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Abstract

Few-shot learning, i.e., learning novel concepts from few

examples, is fundamental to practical visual recognition

systems. While most of existing work has focused on few-

shot classification, we make a step towards few-shot object

detection, a more challenging yet under-explored task. We

develop a conceptually simple but powerful meta-learning

based framework that simultaneously tackles few-shot clas-

sification and few-shot localization in a unified, coher-

ent way. This framework leverages meta-level knowledge

about “model parameter generation” from base classes

with abundant data to facilitate the generation of a de-

tector for novel classes. Our key insight is to disentan-

gle the learning of category-agnostic and category-specific

components in a CNN based detection model. In partic-

ular, we introduce a weight prediction meta-model that en-

ables predicting the parameters of category-specific compo-

nents from few examples. We systematically benchmark the

performance of modern detectors in the small-sample size

regime. Experiments in a variety of realistic scenarios, in-

cluding within-domain, cross-domain, and long-tailed set-

tings, demonstrate the effectiveness and generality of our

approach under different notions of novel classes.

1. Introduction

Deep convolutional neural networks (CNNs) have rev-

olutionized the landscape of large-scale visual recogni-

tion [31, 26]. A key driving factor is human supervision in

the form of large amounts of annotated images. However,

in many practical applications such as self-driving vehicles,

recognition systems need to rapidly recognize some never-

before-seen objects from a very limited number of exam-

ples [16, 49, 3]. Simply collecting more data does not scale

and quickly becomes expensive [74, 66, 71, 21, 38].

This challenge of learning novel concepts from few la-

beled examples is commonly addressed in few-shot or low-

shot learning. Much of its recent progress comes from

framing few-shot learning as a meta-learning problem [62].

By simulating and solving a variety of few-shot learning
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Figure 1: Few-shot object detection: learning an object detector

for novel classes when only a few examples with annotated bound-

ing boxes are available. Our meta-learning based framework lever-

ages meta-level knowledge about “model parameter generation”

from base classes with a large amount of annotated bounding box

examples. Such knowledge is then transferred to guide the detec-

tor learning for novel classes in a sample-efficient way.

tasks from base categories with abundant labeled examples,

meta-learning approaches acquire meta-level knowledge

about learning to learn and then transfer such knowledge

to tackle few-shot learning of novel categories. Despite no-

table successes, most of existing work has focused on sim-

ple image classification tasks with artificial settings, such as

evaluating on small-scale datasets like mini-ImageNet and

for contrived tasks like 5-way classification [67, 58].

In this paper, we make a step towards few-shot object

detection, a more challenging task of practical importance

that learns an object detector when only a few examples

with annotated bounding boxes are available. Unlike im-

age classification, detection requires not only classifying

but also localizing (multiple) objects within an image, as

well as dealing with distracting background regions [19].

Hence, prior few-shot learning approaches, developed with

image classification in mind, are not readily applicable to

our task. While there is some initial attempt in this direction

as in [69, 6, 12, 29, 54], they simply introduce a few-shot

classifier into a detection model without truly addressing

few-shot localization, leading to suboptimal performance.

To address this limitation, we propose a meta-learning

based framework that simultaneously tackles few-shot clas-
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sification and few-shot localization in a unified, coher-

ent way. This framework leverages meta-level knowledge

about “model parameter generation” from base classes to

facilitate producing a detector for novel classes from few

examples (Fig. 1). Our insight is to disentangle the learning

of category-agnostic and category-specific components in a

modern CNN based detection model, and to exploit differ-

ent meta-strategies for optimizing different components.

It is known that from bottom to top layers of a learned

CNN, the model components make a transition from generic

to specific and contribute differently to visual recogni-

tion [72]. For the low-level components (e.g., bottom con-

volutional layers), their parameters are shared by many

classes and thus category-agnostic. For the high-level com-

ponents (e.g., top fully-connected layers), their parameters

tend to be category-specific. However, inspired by the re-

cent meta-learning work [70, 1, 34, 57, 28], the way how

these parameters change during the learning process (i.e.,

their first order dynamics) might be shared by many classes.

Such sharable properties with respect to the parameters or

their dynamics can be identified when training a CNN de-

tector on base classes, and then re-purposed to guide the de-

tector learning for novel classes in a sample-efficient way.

Based on this insight, we design a few-shot detection

model “MetaDet” built upon the widely-used detection ap-

proach Faster R-CNN [46]. Faster R-CNN relies on a re-

gion proposal network (RPN) to generate regions of interest

(RoIs) on top of convolutional features, and finally uses two

sibling branches to classify these RoIs into one of the ob-

ject classes or background and regress to the refined bound-

ing box positions. We treat the convolutional features and

RPN as category-agnostic components, whose parameters

are shared by base and novel classes. While the classifiers

and bounding box regressors are category-specific, we view

that the dynamics of their parameters are shared by base and

novel classes. Concretely, inspired by [70], we introduce a

parameterized weight prediction meta-model that is trained

on the space of model parameters to predict a category’s

large-sample bounding box detection parameters from its

few-shot parameters. The meta-model is trained end-to-

end with Faster R-CNN through a meta-learning procedure.

