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Abstract

Localizing phrases in images is an important part of im-

age understanding and can be useful in many applications

that require mappings between textual and visual informa-

tion. Existing work attempts to learn these mappings from

examples of phrase-image region correspondences (strong

supervision) or from phrase-image pairs (weak supervi-

sion). We postulate that such paired annotations are un-

necessary, and propose the first method for the phrase lo-

calization problem where neither training procedure nor

paired, task-specific data is required. Our method is sim-

ple but effective: we use off-the-shelf approaches to de-

tect objects, scenes and colours in images, and explore dif-

ferent approaches to measure semantic similarity between

the categories of detected visual elements and words in

phrases. Experiments on two well-known phrase localiza-

tion datasets show that this approach surpasses all weakly

supervised methods by a large margin and performs very

competitively to strongly supervised methods, and can thus

be considered a strong baseline to the task. The non-paired

nature of our method makes it applicable to any domain and

where no paired phrase localization annotation is available.

1. Introduction

Significant progress has been made in recent years in the

task of detecting and localizing instances of object cate-

gories in images, especially with deep convolutional neu-

ral network (CNN) approaches to object detection [7, 8,

10, 19, 26, 27, 28, 31]. In most work, object detection

labels are treated as a fixed set of category labels, and vi-

sual detectors are trained to localize each category in the

image. In more realistic applications, however, people re-
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Figure 1. We investigate the task of phrase localization without

paired training examples. Conventional settings require phrase and

image localization annotations (fully supervised) or phrase and

image pairs (weakly supervised) at training time. In contrast, the

non-paired setting does not provide such annotations for training,

but instead allows models to exploit resources such as off-the-shelf

visual detectors, large-scale general corpora, knowledge bases and

generic images to localize previously unseen phrases at test time.

This non-paired setting is thus a baseline to supervised settings.

fer to objects in images via free-form textual phrases, in-

stead of object categories. For example, a brown and furry

puppy instead of dog. Phrase-level localization has been

introduced [11, 15, 17, 20, 24, 37] to address this need

by combining visual object recognition and natural lan-

guage processing. What we refer to as ‘phrases’ can in-

clude single words, short clauses or phrases, or even com-

plete sentences. All previous work assume some form of

supervision at training time: either strong supervision (ob-

ject localization for the phrase in the image is provided)

[2, 3, 11, 12, 22, 23, 29, 33, 39] or weak supervision (the

phrase and image pair is provided, but not the object’s lo-

calization in the image) [1, 34, 35, 40] (Figure 1). Such

specific bounding box annotations and even image-phrase

pairs, however, are hard and labourious to obtain. This

makes it difficult to scale detection up to more realistic set-

tings covering the large space of possible phrases that can

be uttered by a person.

In this paper, we tackle the novel task of phrase local-

ization in images without any paired examples, i.e. the

model has access to neither phrase-image pairs nor their lo-

calization in the image at training time (a ‘training’ phase

may not even be required). To our knowledge, no previous
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work has explored this challenging setting of performing

phrase localization without paired annotations (image-level

or object-level). We argue that such a ‘non-paired’ setting

better reflects how humans localize objects in images – not

by memorizing paired examples, but by assembling prior

knowledge from more general sources and tasks (e.g. rec-

ognizing concepts or attributes) to tackle a more specialized

task (phrase localization). Thus, this setting acts as a strong

baseline to the phrase localization task, i.e. it demonstrates

the extent to which a system can perform phrase localiza-

tion even without having seen any such examples. This can

give further insights into how paired examples can be better

utilized for phrase localization in an informed manner, on

top of what can be done without paired examples. The ap-

proach is also scalable to any domain and to any number of

natural language and image pairs.

The main contribution of this paper is a model for phrase

localization that is not trained on phrase localization an-

notations (Section 3). Instead, it exploits readily available

resources, tools and external knowledge. Our model has

the advantage of being simple and interpretable, acting

as a strong baseline for the novel, non-paired setting. We

provide an in-depth analysis of this model on two exist-

ing phrase localization datasets (Section 4), using different

detectors and combination of detectors, semantic similarity

measures for concept selection, and strategies to combine

these components to localize previously unseen phrases.

