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Abstract

Not all the human body parts have the same degree of

freedom (DOF) due to the physiological structure. For ex-

ample, the limbs may move more flexibly and freely than the

torso does. Most of the existing 3D pose estimation meth-

ods, despite the very promising results achieved, treat the

body joints equally and consequently often lead to larger

reconstruction errors on the limbs. In this paper, we pro-

pose a progressive approach that explicitly accounts for the

distinct DOFs among the body parts. We model parts with

higher DOFs like the elbows, as dependent components of

the corresponding parts with lower DOFs like the torso,

of which the 3D locations can be more reliably estimated.

Meanwhile, the high-DOF parts may in turn impose a con-

straint on where the low-DOF ones lie. As a result, parts

with different DOFs supervise one another, yielding physi-

cally constrained and plausible pose-estimation results. To

further facilitate the prediction of the high-DOF parts, we

introduce a pose-attribute estimation, where the relative lo-

cation of a limb joint with respect to the torso, which has

the least DOF of a human body, is explicitly estimated and

further fed to the joint-estimation module. The proposed ap-

proach achieves very promising results, outperforming the

state of the art on several benchmarks.

1. Introduction

The unique physiological structure of a human body re-

sults in that different body parts may have different degrees

of freedom (DOFs). For example, the motion range of a

human wrist is significantly broader than that of a shoul-

der. Such distinct DOFs further lead to the varying levels of

difficulties when it comes to 3D pose estimation, for which

the goal is to predict the 3D locations of human body joints

from one or multiple images.

Most of the existing 3D pose estimation methods [48,
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Figure 1. Illustration of the proposed approach. The 2D joint

locations along with the pose attributes are first estimated using a

multi-task network, and then fed as input to the 3D pose estima-

tion network that explicitly models the bi-directional dependencies

among body parts of different DOFs. Specifically, the high-DOF

body parts are treated as dependent components of low-DOF ones,

and in turn, provide a constraint on where the low-DOF ones lie.

47, 49, 14, 17, 7, 22, 33, 45, 21, 5, 31], despite the im-

pressive state-of-the-art performances achieved, have over-

looked such DOF distinctions among the body parts and

have treated them equally during the learning process. This

consequently leads to the often larger reconstruction errors

on the more flexible and thus more challenging body parts,

such as the limbs.

In this paper, we propose a dedicated approach that ex-

plicitly utilize the DOF differences among body parts to fa-

cilitate 3D pose estimation (see Fig. 1). We categorize the

body parts into three groups based on the increasing levels

of DOFs: the torso, the proximal limb joints including the

head, the elbows and the knees, and the distal limb joints

including the wrists and ankles. By such categorization, we
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explicitly model the location of a higher-DOF joint like an

elbow, as a dependent variable of a lower-DOF one like the

torso in a progressive manner, where the latter can be in

most cases estimated more reliably. In turn, the locations of

the higher-DOF joints may constrain those of lower-DOF

ones and potentially revise the prediction errors. Such bi-

directional and progressive dependencies enable that body

parts of various DOFs supervise one another, yielding phys-

ically plausible 3D pose-estimation results.

To further take advantage of image evidences for the

dependency modeling, we introduce pose attribute, which

captures the relative location of a limb joint with respect to

the torso, the body part with the least DOF. Each limb joint

may be assigned one of three pose attributes, front, back,

and on-plane, describing its offset to the torso. Given an

input image, these attributes are estimated together with the

2D pose via a multi-task network, and are further fed to the

succeeding 3D pose module that explicitly accounts for the

aforementioned progressive dependencies. In other words,

the estimated pose attributes, being an input to 3D pose es-

timation, provide an explicit and strong prior of where the

limb may lie, benefiting the downstream part-dependency

modeling. Unlike the regression-based depth estimation

that often yields deviations, which may further propagate

to the 3D pose estimation and deteriorate the results, the

three-class pose-attribute prediction, as demonstrated in our

experiments, turns out to be in most cases reliable, provid-

ing advantageous image cues.

Our main contributions are thus summarized as follows.

• By categorizing human body parts into three varying

levels of DOFs, we explicitly model the bi-directional

dependencies among the body parts, which supervise

one another and together yield the physically con-

strained and plausible 3D pose estimation.