While we focus on Faster R-CNN, our framework can be

combined with other detectors like YOLO [43, 44] as well.

We explore our approach in a variety of realistic scenar-

ios. We start by using the PASCAL VOC dataset [14, 13]

to provide a means of establishing systematic quantitative

evaluation of existing detection approaches in the small-

sample size regime. We then compare with state-of-the-art

approaches on the PASCAL VOC, MS-COCO [36], Ima-

geNet [47], and iNaturalist [65] datasets, covering within-

domain, cross-domain, and long-tailed settings. Impor-

tantly, these evaluations investigate different notions of

“novel” classes that are useful in practice: (1) we have never

before seen novel classes, (2) we have seen only global

image-level labels of novel classes, and (3) we might have

seen novel classes as background without any labels.

Our contributions are three-fold. (1) We explore a chal-

lenging yet under-explored few-shot object detection prob-

lem and systematically benchmark modern detection mod-

els in the small-sample size regime. (2) We present a novel

meta-learning based approach that disentangles the learn-

ing of category-agnostic and category-specific parameters

in CNN based detectors. Our approach is simple, general,

and jointly addresses few-shot classification and few-shot

localization in a coherent way. (3) We show how our ap-

proach significantly facilitates the detection of novel classes

from few examples in a variety of realistic scenarios, includ-

ing within-domain, cross-domain, and long-tailed settings.

2. Related Work

Deep Learning based Object Detection. Modern ob-

ject detection models focus on learning from abundant data

to improve detection accuracy and speed. The R-CNN [19]

and OverFeat [55] detectors initiate this success. Since then,

flagship techniques are mainly represented by two types

of detectors. A set of models are region-based, including

R-CNN [19], Fast R-CNN [18], SPP-Net [25], Faster R-

CNN [46], FPN [35], Mask R-CNN [24], and DCN [10].

Another family is proposal-free, including YOLO [43],

YOLOv2 [44], YOLOv3 [45], and SSD [37]. We propose a

general meta-learning based framework for few-shot detec-

tion and instantiate it with Faster R-CNN as well as YOLO.

Few-Shot Learning and Meta-Learning. Few-shot

learning is a fundamental yet unsolved problem in machine

learning and computer vision [61, 15, 30, 32, 67, 23, 20, 64].

Most of existing work is developed in the context of clas-

sification, which cannot directly apply to other tasks. Our

approach falls under the umbrella of meta-learning [62, 63,

51, 52, 1, 50, 67, 70, 4, 42, 17, 58, 71, 22, 40, 34, 60, 28,

68, 53, 48, 8, 33], and is most related to the work on model

parameter estimation [70]. We extend [70] from classifica-

tion to detection scenarios by designing a meta-model that

predicts the parameters of category-specific components for

a detection model in the small-sample size regime.

Object Detection with Limited Supervision. Our few-

shot detection task is an under-explored problem and re-

cently, there has been some initial attempt in this direc-

tion [6, 54, 29]. A regularized fine-tuning method is pro-

posed [6] to transfer a pre-trained detector to the few-shot

task. In [54], distance metric learning is exploited to model

the multi-modal distribution of each class for object detec-

tion. A meta-model is introduced to adjust pre-trained fea-

tures to detect novel classes [29]. Our approach is different

from the prior work in three important ways. (1) Most of the

work [54, 29] simply transforms a few-shot classifier into a

detector, while we simultaneously address few-shot classi-
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Figure 2: Our meta-learning based few-shot detection approach “MetaDet”. We use different meta-strategies to disentangle the learning of

category-agnostic and category-specific parameters in a CNN based detector (e.g., Faster R-CNN). Learning base detector and meta-model

during meta-training (left): we train the large-sample base detector and obtain the category-agnostic parameters; we sample few-shot base

detection tasks, and learn a weight prediction meta-model T that transforms from few-shot to large-sample category-specific parameters.

Learning novel detector during meta-testing (right): we initialize the category-agnostic parameters from the base detector and use T to

predict category-specific parameters. Light color denotes few-shot parameters; dark color denotes large-sample or predicted parameters.

fication and localization. (2) The existing work [6, 54, 29]

either transfers knowledge from large-sample base set or

meta-knowledge from few-shot base detection tasks, but not

both. By contrast, we leverage both of them and show they

are all useful for few-shot detection. (3) We systematically

benchmark modern approaches for few-shot detection and

we significantly outperform the prior work by large mar-

gins. There are other settings of detection with limited su-

pervision, such as weakly-supervised detection [59, 5, 11],

semi-supervised detection [69, 39, 12], and zero-shot detec-

tion [2, 41, 73], which are different from ours.