Our experiments on two existing phrase localization

datasets show that our approach without paired examples

outperforms state-of-the-art weakly supervised models by a

large margin, and is on par with fully supervised approaches

that utilize large sets of annotated phrase localization ex-

amples and domain-specific tools at training time. The re-

sults suggest that, for these datasets, training with phrase

localization annotations may not be necessary or optimal

for tackling the phrase localization task.

2. Related work

The availability of datasets annotated with bounding box

labels [4, 30] has allowed the development of deep CNN

based detectors [7, 8, 10, 19, 26, 27, 28, 31], propelling the

field of object recognition to produce more accurate detec-

tions and localization of object instances in images.

There has been recent interest in localizing objects using

free-form natural language phrases instead of fixed labels,

with datasets constructed for such tasks [15, 17, 20, 24, 37].

We classify existing phrase localization or grounding ap-

proaches as either strongly/fully supervised [2, 3, 11, 12,

22, 23, 29, 33, 39] or weakly supervised [1, 14, 34, 35, 40].

Methods that use strong supervision include those

that project phrases and image regions onto a common

space [23, 25, 33], those that build a language model for

the phrase conditioned on bounding box proposals [12],

and those that learn to attend to the correct region propos-

als given the phrase [29]. More recent approaches include

conditioning an object detector on phrases instead of fixed

object labels [11], leveraging semantic context and learning

to regress bounding boxes directly from phrase localization

data instead of relying on external region proposals [2, 3],

and conditioning embeddings on the categories/groups to

which a phrase belongs [22].

In a weakly supervised setting, no localization is pro-

vided at training time. Thus, such methods use external

region proposals [1, 40], generic object category detec-

tors [35] and attention maps [34] for localization. To learn

to associate these region proposals with phrases, various

methods have been proposed, including learning to con-

strain the regions’ spatial positions using the parse tree of

the caption [34], performing a continuous search using re-

gion proposals as anchors [40], linking words in text and

detection labels using co-occurrence statistics from paired

captions [35], and enforcing consistency between the con-

cept labels of a region proposal and words in the query [1].

We are unaware of work that tackles phrase localiza-

tion without paired examples. Yeh et al. [35] define their

work as ‘unsupervised’, but we consider it weakly super-

vised. Their model uses image-phrase pairs from the train-

ing dataset (similar distribution as the test set) to compute

co-occurrence statistics between words and concepts, and to

train image classifiers for words in the phrases. Our model

adapts Yeh et al.’s approach for when no paired training

examples are available. In addition, we propose a new lo-

calization module that makes better direct use of the output

of multiple detectors for phrase localization.

3. Model for non-paired phrase localization

Task definition. Given an image I and a query phrase q

at test time, the aim of the phrase localization task is to pro-

duce a bounding box b encompassing the visual entity in I

to which q refers. In contrast to conventional supervised set-

tings, in our proposed non-paired setting annotated paired

training examples (q,I) or (q,I ,b) are not available at train-

ing or model construction time. Instead, models are allowed

to use external resources that are not specific to phrase local-

ization, for example general visual object detectors, generic

text corpora, knowledge bases and thesauri, and images

from generic datasets not annotated with phrases. We note

that visual detectors may be trained in a supervised manner

(e.g. with COCO or ImageNet), but there is no supervision

in terms of phrase-based labels for the phrase localization

task. Similarly, language models trained from generic text

corpora may contain phrases from the test set, as long as

they are independent of the images.

Our model builds upon the approach of Yeh et al. [35].

In contrast to their approach, however, we perform phrase

localization without an explicit training step or phrase lo-

4664



pe
rso
n 

boy in red shirt

bo
y 

clo
th
ing
 

foo
tw
ea
r 

ba
ll 

glo
ve
 

re
d 

boy

red

shirt

coco
detector 

open images
detector 

colour 
detector 

Step 1: Instance detection  
(Section 3.1)
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Figure 2. The three stages of the proposed model for non-paired phrase localization. The instance detection phase detects instances of

various concepts using pre-trained detectors. The concept selection stage ranks these detected concepts against the query phrase (using

pre-trained word embeddings) and forwards the best candidate concept instance(s) to the localization phase, where the model predicts the

final bounding box for the query phrase.

calization annotations. We (i) incorporate a semantic sim-

ilarity measure derived from general text corpora rather

than aligned training examples; (ii) explore an array of

off-the-shelf visual detectors not specifically trained for

phrase localization; (iii) propose different strategies to per-

form phrase localization from detection outputs, including

a novel consensus-based method that combines the output

of multiple detectors.