• We introduce for each limb joint a pose attribute, de-

picting the offset of the joint from the torso. Estimated

together with the 2D pose via a multi-task network, the

pose attribute provides an explicit prior of the joint’s

location and further facilitates the succeeding 3D pose

estimation.

We test our approach on benchmarks including Hu-

man3.6M [11] and MPI-INF-3DHP [15], and demonstrate

that it consistently achieves very encouraging results, out-

performing the state of the art. Furthermore, we show that

even in the absence of 3D annotations and pose-attribute

ground truths, by adopting an unsupervised domain adapta-

tion approach, our method can be readily applied to in-the-

wild images and achieve promising performances.

2. Related work

We briefly review here the two main streams of 3D pose

estimation methods, the one-stage approaches and the two-

stage ones, and then look at the methods that explicitly uti-

lize additional image cues. Finally we outline the differ-

ences of the proposed method with respect to the prior ones.

One-stage approach. One-stage approaches directly in-

fer 3D human poses from input images. Tekin et al. [32]

trained an auto-encoder to learn a latent pose representation

and joint dependencies in a high-dimensional space, then

adopted the decoder at the end of the convolutional neural

network to infer 3D poses. Pavlakos et al. [22] proposed a

volumetric representation for 3D joints and used a coarse-

to-fine strategy to refine the prediction iteratively. Rogez et

al. [27, 28] used ConvNets to classify each image in the ap-

propriate pose class. Nie et al. [19] proposed to predict the

depth on joints from global and local image features.

All the above methods require images with correspond-

ing 3D ground truths. Due to the lack of in-the-wild im-

ages with 3D annotations, these approaches tend to pro-

duce unsatisfactory results on inputs with domain shifts. To

this end, Zhou et al. [45] proposed a weakly-supervised ap-

proach to utilize the large-scale in-the-wild 2D pose data.

Dabral et al. [5] improved this weakly-supervised setup by

using two additional losses to restrict the predicted 3D pose

structure. Yang et al. [41] considered the 3D pose estimator

as a generator and used an adversarial learning approach to

generate indistinguishable 3D poses. Sun et al. [31] used

soft argmax to regress 2D/3D poses directly from images.

Despite the success of this strategy, a main flaw of these

methods lies in that they tend to fail when the height of the

subject is considerably different from those in the training

set, since they fixed the scale of 3D poses to construct 3D

poses from 2D poses and depths.

Two-stage approach. Another widely used strategy is to

divide the 3D pose estimation task into two decoupled sub-

tasks: 2D pose detection, followed by 3D pose inference

from 2D poses. These methods comprise a 2D pose detec-

tor and a subsequent optimization [48, 47, 49] or regres-

sion [4, 3, 17, 30, 36, 14, 19, 7, 12] step to estimate 3D pose

. In these methods, the 2D pose and 3D pose estimation

stages are separated, making these 3D pose estimators gen-

eralize well on outdoor images. The most straightforward

approach is to represent 3D poses as linear combinations of

models learned from training data [48, 47, 49]. This method

is based on dictionary learning and has to run an optimiza-

tion for each example, making it very time-consuming in

both training and evaluation. Specifically, Chen et al. [4]

and Yasin et al. [42] used a pose library to retrieve the near-

est 3D pose given the corresponding 2D pose prediction.

Recently, with the availability of large-scale 3D pose

datasets, deep-learning based 2D-to-3D pose regression

methods have made significant progress. For instance,

Moreno-Noguer [17] used an hourglass network to regress

the 3D joints distance matrices instead of 3D poses because
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they found that the distance matrix representation shows a

more correlated pattern than Cartesian ones and suffer from

smaller ambiguities. Notably, Martinez et al. [14] achieved

state-of-the-art results using a simple multi-layer percep-

tron with residual blocks [9] to regress 3D poses directly

from 2D poses. Sun et al. [30] re-parameterized the pose

presentation to use bones instead of joints and proposed a

structure-aware loss. Lee et al. proposed a long short-term

memory (LSTM) architecture to reconstruct 3D depth from

the centroid to edge joints through learning the joint interde-

pendencies. However, as 2D-to-3D mapping is an ill-posed

problem, methods along this line are prone to ambiguities in

the 2D-to-3D regression at the second stage of this pipeline,

if no addition image cues are utilized.

