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Abstract

Racial bias is an important issue in biometric, but has

not been thoroughly studied in deep face recognition. In

this paper, we first contribute a dedicated dataset called

Racial Faces in-the-Wild (RFW) database, on which we

firmly validated the racial bias of four commercial APIs and

four state-of-the-art (SOTA) algorithms. Then, we further

present the solution using deep unsupervised domain adap-

tation and propose a deep information maximization adap-

tation network (IMAN) to alleviate this bias by using Cau-

casian as source domain and other races as target domains.

This unsupervised method simultaneously aligns global dis-

tribution to decrease race gap at domain-level, and learn-

s the discriminative target representations at cluster level.

A novel mutual information loss is proposed to further en-

hance the discriminative ability of network output without

label information. Extensive experiments on RFW, GBU,

and IJB-A databases show that IMAN successfully learn-

s features that generalize well across different races and

across different databases.

1. Introduction

The emergence of deep convolutional neural networks

(CNN) [38, 55, 59, 31, 32] greatly advances the frontier of

face recognition (FR) [63, 58, 54]. However, more and more

people find that a problematic issue, namely racial bias, has

always been concealed in the previous studies due to biased

benchmarks but it explicitly degrades the performance in

realistic FR systems [2, 13, 25, 8]. For example, Amazon’s

Rekognition Tool incorrectly matched the photos of 28 U.S.

congressmen with the faces of criminals, especially the er-

ror rate was up to 39% for non-Caucasian people. Although

several studies [49, 29, 23, 50, 36] have uncovered racial

bias in non-deep FR algorithms, this field still remains to be

vacant in deep learning era because so little testing informa-

tion available makes it hard to measure the racial bias.

To facilitate the research towards this issue, in this

work we construct a new Racial Faces in-the-Wild (RFW)

database, as shown in Fig. 1 and Table 4, to fairly mea-

sure racial bias in deep FR. Based on experiments on RFW,

we find that both commercial APIs and SOTA algorithm-

s indeed suffer from racial bias: the error rates on African

faces are about two times of Caucasians, as shown in Table

1. To investigate the biases caused by training data, we also

collect a race-balanced training database, and validate that

racial bias comes on both data and algorithm aspects. Some

specific races are inherently more difficult to recognize even

trained on the race-balanced training data. Further research

efforts on algorithms are requested to eliminate racial bias.

Figure 1. Examples and average faces of RFW database. In rows

top to bottom: Caucasian, Indian, Asian, African.

Unsupervised domain adaptation (UDA) [64] is one of

the promising methodologies to address algorithm biases,

which can map two domains into a domain-invariant feature

space and improve target performances in an unsupervised

manner [61, 40, 60, 24]. Unfortunately, most UDA methods

for object recognition are not applicable for FR because of

two unique challenges. First, face identities (classes) of two

domains are non-overlapping in FR, so that many skills in

state-of-the-art (SOTA) methods based on sharing classes

are inapplicable. Second, popular methods by the global

alignment of source and target domain are insufficient to

acquire the discriminating power for classification in FR.

How to meet these two challenges is meaningful but few

works have been proposed in this community.
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Model
RFW

Caucasian Indian Asian African

Microsoft [5] 87.60 82.83 79.67 75.83

commercial Face++ [4] 93.90 88.55 92.47 87.50

API Baidu [3] 89.13 86.53 90.27 77.97

Amazon [1] 90.45 87.20 84.87 86.27

mean 90.27 86.28 86.82 81.89

Center-loss [65] 87.18 81.92 79.32 78.00

SOTA Sphereface [39] 90.80 87.02 82.95 82.28

algorithm Arcface1[21] 92.15 88.00 83.98 84.93

VGGface2 [15] 89.90 86.13 84.93 83.38

mean 90.01 85.77 82.80 82.15

1 Arcface here is trained on CASIA-Webface using ResNet-34.

Table 1. Racial bias in deep FR systems. Verification accuracies

(%) evaluated on 6000 difficult pairs of RFW database are given.