3. Meta-Learning based Object Detection

Figure 2 illustrates the framework of our meta-learning

based few-shot object detection approach “MetaDet”.

Through learning to learn from a large set of few-shot detec-

tion tasks, which are simulated on base classes with abun-

dant annotated data, MetaDet allows us to rapidly generate a

detector for novel classes using just a few labeled examples.

3.1. Meta­Learning Setup for Few­Shot Detection

We extend the widely-used setup for few-shot classifica-

tion [67, 17] to establish few-shot detection. Specifically,

we have a base category set Cbase and a novel category

set Cnovel, in which Cbase ∩ Cnovel = ∅. Correspondingly,

we have a large-sample base dataset Sbase = {(Ii, yi)},

where {Ii} are input images, and {yi} are the correspond-

ing annotations indicating labels and bounding boxes for

objects of base classes. In k-shot detection, we have a novel

dataset Snovel = {(Ii, yi)}, in which each novel class has

k bounding box annotations. We aim to learn a detection

algorithm on Sbase that is able to generalize to unseen cate-

gories Cnovel. Here, we focus on the detection performance

on Cnovel, which is evaluated on a held-out test set.

Through meta-learning, we are interested in training a

learning procedure (i.e., meta-learner) that guides the gen-

eration of a detector (i.e., learner) for a k-shot detection

task. Meta-learning algorithms achieves this by explicitly

mimicking the few-shot learning scenario and learning from

a collection of k-shot detection tasks sampled from Sbase.

Each of these sampled tasks is termed as an episode. Meta-

learning algorithms thus have two stages: meta-training on

Sbase and meta-testing on Snovel. During meta-training, we

randomly sample k bounding box annotations per class on

Sbase, and train the corresponding detector. The meta-level

knowledge regarding learning detectors across various de-

tection tasks is at the same time aggregated into the meta-

learner. During meta-testing, the base detector is adapted

on Snovel for novel classes via the meta-learner.

3.2. Basic Detector and Meta­Strategies

The goal here is to estimate the parameters θ of a de-

tector desired for Cnovel based on both Sbase and Snovel.

For modern deep CNN based detectors, θ are composed of

class-agnostic and class-specific components [72, 46, 44].

Our framework thus exploits meta-level knowledge about

parameter generation of a detection model and leverages

specialized meta-strategies for these different types of com-

ponents. This parameter-oriented perspective also allows us

to jointly address few-shot classification and few-shot local-

ization in a unified, consistent manner.

Our meta-learning framework applies to a variety of

CNN based detectors. Here we instantiate the framework

with Faster R-CNN [46], because it is a simple detection

model which achieves impressive performance and upon

which the most recent detectors are built. Faster R-CNN

consists of a region proposal network (RPN) for gener-

ating region proposals and a detection network (Fast R-

CNN) [18] which uses these proposals to detect objects. A

backbone convolutional network is shared by these two net-

works and provides convolutional feature maps. RPN iden-

tifies region proposals on the feature maps by predicting
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the probability of an anchor (i.e., reference box) being fore-

ground or background and refining the anchor. These region

proposals are then reshaped using a RoI pooling layer, fed

into the detection network for predicting the object class via

a softmax classifier and producing the bounding box offsets

via per-class bounding box regressors.

Meta-strategy for category-agnostic components. We

treat the convolutional network, RPN, and the bottom lay-

ers of the detection network as category-agnostic compo-

nents, whose parameters are shared by both base and novel

classes. In fact, in the design of Faster R-CNN [46], RPN is

category-agnostic: its box-classification layer only assigns a

binary class label (of being an object or not) to each anchor

without differentiating the specific object classes, and its

box-regression layer regresses from an anchor to a nearby

ground-truth box without considering the class label of the

ground-truth. Such a shared property enables us to transfer

the category-agnostic parameters from the base to the novel

detector or use them as initialization for fine-tuning.

Meta-strategy for category-specific components.

However, we are still faced with the difficulty of learning

the parameters of the category-specific components from

few examples. In Faster R-CNN, the top layer of the

detection network contains category-specific parameters

that are used to perform bounding box classification and

regression for each class. While these parameters are

not directly transferable between base and novel classes,

inspired by [70], the dynamics pattern of how they change

from the parameters trained on a small dataset to those

trained on a large dataset can be characterized by a

generic, category-agnostic transformation. We introduce

a parametrized weight prediction meta-model T to learn

such a transformation through meta-training process.

3.3. Weight Prediction Meta­Model

For a given category c, let w
c,∗

det
denote the class-specific

object detection weights in the last layer of the detection

network learned from the large-sample base dataset Sbase.