Additional image cues. The development in computer vi-

sion domain makes it possible to learn various image cues

from images [37, 38, 44, 24]. The idea of pose attributes

was firstly explored by Pons-Moll et al. [23]. In their work,

they proposed an extensive set of posebits representing the

boolean geometric relationships between body parts, and

designed an algorithm to select useful posebits for 3D pose

inference. Recently, many researchers have investigated ap-

proaches that combine 2D pose detection techniques and the

power of CNN to extract supplementary information from

images to enhance 3D pose estimation. Tekin et al. [33] pro-

posed a two-stream network with trainable fusion to fuse 2D

heat maps and image features to obtain the final 3D pose es-

timation. Pavlakos et al. [21] augmented the LSP and MPII

2D pose datasets with ordinal depth annotations, which are

used as weak supervision to learn the depth of each joint.

Zhou et al. [45] used a CNN to predict 2D joint locations

and the corresponding depth, then rescaled the predictions

to a pre-defined canonical skeleton. All these approaches

tried to learn depth information from single images. How-

ever, an image is a two-dimensional representation itself

and does not carry depth information, making it challeng-

ing to learn depth from images. Also, depth is highly sensi-

tive to camera parameters, such as translation and rotation,

making the depth prediction of human joints more difficult.

Our approach. By explicitly categorizing body parts into

varying levels of DOFs, which have been largely over-

looked in prior methods, the proposed approach treats the

higher-DOF parts as dependent components of the lower-

DOF ones, and conversely, constrains the latter using the

former. Such bi-directional 3D dependency modeling is fur-

ther facilitated by a dedicated and newly-introduced pose

attribute estimation, which predicts the relative location of

a limb joint with respect to the torso.

3. Method

Different body parts have varying levels of DOFs due to

the unique physiological structure of a human body. To see

this difference, we use the ground truths of the Human3.6M

dataset [11], to compute, for each joint location, its standard

deviation (STD), which gives us a coarse description on the

motion range of the joint. We show the results in Tab. 1,

where, as expected, the distal limb joints including wrist

and ankle have the largest STDs, followed by the proximal

limb joints including elbow and knee. The joints on the

torso, like spine and hip, yield the smallest STDs.

Such DOF differences among body joints lead to the dif-

ferent levels of challenges in terms of pose estimation, and

further result in estimation results of diverse qualities, es-

pecially those obtained by conventional methods that treat

all the parts equally. For example, as shown in Tab. 6,

the method of [14] produces more accurate predictions for

joints on the torso and proximal joints on limbs but poorer

ones for distal joints.

To this end, we categorize the body joints into three lev-

els of DOFs, from low to high: torso, proximal limb joints,

and distal limb joints. We then explicitly model the higher-

DOF joints as dependent components of the low-DOF ones

that are easier to estimate, and in turn, enforce the former to

impose physical constraints on the latter. To aid the learn-

ing of this bi-directional dependency, we introduce pose at-

tribute to measure the relative location of a limb joint with

respect to the torso, the body part that can be in most cases

reliably estimated. Unlike the regression-based depth esti-

mation that is often prone to deviations, the proposed pose

attribute estimation is taken to be a much less demanding

classification problem, where one of the only three labels,

front, back, and on-plane, is assigned to each limb joint.

More specifically, our 3D pose estimation follows a two-

step strategy, as depicted in Fig. 2. In the first step, we

adopt a multi-task network to estimate the 2D pose and the

proposed pose attribute, both of which are together fed into

another network to model the bi-directional dependency for

3D pose estimation in the second step. These two networks

are connected via soft argmax layers [43, 35, 13, 31], so

that the network training is end-to-end. In what follows, we

provide more details on the two networks.

3.1. Multi­task network

The multi-task network, as discussed, handles simultane-

ously 2D pose estimation and pose attribute learning. In re-

cent years, many network architectures have been proposed

for 2D pose estimation and have achieved encouraging re-

sults [39, 18, 10, 40, 31]. Here, we adopt the state-of-the-art

Joint Hip Spine Thorax Shoulder Head

STD (mm) 68.5 57.8 109 127 140

Joint Elbow Knee Wrist Ankle Avg.

STD (mm) 195 188 240 227 150

Table 1. The standard deviation of the 3D locations of each joint,

obtained using the ground-truth annotations of the Human3.6M

training set.
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Figure 2. The network architecture of our method. It consists of two parts, a multi-task network that learns 2D poses and attributes from

images and a progressive 3D pose estimation network. The multi-task network is trained on the mixture of MPII and Human3.6M datasets.