In this paper, we propose a new information maxi-

mization adaptation network (IMAN) to mitigate racial

bias, which matches global distribution at domain-level,

at the meantime, learns discriminative target distribution

at cluster-level. To circumvent the non-overlapping class-

es between two domains, IMAN applies a spectral clus-

tering algorithm to generate pseudo-labels, by which the

network is pre-adapted with Softmax and the target perfor-

mance is enhanced preliminarily. This clustering scheme of

IMAN is fundamentally different from other UDA methods

[51, 69, 16, 18] that are inapplicable to FR. Besides pseudo

label based pre-adaptation, a novel mutual information (MI)

based adaptation is proposed to further enhance the discrim-

inative ability of the network output, which learns larger

decision margins in an unsupervised way. Different from

the common supervised losses and supervised MI methods

[56, 34], MI loss takes advantage of all unlabeled target da-

ta, no matter whether they are successfully assigned pseudo-

labels or not, in virtue of its unsupervised property.

Extensive experimental results show that IMAN con-

ducted to transfer recognition knowledge from Caucasian

(source) domain to other-race (target) domains. Its perfor-

mance is much better than other UDA methods. Ablation s-

tudy shows that MI loss has unique effect on reducing racial

bias. In addition, IMAN is also helpful in adapting general

deep model to a specific database, and achieved improved

performance on GBU [48] and IJB-A [37] databases. The

contributions of this work are three aspects. 1) A new RFW

dataset is constructed and is released 1 for the study on racial

bias. 2) Comprehensive experiments on RFW validate the

existence and cause of racial bias in deep FR algorithms. 3)

A novel IMAN solution is introduced to address racial bias.

2. Related work

Racial bias in face recognition. Several studies [49,

29, 23, 50, 36] have uncovered racial bias in non-deep

1http://www.whdeng.cn/RFW/index.html

face recognition algorithms. The FRVT 2002 [49] showed

that recognition accuracies depend on demographic cohort.

Phillips et al. [50] evaluated FR algorithms on the images

of FRVT 2006 [11] and found that algorithms performed

better on natives. Klare et al. [36] collected mug shot

face images of White, Black and Hispanic from the Pinel-

las County Sheriff’s Office (PCSO) and concluded that the

Black cohorts are more difficult to recognize. In deep learn-

ing era, existing racial bias databases are no longer suitable

for deep FR algorithms due to their small scale and con-

strained conditions; commonly-used testing databases of

deep FR, e.g. LFW [33], IJB-A [37], don’t include signif-

icant racial diversity, as shown in Table 2. Although some

studies, e.g. unequal-training [9] and suppressing attributes

[8, 43, 44, 42], have made effort to mitigate racial and gen-

der bias in several computer vision tasks, this study remains

to be vacant in FR. Thus, we construct a new RFW database

to facilitate the research towards this issue.

Train/
Database

Racial distribution (%)

Test Caucasian Asian Indian African

train

CASIA-WebFace [67] 84.5 2.6 1.6 11.3

VGGFace2 [15] 74.2 6.0 4.0 15.8

MS-Celeb-1M [30] 76.3 6.6 2.6 14.5

test

LFW [33] 69.9 13.2 2.9 14.0

IJB-A [37] 66.0 9.8 7.2 17.0

RFW 25.0 25.0 25.0 25.0

Table 2. The percentage of different race in commonly-used train-

ing and testing databases

Deep unsupervised domain adaptation. UDA [64] u-

tilizes labeled data in relevant source domains to execute

new tasks in a target domain [61, 40, 41, 24, 60]. However,

the research of UDA is limited to object classification, very

few studies have focused on UDA for FR task. Luo et al.

[70] integrated the maximum mean discrepancies (MMD)

estimator to CNN to decrease domain discrepancy. Sohn et

al. [57] synthesized video frames from images by a set of

transformations and applied a domain adversarial discrim-

inator to align feature space of image and video domains.

Kan et al. [35] utilized the sparse representation constraint

to ensure that source domain shares similar distribution as

target domain. In this paper, inspired by Inception Score

[52, 10] used in Generative Adversarial Nets (GAN), we in-

troduce MI as a regularization term to domain adaptation

and propose a novel IMAN method to address this unique

challenge of FR in an unsupervised way.