Let wc
det

denote the corresponding weights learned from the

k-shot episode dataset sampled from Sbase. The weight pre-

diction meta-model T (·) regresses from wc
det

to w
c,∗

det
in the

model parameter space: w
c,∗

det
≈ T (wc

det
;φ), where φ are

category-agnostic, learned parameters.
Loss function. The same T (·) is applied to any class c.

The meta-objective function for each class in an episode is:

||T (wc

det;φ)− w
c,∗

det||
2 + λ

∑

(x,y)∈RoIc

loss
(

D
(

x; T (wc

det;φ)
)

, y
)

. (1)

The final loss is minimized with respect to φ, which is av-

eraged over all c ∈ Cbase and over wc
det

generated in all

the episodes. ‘loss’ refers to the standard performance loss

used to train the detection network D (e.g., multi-task loss

consisting of bounding box classification and regression

losses), and RoIc denotes the training RoIs labeled with

class c. λ > 0 is the regularization hyper-parameter used

to control the trade-off between the two terms.

Note that the bounding box detection branch contains

two types of detection weights: the RoI classification

weights wc
cls

and the bounding box regression weights wc
loc

.

Here we use the concatenation of the two types of weights,

i.e., wc
dec

= [wc
cls
, wc

loc
]. We thus simultaneously address

few-shot classification and few-shot localization in a uni-

fied way, extending the sole classification in [70]. T (·) can

be implemented as a small fully-connected neural network

and jointly trained with the detector, as shown in Fig. 2.

3.4. Meta­Learning Procedure

The meta-learning procedure consists of two phases:

meta-training on Strain and meta-testing on Snovel.

Stage-wise meta-training. We split the meta-training

procedure into two stages for category-agnostic and

category-specific components, respectively. During the first

stage, we train a large-sample base detector D(·; θ∗) on the

entire dataset Strain in the normal way [46]. This provides

us with the basic detector which will be used for novel

classes and the large-sample parameters w
c,∗

det
of the class-

specific components.

During the second stage, we perform few-shot episode

detection. In each episode, we randomly sample k bound-

ing box annotations per class on Strain. We leverage the

large-sample base detector D(·; θ∗) trained in the first stage

to generate the k-shot detector as D
(

·;
{

θ∗\wc,∗

det
, wc

det

})

.

That is, we freeze the category-agnostic parameters as those

learned in the large-sample setting θ∗\wc,∗

det
and retrain the

category-specific parameters wc
det

from scratch. We use
{

wc
det

, w
c,∗

det

}

together with the k-shot examples to train the

meta-model T (·;φ) based on the meta-objective in Eqn. (1).

Everything is trained end-to-end.

Meta-testing. To train the k-shot novel detector on

Snovel, we initialize its category-agnostic parameters from

the base detector as θ∗\wc,∗

det
, and we randomly initialize its

category-specific parameters wc
det

. Following [70], we use

the meta-model T (·;φ) to predict the desired wc
det

as biased

regularization while fine-tuning the detector. During infer-

ence time, the meta-model is detached, and our detector is

the standard (Faster R-CNN) detector.

4. Experimental Evaluation

We explore the use of our meta-learning based approach

“MetaDet” for few-shot detection tasks. We begin with ex-

tensive evaluation on the PASCAL VOC dataset [14, 13],

benchmarking the performance of CNN based detectors in

the small-sample size regime and addressing variants and

different design choices of MetaDet. We then evaluate on

challenging, large-scale MS-COCO [36], ImageNet [47],

and iNaturalist [65] datasets and compare with state-of-the-

art approaches. We use Faster R-CNN [46] as the detec-
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tor in the most of the experiments. We evaluate in a va-

riety of scenarios, including within-domain, cross-domain,

and long-tailed settings, and investigate different notions of

novel classes, demonstrating the generality of our approach.

4.1. Within­Domain Few­Shot Detection

Following the setting commonly used in few-shot clas-

sification [67, 58], we first consider few-shot detection in

the within-domain scenario. Here we treat each dataset as

a domain. In this setting, a dataset is randomly split into

two non-overlapping portions: one set of base classes with

hundreds or thousands of examples per class and an addi-

tional set of novel classes with a small number of examples

(k) per class. Here, we focus on the performance of novel

classes. We construct similar settings for few-shot detec-

tion on the heavily benchmarked PASCAL VOC [14, 13]

and MS-COCO [36] object detection datasets.

4.1.1 Evaluation and Analysis on PASCAL VOC

Dataset and task. PASCAL VOC [14, 13] contains 20 ob-

ject categories. Following the standard protocol in [18, 46],

training is performed on the union of VOC 2007 and 2012

trainval with a total of 16.5k images and evaluation is on

5k VOC 2007 test images. Consistent with [29], we di-

vide the 20 categories randomly into 15 base classes and 5
novel classes. Our k-shot detection task is to learn a de-

tector for the 5 novel classes from k annotated bounding

box examples per class, where k is set to be 1, 2, 3, 5, and

10. During meta-training, we learn the base detector and

the weight prediction meta-model using the trainval set of

only the base classes. To do so, we sample randomly a col-

lection of k-shot detection tasks on the base classes. Dur-

ing meta-testing, we adapt our base detector guided by the

meta-model to generate the novel detector. We produce ran-

domly 3 different sets of class splits. For each split, we run 5
trials and report the average detection performance (mAP).