At test time, our model performs phrase localization us-

ing a three-step process (Figure 2). In the first step – in-

stance detection – it predicts candidate bounding boxes us-

ing a combination of different visual detectors (Section 3.1).

In the second step – concept selection – the model com-

putes the semantic similarity between the query phrase and

the concept labels for instances detected in the previous

step, and selects the most relevant instance(s) (Section 3.2).

In the final step – localization – the model predicts the

bounding box for the query phrase from the selected can-

didate instance(s) from the second step (Section 3.3).

3.1. Instance detection

The first stage of our non-paired phrase localization

model relies on different visual object detectors. We ex-

plore using the detectors in isolation and by combining their

output, where the concepts are not necessarily mutually ex-

clusive. The key idea is to exploit the redundancy from mul-

tiple detectors to handle missing detections and to increase

the importance of object instances detected across multiple

detector groups. We experiment with the following:

1. tfcoco: A Faster R-CNN [28] detector trained to detect

the 80 categories of MS COCO [18], using the Ten-

sorflow Object Detection API [13],1 with confidence

threshold of 0.1.

1faster rcnn inception resnet v2 atrous coco

2. tfcoco20: A subset of tfcoco, where we only consider

the subset of 20 categories from PASCAL VOC [5].

This enables comparison to previous work.

3. tfoid: Another Faster R-CNN detector, trained to de-

tect the 545 object categories of the Open Images

Dataset (V2) [16], again using the TensorFlow Object

Detection API,2 with confidence threshold of 0.1.

4. places365: A WideResNet18 [38] classifier trained on

the Places2 dataset [41] for 365 scene categories. We

assume that scenes usually cover the full image, and

return the whole image as the bounding box localiza-

tion when the classification confidence is at least 0.1.

We keep only the top 20 predicted classes.

5. yolo9000: A YOLO9000 detector [27] trained on MS

COCO and ILSVRC [30] for 9, 413 categories in a

weakly supervised fashion. We use YOLOv2.

6. colour: A colour detector for 11 basic English colour

terms, derived from the posterior across the colour

terms for RGB pixels as learned from real world im-

ages [32]. We performed connected component la-

belling (8-connectivity) after thresholding the posteri-

ors at 0.3 and generated bounding boxes for each la-

belled connected component. The area of the bounding

boxes is constrained to be at least 625 pixels.

The detectors vary in accuracy and the number and type

of categories covered. It is worth noting that none of the

detectors above directly use images or phrase localization

annotations from our test datasets. This will emphasize the

ability of our phrase localization model to generalize to un-

seen data. More detectors could potentially be used to fur-

ther improve recall, but the ones used here are sufficient to

show that the proposed approach is very promising.

2faster rcnn inception resnet v2 atrous oid
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3.2. Concept selection

The second stage of our model bridges the query phrase

to be localized and the output of detectors from Section 3.1.

It computes the semantic similarity between each phrase

and the detector concept labels. The intuition is that the

detected instance of a concept that is very similar or related

to a word or phrase in the query is most likely to be the tar-

get object. For example, the word dancer might be highly

similar or related to the category person; thus even with-

out a dancer detector, the model can infer that the detected

person is likely to be the dancer mentioned in the query.

We represent both queries q and concept labels c as 300-

dimensional CBOW word2vec embeddings [21]. Multi-

word phrases are represented by the sum of the word vec-

tors of each in-vocabulary word of the phrase, normalized

to unit vector by its L2-norm.3 All words in the queries

and concept labels (except yolo9000) are lowercased. For

yolo9000, each category is a WordNet [6] synset. Thus we

represent each category as the sum of the word vectors for

each term in its synset, normalized to unit vector. Out-of-

vocabulary words are addressed by matching case variants

of the words (Scotch whiskey to scotch whiskey). Failing

that, we attempt to match multiword phrases like before.