3. Racial Faces in-the-Wild: RFW

Instead of downloading images from websites, we col-

lect them from MS-Celeb-1M [6]. We use the “National-

ity” attribute of FreeBase celebrities [27] to directly select

Asians and Indians. For Caucasians and Africans, Face++

API [4] is used to estimate race. An identity will be accept-
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ed only if its most images are estimated as the same race,

otherwise it will be abandoned. To avoid the negative ef-

fects caused by the biased Face++ tool, we manually check

some images with low confidence scores from Face++.

Then we construct our RFW database with four test-

ing subsets, namely Caucasian, Asian, Indian and African.

Each subset contains about 10K images of 3K individuals

for face verification. All of these images have been care-

fully and manually cleaned. Besides, in order to exclude

overlapping identities between RFW and commonly-used

training datasets, we further remove the overlapping sub-

jects by manual inspection, when the subject and its nearest

neighbor in CASIA-Webface and VGGFace2 (based on Ar-

cface [21] feature) are found to be of the same identity.

For the performance evaluation, we recommend to use

both the biometric receiver operating characteristic (ROC)

curve and LFW-like protocol. Specifically, ROC curve,

which aims to report a comprehensive performance, evalu-

ates algorithms on all pairs of 3K identities (about 14K pos-

itive vs. 50M negative pairs). In contrast, LFW-like proto-

col facilitates easy and fast comparison between algorithms

with 6K pairs of images. Further, inspired by the ugly sub-

set of GBU database [48], we have selected the “difficult”

pairs (in term of cosine similarity) to avoid the saturated

performance to be easily reported 2.

Positive pairs Negative pairs

Figure 2. Examples of pairs in RFW database. We select 6K

difficult pairs according to cosine similarity to avoid saturated per-

formance, these images challenge the recognizer by variations of

same people and the similar appearance of different people.

In RFW, the images of each race are randomly collected

from MS-Celeb-1M without any preference, and thus they

are suitable to fairly measure racial bias. We have validated

that, across varying races, their distributions of pose, age,

and gender are similar. As evidence, the detailed distribu-

tions measured by Face++ API are show in Fig. 3(a)-3(d).

One can see from the figures that there is no significant dif-

ference between different races.

Moreover, the pose and age gap distributions of 3K diffi-

cult positive pairs are show in Fig. 3(e) and 3(f), which indi-

cates that the selected difficult pairs are also fair across dif-

2All data and baseline code for evaluating will be publicly available for

the research purpose.

ferent races and contain larger intra-person variations. And

Fig. 2 presents some examples of the 6K selected pairs, and

one can see from the figure that some pairs are very chal-

lenging even for human.

4. Information maximization adaptation net-

work

In our study, source domain is a labeled training set,

namely Ds = {xs
i , y

s
i }

M
i=1

where xs
i is the i-th source sam-

ple, ysi is its category label, and M is the number of source

images. Target domain is an unlabeled training set, namely

Dt = {xt
i}

N
i=1

where xt
i is the i-th target sample and N is

the number of target images. The data distributions of two

domains are different, P (Xs, Ys) 6= P (Xt, Yt). Our goal

is to learn deep features invariant between domains and im-

prove the performance of target images (faces of colored

skin in our study) in an unsupervised manner. In the face

recognition task, the identities (class) of two domains are

non-overlapping, which poses a unique challenge different

from other tasks.

4.1. Clustering­based pseudo labels for pre­
adaptation

Previous UDA methods apply the source classifier to pre-

dict pseudo-labels in the target domain, by which the net-

work can be fine-tuned using supervised losses [51, 69, 16,

18, 66]. Unfortunately, these well-established approach-

es are inapplicable in face recognition due to the non-

overlapping identities between two domains. Therefore,

we introduce a clustering algorithm into UDA to generate

pseudo-labels for pre-adaptation training. The detailed step-

s of our clustering algorithm are given as following:

First, we feed unlabeled target data Xt into network and

extract deep features F(Xt). Then, with these deep presen-

tations, we construct a N × N adjacency matrix, where N

is the number of faces in target domain and entry at (i, j),
i.e. s(i, j), is the cosine similarity between target face xt

i

and xt
j .