Implementation details. Our detector is the standard

Faster R-CNN [46], with VGG16 [56] as the backbone

architecture pre-trained on the ImageNet-1k classification

dataset [47]. The final bounding box detection parame-

ters consist of a 4, 096-d RoI classification parameter vector

wc
cls

and a 4, 096-d bounding box regression parameter vec-

tor wc
loc

for each class. We use a 3-layer fully-connected

network with Leaky ReLU nonlinearity as our weight pre-

diction meta-model T , taking as input the concatenation of

wc
cls

and wc
loc

and predicting their estimated values. λ is

cross-validated. Following [46], each mini-batch has one

random training image. We train the detector and meta-

model using SGD with a momentum of 0.9 and a weight

decay of 0.0005. During meta-training, we first train the

large-sample base detector on the full set of base classes for

6 epochs, with a learning rate of 0.001 which is decreased

by 10 at 5 epochs. We then sample 5, 000 few-shot base de-

tection tasks, and for each task we train the corresponding

bounding box detection parameters with the remaining pa-

rameters frozen to those in the already-trained large-sample

base detector. The meta-model is trained at the same time

for 10, 000 iterations, with a meta-learning rate of 0.0005.

Baselines. We compare against different types of

deep CNN based detection models, including Faster R-

CNN [46], YOLOv2 [44], and SSD [37]. In particular, we

evaluate their variants in the small-sample size regime in

the following scenarios. (1) Training from scratch: we di-

rectly learn a k-shot detector for the 5 novel classes with-

out leveraging the base class examples. (We still pre-train

the feature backbone on ImageNet.) (2) Joint learning: we

learn a detector for all the 20 classes from large amounts of

base training examples and few novel examples. (3) Fine-

tuning transfer: after learning the large-sample detector for

the 15 base classes, we fine-tune it to be a k-shot detector

for the 5 novel classes. The latter two baselines have ac-

cess to the same amount of training data as ours, but are not

meta-learned. In addition, we compare with a recent meta-

learning based few-shot detection approach that reweights

the feature maps from a pre-trained base YOLOv2 detec-

tor [29]. For a fair comparison, we also introduce our meta-

model for the last layer of the YOLOv2 detection network.

Table 1 summarizes the main results on the 5 novel

classes under the 3 different dataset splits. While CNN

based detectors have achieved impressive performance with

a large amount of annotated examples (for example, the

mAP of Faster R-CNN trained on the original full PASCAL

VOC is 73.2% [46]), their performance significantly de-

grades in the few-shot scenario. As expected, directly

training the novel detector from scratch using few exam-

ples leads to very poor performance (e.g., with the mAP

∼ 1%) due to severe over-fitting. Simply joint training

with the base classes cannot mitigate this issue, since the

detectors are largely dominated by those data-rich base

classes. Fine-tuning transfers knowledge from base classes

in a more principled manner and leads to improved perfor-

mance. However, such an improvement is limited, showing

the general difficulty of our few-shot detection task.

By contrast, our MetaDet, regardless of being built

upon Faster R-CNN or YOLO, consistently and signifi-

cantly outperforms all the baselines across different sam-

ple sizes and dataset splits, especially for extremely lim-

ited data. This verifies the effectiveness and generality of

our meta-learning mechanism. Unlike [29] which is also

meta-learned, our approach is able to extract and leverage

parameter-level meta-knowledge that is shared both across

multiple few-shot detection tasks and between few-shot and

large-sample detectors, thus outperforming [29] by a large

margin. In addition, ‘Faster R-CNN + MetaDet’ outper-

forms ‘YOLOv2 + MetaDet’, indicating that the meta-
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Novel Set 1 Novel Set 2 Novel Set 3

Method k=1 2 3 5 10 k=1 2 3 5 10 k=1 2 3 5 10

Faster R-CNN [46] w/

Scratch 0.0 0.2 0.5 2.0 1.7 0.0 0.0 0.7 1.3 1.7 0.0 0.9 0.5 1.8 1.5

Joint 0.3 0.0 1.2 0.9 1.7 0.0 0.0 1.1 1.9 1.7 0.2 0.5 1.2 1.9 2.8

Transfer 9.1 10.9 13.7 25.0 39.5 10.9 13.2 17.6 19.5 36.5 15.0 15.1 18.3 33.1 35.9

YOLOv2 [44, 29] w/

Scratch 0.0 0.3 0.9 0.5 0.9 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.6 0.6 1.2