As there are no 3D annotations available in MPII, we adopt an unsupervised domain adaptation method [8] to help the network learn

domain-independent features for attribute prediction, so that the network can predict reasonable attributes for in-the-wild images in the

absence of attribute supervision (see Section 3.1.2 for more detail). The 3D pose network takes as input the estimated 2D poses and pose

attributes, and explicitly models the bi-directional dependencies among the three groups of body parts of different DOFs. The final 3D

pose estimation is the concatenation of the three group predictions.

stacked hourglass backbone, as done in many other meth-

ods [14, 45, 5, 7, 21, 41], to be our multi-task architecture,

following the network design proposed by Zhou et al. [45].

As the pose attributes are highly related to the locations of

joints, and a pretrained 2D pose detector can act as a reli-

able joint feature extractor, it is a natural idea to reuse the

feature maps in the 2D pose detector to ease pose attribute

learning.

3.1.1 2D pose detection

Many previous 3D pose estimation methods [14, 7, 12]

fine tune a pretrained 2D pose detector on the 3D pose

dataset like Human3.6M to obtain the pose estimation re-

sults. Since the images in 3D pose datasets are captured in

an indoor lab environment with several subjects, the diver-

sity of image backgrounds, clothing, skin color and so on, is

very limited compared to the 2D pose datasets. As a result,

the generalization ability of the model could deteriorate af-

ter fine-tuning, limiting the application of the pose detector

on real-world images.

Here, we train our 2D pose detector from scratch using a

mixture of images from both 2D pose and 3D pose datasets.

In each training batch, half of the examples are randomly

sampled from a 2D pose training dataset, and the other from

a 3D one. Through this strategy, the 2D pose detector could

achieves high performance on both of the 2D and 3D pose

dataset. In other words, the 2D pose detector has good gen-

eralization capability. Moreover, the mixed training strat-

egy also helps to learn pose attributes, as shown in the ex-

periments (see Tab. 4), possibly due to the mixed trained

network could learn better human keypoint features. The

mixed training strategy is essential in our method. On one

hand, it helps to train a 2D pose detector with good gener-

alization ability. On the other hand, it is also beneficial to

the training of the pose attribute learning sub-network by

providing better image features.
Let us use Mn to denote the ground-truth 2D pose heat

map of joint n, and use M̂n to denote that of the prediction.
The loss function for 2D pose detection is taken to be

L2D =
1

N

∑

n

MSE(M̂n −Mn), (1)

where N is the total number of joints.

3.1.2 Pose attributes learning

To ease the learning and inference of 3D limb joints, we

introduce pose attribute as an additional input for 3D pose

estimation. The main motivation of introducing such an at-

tribute lies in that we aim to encode more visual cues, to-

gether with the 2D estimated poses, into the 3D estimation;

meanwhile, such visual cues should be estimated reliably.

To this end, we take pose attribute to be a three-class catego-

rization of the relative location of a limb joint with respect

to the torso.

Specifically, we define a torso plane to be the one where

five body parts lie: left and right shoulder, left and right

hip, and the pelvis. In practice, this plane is regressed us-

ing Orthogonal Distance Regression, where the sum of the

Euclidean distances of the five points to the plane is mini-

mized. We then compute the Euclidean distances between

the obtained torso plane and the joints on the four limbs,

including left and right elbow, left and right wrist, left and

right knee, left and right ankle, as well as the head. Based

on the derived distance, a predefined threshold, as well as
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the side of the plane where the joint lies, we assign to each

join one of the three labels, front, back, and on-plane. The

joints with distances smaller than the threshold are taken to

be on-plane.

Let pi denote the ground-truth probability distribution of
the pose attribute on joint i, and let p̂i denote the estimated
one. Also, let J = {l-Elbow, l-Wrist, r-Elbow, r-Wrist,
l-Knee, l-Ankle, r-Knee, r-Ankle, head} denote the set of
limb joints. Our model predicts all the nine attributes simul-
taneously with a single network, for which a multi-output
cross entropy loss is adopted for training:

Lattr =
1

|J |

∑

i∈J

CrossEntropy(p̂i, pi), (2)

where |J | denotes the cardinality of J .