Second, we can build a clustering graph G(n, e) accord-

ing to adjacency matrix, where the node ni represents i-th

target image and edge e(ni, nj) signifies that two target im-

ages have larger cosine-similarity than the parameter λ:

e(ni, nj) =

{

1, if s(i, j) > λ

0, otherwise
(1)

Then, we simply save each connected component with at

least p nodes as a cluster (identity) and obtain pseudo-labels

of these target images; the remaining images will be aban-

doned. So, we only obtain pseudo-labels of partial im-

ages with higher confidence to alleviate negative influence

caused by falsely-labeled samples. After that, we pre-adapt

the network with the standard Softmax loss.
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(a) yaw (b) pitch (c) age (d) gender (e) pose gap (f) age gap

Figure 3. RFW statistics. We show the (a) yaw pose, (b) pitch pose, (c) age and (d) gender distribution of 3000 identities in RFW, as well

as (e) Pose gap distribution and (f) age gap distribution of positive pairs in LFW and RFW.
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Figure 4. Overview of IMAN architecture. Step-1: Pseudo-adaptation. Pseudo-labels of target images are generated by clustering

algorithm and then are utilized to pre-adapt the network with supervision of Softmax to obtain preliminary improvement of target domain.

Step-2: MI-adaptation. With mutual information loss, the distribution of target classifier’s output is further optimized and larger decision

margins are learned without any label information.

4.2. Mutual information loss for discriminant adap­
tation

Although pre-adaptation has derived preliminary predic-

tion of the target images, it is insufficient to boost the perfor-

mance in target domain due to the imperfection of pseudo-

labels. How can we take full advantage of the full set of

target images and learn more discriminative representation-

s? Based on the preliminary prediction, we propose to fur-

ther optimize the distribution of classifier’s output without

any label information. Our idea is to learn large decision

margins in feature space through enlarging the classifier’s

output of one class while suppressing those of other classes

in an unsupervised way. Different from supervised mutual

information [56, 19, 45, 34], our MI loss maximizes mutual

information between unlabeled target data Xt and classifi-

er’s prediction Ot inspired by [52, 10, 68, 26].

Based on the desideratum that an ideal conditional dis-

tribution of classifier’s prediction p(Ot|x
t
i) should look

like [0, 0, ..., 1, ..., 0], it’s better to classify samples with

large margin. Grandvalet [28] proved that a entropy term
1

N

∑N

i=1
H(Ot|x

t
i) very effectively meets this requirement,

because it is maximized when the distribution of classifier’s

prediction is uniform and vice versa. However, in the case

of fully unsupervised learning, simply minimizing this en-

tropy will cause that more decision boundaries are removed

and most samples are assigned to the same class. Therefore,

we prefer to uniform distribution of category. An estimate

of the marginal distribution of classifier’s prediction p(Ot)
is given as follows:

p(Ot) =

∫

p(xt
i)p(Ot|x

t
i)dx

t
i =

1

N

N
∑

i=1

p
(

Ot|x
t
i

)

(2)

we suggest that maximizing the entropy of Ot can make

samples assigned evenly across the categories of dataset.

In information theory, mutual information between X

and Y , i.e. I(X;Y ), can be expressed as the difference

of two entropy terms:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (3)

If X and Y are related by a deterministic, invertible func-

tion, then maximal mutual information is attained. In our

case, we combine the two entropy terms and obtain mutual

information between data Xt and prediction Ot:

LM = 1

N

N
∑

i=1

H(Ot|x
t
i)− γH(Ot)

= 1

N

N
∑

i=1

NC
∑

j=1

p(otj |x
t
i)logp(o

t
j |x

t
i)− γ

NC
∑

j=1

p(otj)logp(o
t
j)

=

N
∑

i=1

NC
∑

j=1

p(xt
i)p(o

t
j |x

t
i)logp(o

t
j |x

t
i)− γ

NC
∑

j=1

p(otj)logp(o
t
j)

= H [Ot|Xt]− γH [Ot] ≈ −I(Xt;Ot)

(4)
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where the first term is the entropy of conditional distribution

of Ot which can enlarge the classifier’s output of one class

while suppressing those of other classes; and the second ter-

m is the entropy of marginal distribution of Ot which can

avoid most samples being assigned to the same class. N is

the number of target images, and NC is the number of tar-

get categories. But without groundtruth labels, how can we

obtain NC and guarantee the accuracy of classifier’s predic-

tion? Benefiting from clustering-based pseudo labels, we u-

tilize the number of clusters to substitute for NC , and obtain

preliminary prediction through pre-adaptation to guarantee

accuracy for mutual information loss.