We noticed many misspellings among the query phrases.

Thus, the model exploits another external resource to per-

form automated spell correction4 for out-of-vocabulary

words. The model finds candidate replacement words from

word2vec’s vocabulary and choosing the one with the high-

est frequency in the corpus used to train the embeddings.

The model consistently obtained slightly higher accuracies

with spell correction, and thus we report only the results

with the spell-corrected queries.

We explore two approaches to aggregate the words in

query phrases: as a single vector by summing the word vec-

tors and normalizing to unit vector (w2v-avg), or by repre-

senting each word individually (w2v) and using only one of

the words for localization (see Section 3.3).

We use cosine similarity as the semantic similarity mea-

sure S(q, c) between a query q and a concept label c. This

stage outputs a ranked list of candidate bounding box detec-

tions based on their similarity to the query phrase.

3.3. Localization

In the final stage, our proposed model predicts a bound-

ing box given the query phrase and the ranked list of candi-

date detections from Section 3.2. This is accomplished by

selecting from or aggregating the candidate instances that

are most semantically similar to the query.

The simplest localization approach is to select from can-

didate detections the concept most similar to the query

3Averaging word embeddings for the entire phrase leads to the same

experimental results.
4https://pypi.org/project/pyspellchecker/

phrase. Where multiple instances of the same concepts are

detected, we experiment with different tie-breaking strate-

gies: (i) selecting a random instance; (ii) selecting the in-

stance with the largest bounding box; (iii) selecting the

instance with the highest class prediction confidence; (iv)

generating a minimal bounding box enclosing all instances

(union). The latter may useful for dealing with queries re-

ferring to multiple instances of an object (e.g. localizing

three people from three individual person detections).

Besides simple heuristics, we also propose a novel tie-

breaking approach by consensus. The main idea is that de-

tectors can vote on the most likely localization, exploiting

the redundancy across detectors and the different aspects of

the phrase (blue shirt). We consider the semantic similar-

ity of instances from the top-K concepts above a similarity

threshold (we use K=5 and threshold 0.6). For each concept

ci, a pixel-level heatmap for the image, Mci(I) is generated

by setting to 1 pixels that overlap with any bounding box

instance of the concept, and setting to 0 those that do not.

We generate a combined heatmap M̂(I) by summing the

heatmaps for each concept, each weighted by the semantic

similarity score S(q, c) from Section 3.2:

M̂(I) =

K
∑

i=1

S(q, ci)Mci(I) (1)

Phrase localization is performed by selecting the bound-

ing box instances that voted for the pixels with the highest

values, and choosing the box with the highest semantic sim-

ilarity score as the predicted localization. In cases where

there are multiple top scoring boxes, the model predict a

minimal bounding box that encloses all such boxes.

We compare using a single combined word embedding

for the phrase (w2v-avg) or using the embedding for one

word to represent the phrase (w2v). For the latter, we can

select the word with the highest semantic similarity to any

detected concepts (w2v-max). Intuitively, we only consider

one word from the phrase for localization, where this word

has the highest similarity to a detected concept. Alterna-

tively, we can use the last word for localization (w2v-last),

assuming the last word is the head word. We default to lo-

calizing to the whole image when no words in the phrase

are found in the vocabulary.

4. Experimental results

We evaluate our proposed models on two challeng-

ing datasets: Flickr30kEntities (Section 4.2) and Refer-

ItGame (Section 4.3). Both have been used to evaluate

supervised phrase localization [1, 29, 35]. Each dataset

represent different challenges: Flickr30kEntities are noun

phrases extracted from full image captions, while Refer-

ItGame are short phrases generated from an interactive

game where one player tries to localize the object the
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other player is describing. Thus, we consider the latter as

more challenging. We also test selected models on Visual

Genome (Section 4.4) to investigate the model’s scalability

to a different dataset with sentence-level descriptions.

4.1. Evaluation metric

As in previous work, we use the accuracy metric for

evaluation5, where a predicted bounding box pi for a query

phrase is considered correct if its intersection over union

(IoU) with the ground truth gi is at least 50%.