When training on 2D datasets without 3D annotations,

however, we have no attribute supervisions available. To

deal with this problem, we treat the 2D and 3D training ex-

amples as images from different domains, and adopt an un-

supervised domain adaptation method [8] to help the multi-

task network to generate domain-independent features for

attribute prediction. A classifier is trained to distinguish

the domain of the input based on the features to be fed

into the attribute predictor, while the multi-task network is

trained to fool the domain classifier by generating domain-

independent features.

Let us denote the ground truth probability distribution of
domain with q and the corresponding prediction with q̂, the
loss function for the domain classifier is taken to be

Ldomain = CrossEntropy(q̂, q). (3)

Specifically, we adopt a gradient reversal layer [8] to

connect the multi-task network and the domain classifier.

In the forward propagation, the gradient reversal layer acts

as an identity function, while in the backward one, it mul-

tiplies the gradient by −λ, where λ > 0. As a result,

the parameters in the multi-task network are updated in a

way to increase the loss of the domain classifier, which

means the CNN tries to learn domain-independent features.

In the ideal case, the accuracy of the domain classifier is

50%, which means attribute features extracted by the multi-

task network is not distinguishable at all, so it is domain-

independent. An attribute predictor trained on this domain-

independent features is also domain-independent. The ex-

periment, as will be demonstrated in Tab. 4, gives strong

support to the domain adaptation method above. The at-

tribute predictor achieves an accuracy of 84.0% when using

this domain adaptation method, and 82.7% without it. The

attribute prediction accuracy on the validation set of MPI-

INF-3DHP dataset is 70.1% without using any training data

from this dataset, which also demonstrates the effectiveness

of the domain adaptation method.

3.2. 3D pose estimation network

The 3D pose network takes as input the estimated 2D

poses and pose attributes, and explicitly models the bi-

directional dependencies among the body parts of different

DOFs to produce the final 3D pose estimation. By catego-

rizing the joints into three groups, the torso, the proximal

limb joints including the head, the elbows and the knees,

and the distal limb joints including the wrists and ankles,

we allow the locations of the higher-DOF groups to be de-

pendent variables of those of the lower-DOF ones, and in

turn, constrain the latter using the former.
Specifically, such bi-directional dependency is achieved

via a two-block network architecture, as depicted in Fig. 2.
Each block models the body parts dependency from one of
the two directions. Let us denote the 3D joint locations in
the three groups as Y1, Y2 and Y3. In Block-I, the locations

of joints in the lowest-DOF group, Ŷ11, are inferred from the
image evidences learned by the multi-task network, using a
basic regression component G11(·; θ11). The prediction re-

sults Ŷ11, due to their low DOF, are usually plausible. The

locations of joints Ŷ12 and Ŷ13 in the higher-DOF groups,
are estimated from both the image evidences and their de-
pendence upon the predictions of lower-DOF groups. For
Block-I, we therefore have,







Ŷ11 = G11(X; θ11),

Ŷ12 = G12(X, Ŷ11; θ12),

Ŷ13 = G13(X, Ŷ12, Ŷ11; θ13),

(4)

where X denotes the image evidences, Gij denotes the net-

work module that regresses group j in block i, and θij rep-

resents the learnable parameters in Gij .
In Block-II, we enforce the derived high-DOF parts to

constrain where the low-DOF ones may lie. In other words,
such dependency is modeled in a reversed direction as the
one in Block-I. We write,







Ŷ21 = G21(X, Ŷ12, Ŷ13; θ21),

Ŷ22 = G22(X, Ŷ21, Ŷ13; θ22),

Ŷ23 = G23(X, Ŷ21, Ŷ22; θ23),

(5)

where, again, Ŷij , Gij , and θij respectively denote recov-

ered pose locations, network module, and learnable param-

eters.
The final 3D pose prediction of the Block-s, Ŷs, is the

concatenation of all the body parts. The loss function is
taken to be,

L3D =
∑

s∈{1,2}

|Ŷs − Ys|. (6)

Here we choose the L1 loss over L2 as the former shows

consistent better performances in our experiments.

4. Experiments

In this section, we first introduce the datasets and proto-

cols we used, then provide our implementation details, and
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Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walk WalkT Avg.