4.3. Adaptation network

As shown in Fig. 4, the architecture of IMAN consists of

a source and target CNN, with shared weights. Maximum

mean discrepancy (MMD) estimator [61, 40, 12, 14], which

is a standard distribution distance metric to measure domain

discrepancy, is adopted on higher layers of network which

are called adaptation layers. We simply use a fork at the

top of the network after the adaptation layer. The inputs of

source CNN are source labeled images while those of target

CNN are target unlabeled data. The goal of training is to

minimize the following loss:

L = LC(Xs, Ys) + α
∑

l∈L

MMD2(Dl
s, D

l
t) + βLM (Xt)

(5)

where α and β are the parameters for the trade-off between

three terms. LM (Xt) is our mutual-information loss on un-

labeled target data Xt. LC(Xs, Ys) denotes source classi-

fication loss on the source data Xs and the source label-

s Ys. Dl
∗ is the l-th layer hidden representation for the

source and target examples, and MMD2(Dl
s, D

l
t) is the

MMD between the source and target evaluated on the l-

th layer representation. The empirical estimate of MMD

between two domains is defined as MMD2(Ds, Dt) =
∥

∥

∥

∥

∥

1

M

M
∑

i=1

φ(xsi )−
1

N

N
∑

j=1

φ(xtj)

∥

∥

∥

∥

∥

2

H

, where φ represents the

function that maps the original data to a reproducing ker-

nel Hilbert space.

The entire procedure of IMAN is depicted in Algorithm

1. Source classification loss supervises learning proceeds

for source domain. MMD minimizes the domain discrep-

ancy to learn domain-invariant representations. Additional-

ly, in the pre-training stage, MMD provides more reliable

underlying target representations for clustering leading to

higher quality of pseudo-labels. Clustering-based pseudo-

labels can improve the performance of target domain pre-

liminarily and guarantee the accuracy of network’s predic-

tion for unsupervised MI loss. MI loss can further take full

advantage of all target data, no matter whether they are suc-

cessfully clustered or not, to learn larger decision margins

and enhance the discrimination ability of network for target

domain.

Algorithm 1 Information Maximization Adaptation Net-

work (IMAN).

Input:

Source domain labeled samples {xs
i , y

s
i }

M
i=1

, and target

domain unlabeled samples {xt
i}

N
i=1

.

Output:

Network layer parameters Θ.

1: Stage-1: // Pre-training:

2: Pre-train network by MMD [61] and source classifica-

tion loss to minimize domain discrepancy and provide

more reliable target representations for clustering;

3: Repeat:

4: Stage-2: // Pre-adaptation:

5: Adopt clustering algorithms to generate pseudo-labels

of partial target images according to Eqn. (1); Pre-adapt

the network on them with supervision of Softmax to

obtain preliminary improvement of target domain;

6: Stage-3: // MI-adaptation:

7: Adapt the network with mutual information loss ac-

cording to Eqn. (5) to further enhance the discrimina-

tion ability of network output;

8: Until convergence

5. Experiments on RFW

5.1. Racial bias experiment

Experimental Settings. We use the similar ResNet-34

architecture described in [21]. It is trained with the guid-

ance of Arcface loss [21] on the CAISA-Webface [67], and

is called Arcface(CASIA) model. CASIA-Webface consist-

s of 0.5M images of 10K celebrities in which 85% of the

photos are Caucasians. For preprocessing, we use five fa-

cial landmarks for similarity transformation, then crop and

resize the faces to 112×112. Each pixel ([0, 255]) in RG-

B images is normalized by subtracting 127.5 and then be-

ing divided by 128. We set the batch size, momentum, and

weight decay as 200, 0.9 and 5e−4, respectively. The learn-

ing rate is started from 0.1 and decreased twice with a factor

of 10 when errors plateau.

