the resolution of RGB frames

2× to obtain larger human-centric crops and 2× larger op-

tical flow res., which yielded 81.7% mAP. In the same

setting, hallucinating optical flow feat. (ditto+OFF hal.)

yielded 81.84% mAP, the new state of the art.

Charades. In Table 7, baselines (HAF only) and (HAF+Bo

-W/FV exact) score 37.2% and 41.9% mAP. Moreover, our

best pipeline (HAF+BoW/FV/OFF halluc.+MSK×8/PN)

that hallucinates IDT BoW/FV and I3D optical flow fea-

tures (OFF) with 8 sketches per BoW/FV/OFF and PN

yielded 43.1% (a much more complex feature banks [74]

yield 43.4%). Finally, if 25% of this dataset was dedicated

to testing, ∼55h of computations would be saved.

Discussion. There exist several reasons explaining why our

pipeline works well e.g., sophisticated IDT trajectory mod-

eling is unlikely to be captured by off-the-shelf CNNs un-

less a CNN is enforced to learn IDT. We perform transla-

tion of the I3D output into IDT-based BoW/FV descrip-

tors thus enforcing I3D to implicitly learn IDT which co-

regularizes I3D which resembles Domain Adaptation (DA)

methods: a source network co-regularizes a target network

[34, 58, 35, 25, 24, 42] by the alignment of feature statis-

tic of both streams. Related to DA is Multi-task Learning

(MTL) known for boosting generalization/preventing over-

fitting of CNNs due to task specific losses [5]. MTL train-

ing on related tasks is known to boost individual task ac-

curacies beyond a vanilla feature fusion [59]. Finally, our

pipeline uses self-supervision e.g., IDT BoW/FV and OFF

descriptors represent easy to obtain self-information about

videos. We train our halluc./last I3D layers via task-specific

losses (similar to MTL). However, our halluc. layers distill

the domain specific cues which are fed back into the net-

work (PredNet) which boosts our results by further ∼2.7%

compared to vanilla (I3D+BoW MTL•) in Table 6.

6. Conclusions

We have proposed a simple yet powerful strategy that

learns IDT-based descriptors (and even optical flow fea-

tures) and hallucinates them in a CNN pipeline for AR at the

test time. With state-of-the-art results, we hope our method

will spark a renewed interest in IDT-like descriptors.

8705



References

[1] Luis Alvarez, Joachim Weickert, and Javier Sánchez. Re-

liable estimation of dense optical flow fields with large dis-

placements. IJCV, 39(1):41–56, Aug. 2000. 3
[2] Jim Braux-Zin, Romain Dupont, and Adrien Bartoli. A gen-

eral dense image matching framework combining direct and

feature-based costs. In ICCV, pages 185–192, 2013. 3
[3] Thomas Brox and Jitendra Malik. Large displacement opti-

cal flow: Descriptor matching in variational motion estima-

tion. TPAMI, 33(3):500–513, Mar. 2011. 3
[4] João Carreira and Andrew Zisserman. Quo Vadis, Ac-

tion Recognition? A New Model and the Kinetics Dataset.

CVPR, pages 1–10, 2018. 1, 3, 8
[5] Rich Caruana. Multitask learning. Machine Learning,

28(1):41–75, July 1997. 8
[6] Bhaskar Chakraborty, Michael B. Holte, Thomas B. Moes-
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Ghodrati, and Tinne Tuytelaars. Modeling video evolution

for action recognition. In CVPR, pages 5378–5387, 2015. 3
[21] Basura Fernando and Stephen Gould. Learning end-to-end

video classification with rank-pooling. In ICML, volume 48,

pages 1187–1196, 2016. 1, 3
[22] William T. Freeman and Michal Roth. Orientation his-

tograms for hand gesture recognition. Technical Report

TR94-03, MERL - Mitsubishi Electric Research Laborato-

ries, Cambridge, MA 02139, Dec. 1994. 1, 2
[23] Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. Eval-

uation of interest point detectors and feature descriptors for

visual tracking. IJCV, 94(3):335, Mar 2011. 2
[24] Mehrtash Harandi, Mathieu Salzmann, and Richard Hart-

ley. Dimensionality reduction on SPD manifolds: The emer-

gence of geometry-aware methods. TPAMI, 2018. 8
[25] Samitha Herath, Mehrtash Harandi, Basura Fernando, and

Richard Nock. Min-max statistical alignment for transfer

learning. CVPR, 2019. 8
[26] Berthold K. P. Horn and Brian G. Schunck. Determining

optical flow. Artificial Intelligence, 17:185–203, 1981. 3
[27] Ian M. L. Hunter. Book review: Thinking in perspective:

Critical essays in the study of thought processes. Quarterly

Journal of Experimental Psychology, 32(2):358–359, 1980.

3
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