Joint 0.0 0.0 1.8 1.8 1.8 0.0 0.1 0.0 1.8 0.0 1.8 1.8 1.8 3.6 3.9

Transfer 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4

SSD [37] w/

Scratch 0.0 0.0 0.3 0.9 0.9 0.0 0.0 0.6 0.9 1.0 0.0 0.3 0.6 1.0 1.1

Joint 0.1 0.0 0.4 0.3 1.0 0.0 0.0 0.2 0.8 1.3 0.0 0.5 1.1 2.0 2.2

Transfer 8.2 8.9 11.3 19.7 28.8 13.2 9.0 13.2 21.3 35.5 15.6 13.4 16.2 28.6 36.2

Meta-Learning YOLOv2 + FeatReweight [29] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3

YOLOv2 + MetaDet (Ours) 17.1 19.1 28.9 35.0 48.8 18.2 20.6 25.9 30.6 41.5 20.1 22.3 27.9 41.9 42.9

Faster R-CNN + MetaDet (Ours) 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

Table 1: k-shot detection performance (mAP) on the 5 novel classes under 3 different splits of PASCAL VOC. We systemically evaluate

the variants of modern detectors in the small-sample size regime. Our MetaDet, regardless of being built upon Faster R-CNN or YOLO,

consistently outperforms all the baselines. In particular, it is superior to a recent meta-learning based few-shot detection approach [29].

learned two-stage detection network tends to generalize bet-

ter for few-shot detection, which might benefit from explicit

learning of class-agnostic RPN.

Note that due to ImageNet pre-training, we have actually

seen global image-level labels of the novel classes. We also

run experiments where we remove all the classes from Im-

ageNet that are contained in PASCAL. We use this reduced

ImageNet for pre-training and find that the performance of

all methods only slightly drops (∼ 0.5% mAP drop), but

our approach still significantly outperforms the baselines.

Ablation studies. In Tables 2 and 3 we evaluate the con-

tributions of different factors in our approach to the results.

Input to T : few-shot classification vs. few-shot detec-

tion. In Table 2, we analyze the impact of the input to our

weight prediction meta-model T : only the RoI classifica-

tion weights wc
cls

(‘cls’), only the bounding box regression

weights wc
loc

(‘loc’), and the concatenation of both weights

(‘cls’+‘loc’). For those category-specific weights which are

not used as input to T , we directly learn them on the train-

ing data. We can see that all the three types of inputs are

superior to the baselines without using T reported in Ta-

ble 1. This shows that parameter-level meta-learning, in

general, enables us to generate the detector parameters for

novel classes in a sample-efficient way. More importantly,

‘cls’+‘loc’ consistently outperforms its variants, indicating

the importance of addressing both classification and local-

ization for few-shot detection. And our approach provides

such a simple, coherent mechanism, in which we do not

need to tackle the two problems using separate techniques.

Meta-strategies: category-specific vs. category-agnostic

bounding box regression. Our approach designs different

meta-strategies for category-agnostic and category-specific

components, and we treat the bounding box regression

weights in the detection branch as category-specific. An

alternative is to consider them as being category-agnostic,

train them on the base classes, and use as initialization for

Novel Set 1 Novel Set 2 Novel Set 3

Method k = 3 10 k = 3 10 k = 3 10

Meta-model w/ cls 28.0 47.7 26.1 41.8 26.9 43.1

Meta-model w/ cls, loc-agn 28.5 48.2 26.8 42.2 27.3 43.3

Meta-model w/ loc 28.8 48.4 27.2 42.6 27.9 43.9

Meta-model w/ cls+loc 30.2 49.6 27.8 43.0 29.4 44.1

Table 2: Ablation (mAP) on the meta-strategies regarding

category-specific components. (1) Input to meta-model T : ‘cls’

is RoI classification weights, ‘loc’ is bounding box regression

weights, and ‘cls’+‘loc’ is both weights. (2) ‘loc-agn’: training

category-agnostic bounding box regression weights. Our strategy,

treating both weights as category-specific and using both as input

to T , performs the best.

Novel Set 1 Novel Set 2 Novel Set 3

Method k = 3 10 k = 3 10 k = 3 10

Meta-model w/

1-layer, None 28.9 48.5 26.3 41.9 28.2 43.0

2-layer, ReLU 29.4 48.9 26.9 42.3 28.7 43.4

2-layer, Leaky ReLU 29.6 49.1 27.2 42.4 28.9 43.6

3-layer, ReLU 29.8 49.3 27.3 42.5 29.0 43.8

3-layer, Leaky ReLU 30.2 49.6 27.8 43.0 29.4 44.1

4-layer, ReLU 29.6 49.2 27.5 42.4 28.9 43.6

4-layer, Leaky ReLU 29.5 49.0 27.1 42.2 28.7 43.5

Table 3: Ablation (mAP) on the structure of the weight prediction

meta-model T . ‘3-layer, Leaky ReLU’ performs the best, but in

general T is robust to specific implementation choices.

fine-tuning on the novel classes. Table 2 shows the perfor-

mance of dealing with few-shot localization in such a way

(‘loc-agn’). While outperforming the baselines in Table 1,

it is worse than our category-specific counterpart. This indi-

cates that our meta-strategies effectively identify the intrin-

sic generality and specialization within a detection model.