Existence of racial bias. We extract features of 6000

pairs in RFW by our Arcface(CASIA) model and com-

pare the distribution of cosine-distances, as shown in Fig.

5(c). The distribution of Caucasian has a more distinc-

t margin than that of other races, which visually proves

the recognition errors of non-Caucasian subjects are much

higher. Then, we also examine some SOTA algorithms, i.e.

Center-loss [65], Sphereface [39], VGGFace2 [15] and Ar-

cFace [21], as well as four commercial recognition APIs,

i.e. Face++, Baidu, Amazon, Microsoft on our RFW. The
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(a) Center loss (b) Spereface

(c) Arcface (d) VGGFace2

Figure 6. The ROC curves of (e) Center loss, (f) Spereface (g)

Arcface, (h) VGGFace2 evaluated on all pairs.

biometric ROC curves evaluated on all pairs are presented

in Fig. 6; the accuracies in LFW-like protocol are given in

Table 1 and its ROC curves are given in the Supplemen-

tary Material. First, all SOTA algorithms and APIs perform

the best on Caucasian testing subset, followed by Indian,

and the worst on Asian and African. This is because that

the learned representations predominantly trained on Cau-

casians will discard information useful for discerning non-

Caucasian faces. Second, a phenomenon is found coinci-

dent with [11]: APIs which are developed by East Asian

companies perform better on Asians, while APIs developed

in the Western hemisphere perform better on Caucasians.

Existence of domain gap. The visualization and quan-

titative comparisons are conducted at feature level. The

deep features of 1.2K images are extracted by our Arc-

face(CASIA) model and are visualized respectively using t-

SNE embeddings [22], as shown in Fig. 5(a). The features

almost completely separate according to race. Moreover,

we use the MMD to compute distribution discrepancy be-

tween the images of Caucasians and other races in Fig. 5(b).

From the figures, we make the same conclusions: the dis-

tribution discrepancies between Caucasians and other races

are much larger than that between Caucasians themselves,

which conforms that there is domain gap between races.

Cause of racial bias. We download more images of non-

Caucasians from Website according to FreeBase celebrities

[27], and construct an Equalizedface dataset. It contains

590K images from 14K celebrities which has the similar

scale with CASIA-Webface database but is approximate-

ly race-balanced with 3.5K identities per race. Using E-

qualizedface as training data, we train an Arcface(Equal)

model in the same way as Arcface(CASIA) model and com-

pare their performances on 6000 difficult pairs of RFW, as

shown in Table 3. Compared with Arcface(CASIA) model,

Arcface(Equal) model trained equally on all races perform-

s much better on non-Caucasians which proves that racial

bias in databases will reflect in FR algorithm. However,

even with balanced training, we see that non-Caucasians

still perform poorly than Caucasians. The reason may be

that faces of colored skin are more difficult to extract and

preprocess feature information, especially in dark situation-

s. Moreover, we also train specific models on 7K identities

of the same race, its performance is a bit lower compared to

balanced training (3.5K people for each race). We believe

there exists cooperative relationships among different races

due to similar low-level features so that this mixture of races

would improve the recognition ability.

5.2. Domain adaptation experiment

Datasets. A training set with four race-subsets is also

constructed according to RFW. One training subset con-

sists of about 500K labeled images of 10k Caucasians and

three other subsets contain 50K unlabeled images of non-

Caucasians, respectively, as shown in Table 4. We use Cau-

casian as source domain and other races as target domains,

and evaluate algorithms on 6000 pairs and all pairs of RFW.

Subsets
Train Test

# Subjects # Images # Subjects # Images

Caucasian 10000 468139 2959 10196

Indian - 52285 2984 10308

Asian - 54188 2492 9688

African - 50588 2995 10415

Table 4. Statistic of training and testing dataset.

Implementation detail. For preprocessing, we share the

uniform alignment methods as Arcface(CASIA) model as

mentioned above. For MMD, we follow the settings in DAN

[40], and apply MMD to the last two fully-connected layers.