For reference, we measure the extent to which the correct

localization can be found among the candidate localizations

from the concept selection stage (Section 3.2), depending

on the similarity measure and the detector used. This up-

perbound accuracy is computed across N test instances as

1

N

N
∑

i=1

B
max
j=1

✶
(

IoU(gi, bj) ≥ 0.5
)

(2)

where ✶(·) is the indicator function and B the number of

candidate bounding boxes. We report a version of the upper-

bound that additionally includes the minimal bounding box

that encompasses the union of all candidates (thus B + 1
candidates). This variant consistently gave higher upper-

bound accuracies than without the union. The results of

both variants are given in the supplementary document.

4.2. Phrase localization on Flickr30kEntities

Flickr30kEntities [24] is based on Flickr30k [36], con-

taining bounding box annotations for noun phrases occur-

ring in the corresponding image captions. The test split [25]

comprises 14, 481 phrases for 1, 000 images, which we use

for evaluation. The training and validation splits are not

used in our non-paired localization experiments.

As no non-paired phrase localization work exists, we

compare our method against a baseline of always localizing

to the whole image (21.99% accuracy), and compare our

models using different detectors and localization strategies.

As reference, we also compare our model against su-

pervised approaches trained in a fully [3, 11, 23, 29] or

weakly [1, 35] supervised setting. Note that these systems

are not directly comparable to ours. In fact, the comparison

is unfavourable to us as these work also use external tools

like visual detectors or bounding box proposal generators in

addition to supervised phrase localization training data.

Table 1 shows the accuracies on Flickr30kEntities for

bounding box predictions from a selection of our mod-

els, using different combination of detectors, concept selec-

tion and localization strategies. Our best performing model

combines tfcoco, tfoid and places365 detectors with the

5Our evaluation script can be found at https://github.com/

josiahwang/phraseloceval.

Detector Similarity Strategy Acc (UB) %

Baseline: Always localize to whole image 21.99

CC+OI - largest 30.32 (73.00)

20 w2v-avg union 36.49 (51.81)

CC w2v-max union 37.57 (51.22)

OI w2v-max union 44.69 (50.04)

CC+OI w2v-max union 48.20 (55.85)

CC+OI+PL+CL w2v-avg consensus 49.51 (58.93)

CC+OI+PL+CL w2v-avg union 49.61 (58.10)

CC+OI+PL w2v-avg consensus 50.11 (58.00)

CC+OI+PL+CL w2v-last union 50.36 (57.81)

CC+OI+PL w2v-max union 50.49 (57.81)

Weakly supervised

GroundeR [29] 28.94

Yeh et al. [35] 36.93

KAC Net + Soft KBP [1] 38.71

Strongly supervised

GroundeR [29] 47.81

SPC+PPC [23] 55.85

QRC Net [3] 65.14

Query Adaptive R-CNN [11] 65.21

Table 1. Accuracies (and upperbound UB) of some of our selected

models on Flickr30kEntities, comparing different detector combi-

nations, semantic similarity measures and localization strategies.

As a comparison against supervised settings, we present our re-

sults alongside selected strongly and weakly supervised systems.

These systems are not directly comparable to ours as they use

phrase localization annotations for training. Keys: CC=tfcoco,

OI=tfoid, 20=tfcoco20, PL=places365, CL=colour.

w2v-max concept selector and the union localization strat-

egy. This model comfortably outperformed the state-of-the-

art weakly supervised model [1] on this dataset (50.49%
vs. 38.71%). Its accuracy is also higher than a strongly su-

pervised model [29] (47.81%) and is competitive against

others [3, 11, 23] that use strong supervision along with

specialised detectors for the dataset, part-of-speech taggers

and parsers, the full caption, and takes into account other

entities/relations mentioned in the caption. In contrast,

our method is much simpler and does not rely on domain-

specific paired training data. The full results with different

detector combinations, concept selection and localization

strategies are provided as supplementary material. These re-

sults suggest that paired annotations might not even be com-

pletely necessary for the task, at least for Flickr30kEntities.