Tekin et al. [34] 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0

Zhou et al. [48] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Du et al. [6] 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Zhou et al. [46] 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3

Chen et al. [4] 89.9 97.6 90.0 107.9 107.3 139.2 93.6 136.1 133.1 240.1 106.7 106.2 114.1 87.0 90.6 114.2

Tome et al. [36] 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 173.9 85.0 85.8 86.3 71.4 73.1 88.4

Rogez et al. [28] 76.2 80.2 75.8 83.3 92.2 105.7 79.0 71.7 105.9 127.1 88.0 83.7 86.6 64.9 84.0 87.7

Pavlakos et al. [22] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Nie et al. [19] 90.1 88.2 85.7 95.6 103.9 103.0 92.4 90.4 117.9 136.4 98.5 94.4 90.6 86.0 89.5 97.5

Tekin et al. [33] 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 74.3 69.7

Zhou et al. [45] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9

Martinez et al. [14] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Sun et al. [30] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Fang et al. [7] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Rhodin et al. [26] - - - - - - - - - - - - - - - 66.8

Yang et al. [41] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Pavlakos et al. [21] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Lee et al. [12] 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 68.4 47.5 45.6 55.8

Dabral et al. [5] 46.9 53.8 47.0 52.8 56.9 63.6 45.2 48.2 68.0 94.0 55.7 51.6 55.4 40.3 44.3 55.5

Rogez et al. [29] 50.9 55.9 63.3 56.0 65.1 70.7 52.1 51.9 81.1 90.7 64.7 54.6 61.1 44.7 53.7 61.2

Ours 44.7 48.9 47.0 49.0 56.4 67.7 48.7 47.0 63.0 78.1 51.1 50.1 54.5 40.1 43.0 52.6

Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walk WalkT Avg

Akhter & Black [1] 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1

Ramakrishna et al. [25] 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3

Zhou et al. [47] 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7

Bogo et al. [3] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3

Moreno-Noguer [17] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Pavlakos et al. [22] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9

Martinez et al. [14] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 59.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. [7] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Pavlakos et al. [21] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Lee et al. [12] 38.0 39.1 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 56.4 33.9 38.5 46.2

Dabral et al. [5] 32.8 36.8 42.5 38.5 42.4 49.0 35.4 34.3 53.6 66.2 46.5 34.1 42.3 30.0 39.7 42.2

Ours 33.6 38.1 37.6 38.5 43.4 48.8 36.0 35.7 51.1 63.1 41.0 38.6 40.9 30.3 34.1 40.7

Table 2. Detailed results on Human3.6M under Protocol #1 and #2. All the numbers recorded in the table refer to the mean per joint

position errors (MPJPE) in millimeter. The results of all approaches are taken from the original papers. Our method outperforms all

previous state-of-the-art methods, in terms of the average of the results.

next show both the quantitative and qualitative results as

well as the ablation studies. Additional results can be found

in our supplementary material.

4.1. Datasets and protocols

We evaluate our method on the following three popular

human pose benchmarks.

Human3.6M [11]. It contains 3.6 million images and

the corresponding 2D pose and 3D pose annotations cap-

tured in an indoor environment, featuring 7 subjects per-

forming 15 everyday activities like “Eating” and “Walking”.

We follow the standard protocol on Human3.6M to use S1,

S5, S6, S7 and S8 for training and S9 and S11 for evalua-

tion. The evaluation metric is the mean per joint position

error (MPJPE) in millimeter between the ground-truth and

the prediction across all cameras and joints after aligning

the depth of the root joints. We refer to this as Protocol #1.

In some works, the predictions are further aligned with the

ground-truth via a rigid transformation. We refer to this as

Protocol #2. Following [48, 22, 45, 21], we down sampled

the original videos from 50fps to 10fps to remove redun-

dancy. We employed all camera views and trained a single

model for all activities.

MPII [2]. It is the most widely used benchmark for 2D

human pose estimation. It contains 25K in-the-wild images

collected from YouTube videos covering a wide range of ac-

tivities. It provides 2D annotations but no 3D ground truth.

As a result, direct image-to-3D training is not a practical op-

tion with this dataset. We adopt this dataset for the training

and testing of the multi-task network and for the qualitative

evaluation of our 3D pose estimation method.

MPI-INF-3DHP [15]. It is a 3D pose dataset con-

structed by the Mocap system with both constrained indoor

scenes and complex outdoor scenes. We only use the test

split of this dataset, which contains 2929 frames from six

subjects performing seven actions, to evaluate the general-

ization ability quantitatively and qualitatively.