Structure of T . In Table 3, we compare different im-

plementations of our weight prediction meta-model T : as

a simple affine transformation, or as a fully-connected net-

work with 2 ∼ 4 layers. Since Leaky ReLU is used in [70],

we evaluate both ReLU and Leaky ReLU as activation func-

tion in the hidden layers. This study shows that a 3-layer

network with Leaky ReLU achieves the best mAP. We use
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this design of T in all subsequent experiments.

Qualitative visualizations. Figure 7 shows examples of

10-shot detection test results.

4.1.2 Evaluation on MS-COCO

Dataset and task. We now evaluate on a more challenging

MS-COCO dataset [36]. This dataset involves 80k train-

ing, 40k validation, and 20k test images over 80 object cat-

egories. Consistent with [29], we use 5k images from the

validation set for evaluation, and the remaining trainval im-

ages for training. We choose the 20 categories that also

present in PASCAL VOC as novel classes and the remain-

ing 60 categories as base classes. The k-shot detection task

is constructed in a similar way as before, and k is set to

be 10 and 30. Our detector is Faster R-CNN trained from

scratch. In this setting, we might have seen novel classes

as background without any labels. Following the standard

evaluation metric on COCO [46, 37], we report the mAP

averaged over different IoU thresholds from 0.5 to 0.95.

Comparison with state-of-the-art. Table 4 summarizes

the results. Similar to Section 4.1.1, we compare against the

top performing baselines of fine-tuning transfer with Faster

R-CNN [46] and YOLOv2 [44]. We also compare with the

meta-learning approach [29]. Again, our MetaDet consis-

tently and significantly outperforms all the baselines for dif-

ferent number of shots k. In addition, comparing with the

PASCAL VOC results in Table 1, the detection performance

on the challenging COCO benchmark drops, showing the

difficulty of few-shot detection in realistic scenarios.

4.2. Cross­Domain Few­Shot Detection

Thus far, we have experimented with a widely-used set-

ting in which we learn from base classes to detect novel

classes in the same dataset. In a more practical scenario,

we need to evaluate the cross-domain generalization abil-

ity [27, 7]. Hence, we use a source dataset as base and an-

other target dataset as novel with two disjoint sets of classes.

Such cross-domain scenarios allow us to understand the ef-

fects of domain shifts to few-shot detection approaches.

COCO → PASCAL. We use the 60 categories on

COCO as base classes as in Section 4.1.2, and use all the 20
categories on PASCAL as novel classes. We focus on 10-

shot detection of the 20 novel classes [29]. Figure 3 shows

that our MetaDet achieves the best performance. Moreover,

comparing with the PASCAL within-domain results in Sec-

tion 4.1.1, we notice that the performance on the PASCAL

novel classes becomes worse in the cross-domain setting,

despite that we have more data from base classes. This in-

dicates that, to fully address few-shot detection in practice,

effectively overcoming domain shift issues is critical, which

is an interesting direction for further investigation.

COCO → ImageNet. We now evaluate on the larger-

27

29
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35

Faster R-CNN
w/ transfer

YOLOv2 w/
transfer

FeatReweight MetaDet
(Ours)
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Figure 3: 10-shot cross-domain detection performance (mAP) on

the 20 novel classes under COCO → PASCAL. Our MetaDet

significantly outperforms all the baselines, including the meta-

learning based approach (FeatReweight) [29].
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Figure 4: k-shot cross-domain detection performance on the 50

novel classes under COCO → ImageNet. Our MetaDet sig-

nificantly outperforms existing transfer (LSTD) [6] or metric

(RepMet) learning [54] based few-shot detection approaches.

scale, few-shot detection benchmark in [6]. The base

classes are the entire 80 categories on COCO, and the novel

classes are 50 non-overlapping categories selected on Ima-

geNet2015 [47]. k is set to be 1, 5, and 10. The test set con-

sists of 100 images per novel class on ImageNet2015. Fol-

lowing [54], we train our detector on COCO from scratch.

Comparison with state-of-the-art. In addition to Faster

R-CNN [46] and SSD [37], we compare against two re-

cent, state-of-the-art few-shot detection approaches on this

benchmark. (1) LSTD [6]: a regularized fine-tuning method

that transfers a pre-trained detector to few-shot target tasks.

(2) RepMet [54]: a distance metric learning method that

models category multi-modal distribution.