Table 2 gives the per-category breakdown of the accura-

cies. Our best models resulted in higher accuracies than all

strongly supervised models for two out of eight categories

(animals and vehicles). Our models also achieved better

accuracies than weakly supervised models in seven out of

eight categories, and are competitive for the remaining cat-

egory (scene) against KAC Net [1] (40.58% vs. 43.53%)

and outperformed Yeh et al. [35] (24.87%).
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people clothing bodyparts animals vehicles instruments scene other overall

# instances 5626 2306 523 518 400 162 1619 3374 14481

20 (max, u) 60.31 9.63 2.10 82.43 74.75 19.14 17.85 17.96 36.33

CC (max, u) 56.35 10.45 1.72 83.59 79.25 17.90 15.69 29.79 37.57

CC+OI (max, u) 66.34 37.99 21.03 84.75 79.75 47.53 20.14 33.11 48.20

CC+OI+PL (avg, u) 66.18 35.52 21.03 84.75 81.00 47.53 39.16 34.71 50.27

CC+OI+PL (max, u) 66.27 37.55 20.65 84.75 80.00 47.53 38.91 34.41 50.49

CC+OI+PL+CL (avg, u) 65.22 35.65 21.22 78.19 78.00 47.53 40.58 34.05 49.61

Weakly supervised

Yeh et al. [35] 58.37 14.87 2.29 68.91 55.00 22.22 24.87 20.77 20.91

KAC Net (Soft KBP) [1] 58.42 7.63 2.97 77.80 69.00 20.37 43.53 17.05 38.71

Strongly supervised

SPC+PPC [23] 71.69 50.95 25.24 76.25 66.50 35.80 51.51 35.98 55.85

QRC Net [3] 76.32 59.58 25.24 80.50 78.25 50.62 67.12 43.60 65.14

Query Adaptive R-CNN [11] 78.17 61.99 35.25 74.41 76.16 56.69 68.07 47.42 65.21

Table 2. Non-paired phrase localization accuracies for different phrase types, as defined in Flickr30kEntities. Bolded results show higher

accuracies than strongly supervised models, while italicized accuracies indicate that they are higher than weakly supervised models. Keys:

CC=tfcoco, OI=tfoid, 20=tfcoco20, PL=places365, CL=colour, max=w2v-max, avg=w2v-avg, u=union.

4.2.1 Discussion

Upperbound. The upperbound accuracies generally in-

crease as we increase the number of detectors and cate-

gories used. This indicates that the recall has increased, pre-

sumably by virtue of more candidate bounding boxes being

proposed. Our concept selection process reduces this up-

perbound, but as a result allows the localization strategy to

perform the task more accurately. Interestingly, the upper-

bound did not change significantly when only a subset of

20 categories of tfcoco is used and with concept selection

applied (51.81% vs. 51.22% in Table 1). This is because

of the large number of people-related phrases in the dataset;

the person detectors in both detector groups manage to cap-

ture this.

Detector. The accuracy generally improves with more de-

tectors (and number of categories), as long as the detections

are of high quality. While the differences between tfcoco20

(20 categories) and tfcoco (80 categories) are much smaller,

using tfoid (545 categories) resulted in larger improvements

(see Figure 3). Detector quality is also important, as demon-

strated by the generally weak performance from yolo9000

(accuracies are generally lower than 20%) which has a low

accuracy (19.7 mAP on a subset of 200 categories [27]) de-

spite boasting the ability to detect over 9, 000 categories.

The category labels themselves include abstract categories

(thing, instrumentation), which are irrelevant as these are

not often used to describe objects. The colour detectors

on their own gave low accuracies (generally <10%). This

is because only a small subset of test phrases contained

colour terms, and the connected component labelling also

resulted in generally small bounding boxes; however, us-

ing the union of bounding boxes for localization resulted in

better accuracies (≈18%).

Combination of detectors. The detectors are also com-

plementary to each other. Combining tfcoco and tfoid re-

sults in a higher accuracy (48.20%) than using either alone

(37.57% and 44.69% respectively). From Table 2, we ob-

serve that tfoid helped improve over tfcoco especially for

clothing (by ≈27% accuracy), bodyparts (≈20%) and in-

struments (≈30%), and to a certain extent scenes. It also

provided some additional redundancy to help localize per-

son since it contains different people detectors (person,

man, woman, boy, girl). places365 improved the localiza-

tion of scene phrases (≈19%).