4.2. Implementation details

Our method is implemented using PyTorch [20]. The

training procedure of our network consists of three steps:

training the multi-task network, training progressive regres-

sion network, and connecting them and fine-tuning. For the

first step, the multi-task network is trained for 60 epochs.

The learning rate is set to 5 × 10−4 and batch size is 12.

For the second step, the 3D pose regression network is

trained on predicted 2D key point positions and ground-

truth pose attributes for 60 epochs. The learning rate is set
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Model Head Sho. Elb. Wri. Hip Knee Ank. Avg.

HG 96.3 95.0 89.0 84.5 87.1 82.5 78.3 87.6

[41] 96.1 95.6 89.9 84.6 87.9 84.3 81.2 88.6

Ours 94.7 94.0 90.8 88.7 84.9 83.0 83.4 88.5

Table 3. PCKh@0.5 score on the MPII validation set. Joints are

grouped by bilateral symmetry (ankles, wrists, etc). HG represents

the pretrained hourglass model [18]. The 2D pose detection per-

formance of our multi-task network is very close to that of [41],

while our 3D results are much better (see Tab. 2 and Tab. 5).

to 2.5 × 10−4 and batch size is 64. For the final step, the

multi-task network and the 3D pose network are connected

with soft argmax layers and fine-tuned for 40 epochs. The

learning rate is set to 1.0 × 10−4 and batch size is 64. The

first and third steps are trained on the mixture of MPII and

Human3.6M datasets. The training examples are randomly

sampled from the two datasets with equal probability. Aug-

mentation of random scale (1± 0.2) and random color jitter

(1 ± 0.2) are used for both datasets. For the MPII dataset,

random rotation (±30◦) and random horizontal flipping are

also used. The RMSprop optimizer is used for all the train-

ing steps. The whole training procedure takes about 2 days

on two Tesla V100 GPUs with 16G memory for each.

4.3. Quantitative results

In what follows, we show our quantitative results on 2D

pose estimation, on attribute prediction, on 3D pose estima-

tion, qualitative results, and ablation studies.

4.3.1 2D pose estimation results on MPII

The accuracy of 2D pose detection is known to be cru-

cial for 3D estimation [14]. Although our 2D detector is

trained on the mixture of MPII and Human3.6m dataset, the

PCKh@0.5 score of our model on the MPII validation split

is very close to previous works [41] (see Tab. 3). This indi-

cates that the performance improvement does not rely on a

extremely well-trained 2D detector.

4.3.2 Performance of attribute prediction

In this section, we conduct experiments to find out the best

training strategy to learn the attributes. There are three

candidate training strategies, training on only Human3.6M,

training on the mixture of MPII and Human3.6M, and train-

ing on the mixture with domain adaptation (DA). From

Tab. 4 we can see that the mix-training strategy can signifi-

cantly boost the attribute prediction accuracy. With the help

of the domain adaptation, the attribute prediction is further

improved.

It is worth noting that our attribute predictor also works

well on the MPI-INF-3DHP dataset without using any ex-

amples from this dataset for training, which shows that our

multi-task network successfully learns to transfer between

domains.

Dataset Method Head Elb. Wri. Knee Ank. Avg.

h36m 75.7 77.2 80.6 82.0 77.9 78.6

H36M mix 79.2 80.9 87.5 84.0 82.1 82.7

mix+DA 79.4 82.6 88.4 85.9 83.6 84.0

h36m 47.5 48.4 58.7 59.6 41.4 51.1

MPI3D mix 74.6 67.1 72.5 69.2 55.3 67.7

mix+DA 73.1 65.0 71.1 79.7 61.8 70.1

Table 4. The accuracy of attribute prediction on the Hu-

man3.6M (H36M) and the MPI-INF-3DHP (MPI3D) dataset.

H36m stands for training using only Human3.6M, mix stands for

using the mixture of Human3.6M and MPII, and DA stands for us-

ing the domain adaptation method discussed in Section 3.1.2. No

training data from MPI-INF-3DHP have been used for training.

[15] [45] [21] [41] ours

3DPCK 64.7 69.2 71.9 69.0 71.9

AUC 31.7 32.5 35.3 32.0 35.8

Table 5. 3DPCK and AUC on the MPI-INF-3DHP dataset. The

results for all approaches are taken from the original papers. No

training data from this dataset have been used for training.