Figure 4 shows that our MetaDet consistently outper-

forms these approaches by large margins. In particular, our

MetaDet, built upon Faster R-CNN with VGG16, outper-

forms RepMet which uses a more powerful detector archi-

tecture (i.e., the FPN backbone [35] in its deformable con-

volutions variant [10]). This demonstrates that leveraging

parameter-level meta-knowledge helps address the domain

shift issues. Moreover, RepMet simply introduces a few-

shot classifier into a detector. Our superior performance

again shows the importance of jointly tackling few-shot

classification and localization for few-shot detection.

4.3. Long­Tail Detection

To further show the generality of our approach in real-

world scenarios, we consider using it to detect objects from
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Avg. Precision, IoU Avg. Precision, Area Avg. Recall, #Dets Avg. Recall, Area

Method 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

k=10

Faster R-CNN [46] w/ transfer 3.3 7.8 1.9 0.8 2.2 6.7 8.1 10.8 10.9 1.3 5.2 21.7

YOLOv2 [44, 29] w/ transfer 3.1 7.9 1.7 0.7 2.0 6.3 7.8 10.5 10.5 1.1 5.5 20

FeatReweight [29] 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2

MedaDet (Ours) 7.1 14.6 6.1 1.0 4.1 12.2 11.9 15.1 15.5 1.7 9.7 30.1

k=30

Faster R-CNN [46] w/ transfer 7.8 17.8 6.0 0.3 4.1 13.9 12.2 15.9 15.7 1.1 8.0 30.9

YOLOv2 [44, 29] w/ transfer 7.7 16.7 6.4 0.4 3.3 14.4 11.7 15.3 15.3 1.0 7.7 29.2

FeatReweight [29] 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5

MetaDet (Ours) 11.3 21.7 8.1 1.1 6.2 17.3 14.5 18.9 19.2 1.8 11.1 34.4

Table 4: k-shot detection performance on the 20 novel classes of COCO, evaluated under COCO’s metric. Our MetaDet significantly

outperforms all the baselines. In particular, it is superior to a recent meta-learning based approach [29].

42

48

54

60

AP AP50 AP75 AR1 AR10

Faster

R-CNN

MetaDet

(Ours)

Figure 5: Long-tail detection performance, Average Precision

(AP) and Average Recall (AR), on all classes of iNaturalist. AP,

AP50, and AP75 denote AP@[IoU=.50:.05:.95], AP@[IoU=.50],

and AP@[IoU=.75], respectively; AR1 and AR10 denote AR

given 1 detection and 10 detections per image, respectively. Our

MetaDet shows its generality in realistic long-tail detection.

long-tailed, imbalanced datasets, in which a few dominant

(‘head’) classes claim most of the examples, while most of

the other (‘tail’) classes are represented by relatively few

examples [74, 71, 9]. We treat the data-rich head cate-

gories as base classes and the data-poor tail categories as

novel classes. Our approach can be extended by learning

the meta-model on the head and then transferring it to the

tail. Note that different from the previous experiments, here

we report the detection performance over all classes.

Evaluation on iNaturalist. We evaluate on iNatural-

ist [65], a fine-grained, long-tailed species dataset. Its de-

tection benchmark contains 2,854 classes. We use the de-

tection metric in [65], and evaluate on the validation im-

ages that contain a single instance as in [65]. We use a

fixed head and tail split, selected by cross-validation, and

compare with Faster R-CNN [46, 65]. We use pre-training

on ImageNet, which might see certain coarse concepts like

bird. However, we have never before seen the fine-grained

bird species. Figure 5 summarizes the performance aver-

aged over all classes and Figure 6 details the per-class per-

formance. The performance improvement of our approach

mainly comes from that on tail classes, showing that we

learn accurate few-shot models. Meanwhile, our approach

effectively deals with the significantly imbalanced distribu-

tion, thus remaining accurate on the head (base) classes.
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Figure 6: Per-class performance of our MetaDet on iNaturalist. Y-

axis (left) and the blue curve: long-tail distribution. Y-axis (right)

and the orange curve: AP improvement of our MetaDet relative to

the Faster R-CNN baseline. Our MetaDet significantly improves

detection in the tail, in particular by large margins for tail classes

with extremely limited data, while remaining accurate in the head.

Figure 7: Examples of 10-shot detection results of our MetaDet

on novel classes of PASCAL VOC.

5. Conclusion

In this work, we have presented an approach to few-

shot detection for novel classes that simultaneously tackles

few-shot classification and localization in a unified, coher-

ent way via meta-learning. We propose specialized meta-

strategies to disentangle the learning of category-agnostic

and category-specific components in a CNN based detec-

tion model. Our approach achieves state-of-the-art detec-

tion performance in a variety of realistic scenarios, includ-

ing within-domain, cross-domain, and long-tailed settings,

and under different notions of novel classes.
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