Colour detector. Adding a colour detector to tf-

coco+tfoid+places365 does not improve the overall accu-

racies (CC+OI+PL (avg, u) vs. CC+OI+PL+CL (avg, u) in

Table 2), but it helps with scene-type phrases, especially

when the scene contains a colour term and covers most of

the image. It also helps when the phrase is a single colour

noun (red), when the head noun is not detected (an orange

outfit), or when the colour can be inferred for a missed de-

tection (tree). This works as long as there are no other

objects with the same colour. Some problematic cases are

when the desired colour occurs elsewhere in the image, and

with phrases such as a white man. Figure 4 shows some

examples illustrating the contributions of the colour detec-

tor. We further quantitatively investigate the contributions

of colour to tfcoco+tfoid+places365 by evaluating on a

subset of test phrases where the 11 basic colour terms occur

(Table 3). We observe that colour terms are most frequently

mentioned in clothing-type phrases. Adding a colour de-

tector improves localization in clothing and scene phrases.

Concept selection. Our concept selection process with

word embeddings similarity is intuitive, and results in ac-

curate localization. tfcoco performed on par with Yeh et
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skyscrapers a blue swimsuit three men A very excited drummer

sky lamp soda glass

Figure 3. Example localization output for Flickr30kEntities (top row) and ReferItGame (bottom row). We compare the effects of adding a

tfoid detector (red bounding box) to tfcoco (blue) (w2v-max, union). The ground truth is indicated in green. The first two columns show

examples of where adding a tfoid detector improves localization, while the last two columns are examples where it hurts localization.

a yellow tennis suit a long green shirt a red toy A blue , red , and yellow airplane

sky pink blanket peeps guy in yellow shirt

Figure 4. Example localization output for Flickr30kEntities (top row) and ReferItGame (bottom row). We compare the effects of adding a

colour detector (red bounding box) to tfcoco+tfoid+places365 (blue) (w2v-avg, union). The ground truth is indicated in green. The first

two columns show examples of where adding a colour detector improves localization, while the last two columns are examples where it

hurts localization.

al. [35] which computes the similarity using paired annota-

tions, and with the same 80 categories. Our approach cap-

tures distributional similarities, and is undesirable in cer-

tain cases, for example a cyclist is more similar to a bicycle

or a wheel than it is to a person. We also found that all

three word vector aggregation schemes perform compara-

bly; w2v-last generally performs similar to w2v-max with

only a minor degradation. This agrees with our assumption

that the last word in the phrase is most likely the head word

in Flickr30kEntities. w2v-avg also performs very slightly

worse in general, except when colour detectors are used.

Localization strategy. For this dataset, the union local-

ization strategy seems to work best, partly because of how

the test dataset is constructed. It is also useful for colour

detectors which produce generally small bounding boxes.

The largest strategy also works reasonably well; objects

mentioned in the captions tend to be larger than those not.

Our novel consensus strategy, designed to allow for slightly

higher upperbounds and accuracies by voting, generally

gave accuracies comparable to union-based equivalents.

4.3. Phrase localization on ReferItGame

ReferItGame [15] crowdsources phrases from an in-

teractive game to describe segments in IAPR TC-12 im-

ages [9]. It is significantly different from Flickr30kEntities

as phrases are not extracted from image captions and are

also much shorter. We use the test split of Rohrbach et

al. [29] consisting of 65, 193 phrases for 9, 999 images6.

Again, the training and validation splits are ignored.

Table 4 shows the accuracies on ReferItGame for a se-

lected set of our models, again with different combinations

of detectors, concept selection and localization strategies.

6We used the split provided at https://github.com/

lichengunc/refer
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people clothing bodyparts animals vehicles instruments scene other overall

# instances 30 1323 48 177 79 1 93 292 2033

CC+OI+PL (avg, u) 66.67 34.24 29.17 89.27 79.75 100.00 44.09 48.63 43.43

CC+OI+PL+CL (avg, u) 40.00 35.75 27.08 69.49 65.82 100.00 58.06 44.86 41.81

Table 3. Phrase localization accuracies for different phrase types on a subset of query phrases that contain at least one basic colour term.