4.3.3 3D pose estimation results on Human3.6M

We evaluate our method using the two most popular pro-

tocols (see Section 4.1) on Human3.6M. The detailed re-

sults of our method and previous state-of-the-art methods

are listed in Tab. 2. Our method outperforms previous meth-

ods, in terms of the average result on all the actions.

4.3.4 3D pose estimation results on MPI-INF-3DHP

We evaluate our method on another unseen 3D human pose

dataset, MPI-INF-3DHP [15], to test the cross-domain gen-

eralization ability. We follow [15, 16, 45, 41, 21] to use

3DPCK and AUC as the evaluation metrics. Comparisons

with previous methods are shown in Tab. 5. Our method

outperforms the prior ones on this unseen dataset, demon-

strating the robustness of our method on domain shift.

4.4. Qualitative results

In Fig. 3 we show visualizations of several 3D pose pre-

dictions of our method on Human3.6M. As we may ob-

serve, our results are visually very close to the ground truths

and considerably better than the baseline approach to be dis-

cussed in Section 4.5. Besides, in Fig. 4 we give the qualita-

tive results on images in other scenes, including those from

MPII and MPI-INF-3DHP, to show the robustness of our

method to domain shift.

4.5. Ablation studies

To analyze the effectiveness of each component, we con-

duct ablation study on Human3.6M under Protocol #1. The

mean per joint error is reported in Tab. 6. The notations are

defined as follows:
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BaselineImage Ours GT BaselineImage Ours GT

(a) (b)

(c) (d)

(e) (f)

Figure 3. Qualitative results on H3.6M. Our predictions of limbs are significantly better than those of the baseline, defined in Section 4.5.

(a) (b)

(d)

(c)

(e) (f)

Figure 4. Qualitative results on datasets with domain shift. The

first two columns are from MPII and the last is from MPI-INF-

3DHP.

• Baseline refers to the approach that adopts the same
network architecture as ours, but without modeling bi-
directional dependencies among body parts and with-
out pose attribute as input. In other words, we model
only,

Yn = Gn(X; θn) n ∈ {1, 2, 3}. (7)

• Progressive refers to the bi-directional approach, as

introduced in Section 3.2, but without pose attribute as

input.

• Attr refers to using the predicted pose attributes to es-

timate the 3D pose.

We also re-implemented the method in [14] for comparison.

Our implementation in fact yields results slightly better than

those reported in the original paper.

Although the number of parameters of the baseline

model and the progressive model are almost the same, the

performance of the later is significantly better. From this

comparative experiment we can see that the bi-directional

model is indeed effective in 3D pose estimation. The pro-

posed attributes further boosts the performance by a large

margin, especially on the joints where a pose attribute is

defined, proving the effectiveness the proposed pose at-

tributes.

5. Conclusion

We propose in this paper a two-step 3D pose estimation

approach that explicitly models the bi-directional depen-

Joint Hip Spine Thorax ShoulderHead

[14] 20.7 37.6 42.5 56.5 65.3

Baseline 20.9 38.3 43.0 56.4 65.0

Progressive 21.4 37.9 42.8 56.0 63.6

Progressive + Attr 20.4 36.8 40.6 52.2 58.4

Joint Elbow Knee Wrist Ankle Avg.

[14] 81.6 58.7 100.3 84.8 59.4

Baseline 80.6 56.4 98.5 81.9 58.3

Progressive 78.4 55.7 94.2 80.1 56.9

Progressive + Attr 71.3 51.0 87.6 74.7 52.6

Table 6. The prediction errors of [14] and our model by turning

some modules off.

dencies among body parts of different DOFs. In the first

step, we adopt a multi-task network that jointly estimates

the 2D poses and the pose attributes for each limb joint, a

three-class categorization that depicts the relative location

between a joint and the torso plane. The pose attribute,

unlike the more challenging regression-based depth estima-

tion, provides a dependable yet informative prior of the joint

locations. The predictions of 2D poses and attributes are

then fed to the 3D pose estimation network, where higher-

DOF parts are explicitly modeled as dependent variables of

lower-DOF parts and meanwhile constrain the locations of

the lower-DOF ones. In this way, body parts of different

DOFs supervise and benefit one another, together yielding

the encouraging results that outperform the state of the art

on standard benchmarks.
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