Detector Similarity Strategy Acc (UB) %

Baseline: Always localize to whole image 14.64

20 w2v-max largest 14.97 (26.82)

CC w2v-max largest 15.40 (27.16)

OI w2v-max largest 19.82 (28.03)

CC+OI w2v-avg largest 21.21 (32.70)

CC+OI+PL w2v-avg consensus 22.25 (35.56)

CC+OI+PL w2v-avg largest 23.95 (35.04)

CC+OI+PL+CL w2v-max consensus 25.52 (42.48)

CC+OI+PL+CL w2v-max largest 26.48 (39.50)

Weakly supervised

GroundeR [29] 10.70

KAC Net + Soft KBP [1] 15.83

Yeh et al. [35] yolococo 17.96

Yeh et al. [35] vgg+yolococo 20.91

Strongly supervised

GroundeR [29] 26.93

Hu et al. [12] 27.80

QRC Net [3] 44.07

Table 4. Accuracies of some of our selected models on Refer-

ItGame. Again, we present our results alongside selected strongly

and weakly supervised systems as a comparison since no pre-

vious non-paired model exists. Keys: CC=tfcoco, OI=tfoid,

20=tfcoco20, PL=places365, CL=colour.

The accuracy of the baseline of always localizing to the

whole image is 14.64%. Our best performing model again

performs better than all weakly supervised models (26.48%
vs. the state of the art’s 20.91%), and is on par with some

strongly supervised models [12, 29], although not at the

level of QRC Net [3].

4.3.1 Discussion

Localization strategy. Unlike Flickr30kEntities, taking

the union does not perform as well as simply taking the

largest box; this is consistent across models. Again, our

proposed consensus strategy performs well, although not

generally as well as the largest strategy.

Concept selection. Like Flickr30kEntities, w2v-max and

w2v-avg performs equally well, with w2v-max having a

very slight edge. Unlike Flickr30kEntities, w2v-last per-

forms substantially worse than other semantic similarity

measures. This is because the phrases are short, and the

head word is more likely to be mentioned at the beginning.

Detectors. The detectors generally show a similar be-

haviour as with Flickr30kEntities. Adding tfoid to tfcoco

pushed the accuracy beyond the state of the art [35], and

adding places365 further increased its accuracy. Unlike

Flickr30kEntities, the colour detector contributed substan-

tially more, increasing the overall accuracy by ≈3%. Refer-

ItGame has many colour-based phrases (many single colour

words), due to how the annotations were obtained. The

model also performs well by inferring the colour of sky,

cloud and tree, which occur frequently (Figure 4).

4.4. Phrase localization on Visual Genome

To demonstrate our model’s scalability to different

datasets, we also test our model on Visual Genome [17]

where the queries are at sentence level, rather than at phrase

level. Zhang et al. [39] reported 26.4% localization accu-

racy with a fully supervised method. The only weakly su-

pervised equivalent of which we are aware reported 24.4%
accuracy [34], but this is an unfair comparison because they

evaluated whether a single point falls inside the bounding

box, rather than predicting the full box. Our model (tfoid,

w2v-max, largest) achieved 14.29% accuracy on Visual

Genome, and by combining tfoid with tfcoco the accuracy

is increased to 16.39%. This observation is consistent to

what we reported, and we infer that the same pattern should

apply to further combinations and variants.

5. Conclusions

We introduced the first approach to phrase localization

in images without phrase localization annotations. This

non-paired approach, while simple, proved effective: In ex-

periments with Flickr30kEntities and ReferItGame it out-

performed all existing weakly supervised approaches and

performed competitively to strongly supervised approaches.

The method is a strong baseline – phrase localization can

be successfully performed on these datasets even without

paired examples. Our work suggests that there is significant

room for simpler and general methods that rely on few/no

paired annotations, instead of complex models that attempt

to fit paired annotations to achieve high performance im-

provements without the ability to generalize. This finding

can change how Language & Vision tasks are viewed and

tackled in future – researchers should make better use of

paired annotations beyond what can already be achieved

without such task-specific data.
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