In all experiments, we use ResNet-34 as backbone and set

the batch size, momentum, and weight decay as 200, 0.9 and

5e− 4, respectively. In pre-training stage, the learning rate

is started from 0.1 and decreased twice with a factor of 10

when errors plateau. In pre-adaptation stage, we pre-adapt

network on pseudo-labeled target samples and source sam-

ples using learning rate of 5e − 3. In MI-adaptation stage,

we adapt the network with learning rate of 1e− 3 using all

source and target data. In IMAN-A(Arcface), Arcface [21]

is used as source classification loss and the parameter α, β

and γ are set to be 10, 5 and 0.2, respectively. In IMAN-

S(Softmax), Softmax is used as source classification loss

and the parameter α, β and γ are set to be 2, 5 and 0.2.

Experimental result. Three UDA tasks are performed,

namely transferring knowledge from Caucasian to Indian,

Asian and African. Due to the particularity of task, very few

studies have focused on UDA in FR task. The latest work
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Figure 5. (a) The feature space of four testing subsets. Each color dot represents a image belong to Caucasian, Indian, Asian or African.

(b) The distribution discrepancy between Caucasians and other races measured by MMD. ’Ca’, ’As’, ’In’ and ’Af’ represent Caucasian,

Asian, Indian and African, respectively. (c) Distribution of cosine-distances of 6000 pairs on Caucasian, Indian, Asian and African subset.

Training Databases LFW CFP-FP AgeDB-30 Caucasian Indian Asian African

CASIA-WebFace [67] 99.40 93.91 93.35 92.15 88.00 83.98 84.93

Equalizedface (ours) 99.55 92.74 95.15 93.92 92.98 90.60 90.98

Caucasian-7000 99.20 88.00 94.61 93.68 - - -

Indian-7000 98.53 90.80 86.47 - 90.37 - -

Asian-7000 98.05 87.71 86.05 - - 91.27 -

African-7000 98.45 86.44 89.62 - - - 90.88

Table 3. Verification accuracy (%) of ResNet-34 models trained with different training datasets.

is performed by Luo et al. [70] who utilizes MMD-based

method, i.e. DDC [61] and DAN [40], to perform scene

adaptation. Therefore, we also compare our IMAN with

these two UDA methods. DDC adopts single-kernel MMD

on the last fully-connected layers; DAN adopts multi-kernel

MMD on the last two fully-connected layers.

Methods Caucasian Indian Asian African

Softmax 94.12 88.33 84.60 83.47

DDC-S [61] - 90.53 86.32 84.95

DAN-S [40] - 89.98 85.53 84.10

IMAN-S (ours) - 91.08 89.88 89.13

Arcface [21] 94.78 90.48 86.27 85.13

DDC-A [61] - 91.63 87.55 86.28

DAN-A [40] - 91.78 87.78 86.30

IMAN-A (ours) - 93.55 89.87 88.88

IMAN*-A (ours) - 94.15 91.15 91.42

Table 5. Verification accuracy (%) on 6000 pairs of RFW dataset.

“-S” represents the methods using Softmax as source classification

loss; while “-A” represents the ones using Arcface.

From Table 5 and Fig. 7, we have the following observa-

tions. First, without adaptation, Arcface, which published

in CVPR’19 and reported SOTA performance on the LFW

and MegaFace challenges, can not obtain perfect perfor-

mance on non-Caucasians due to race gap. Second, MMD-

based methods, i.e. DDC and DAN, obtain limited improve-

ment compared with Softmax and Arcface model, which

confirms our thought that the popular methods by the glob-

al alignment of source and target domain are insufficient

for face recognition. Third, we can find that our IMAN-S

and IMAN-A both dramatically outperform all of the com-

pared methods and IMAN-A achieves about 3% gains over

(a) Indian set (b) Asian set (c) African set

Figure 7. The ROC curves of Arcface, DAN-A, and IMAN-A

models evaluated on all pairs of non-Caucasian sets.

Arcface model. Furthermore, when pre-adapting network

with supervision of Arcface loss instead of Softmax loss in

the second stage, our IMAN-A (denoted as IMAN*-A) is

further improved, and obtains the best performances with

94.15%, 91.15% and 91.42% for Indian, Asian and African

set. Especially, we further optimize IMAN*-A by perform-

ing pre-adaptation and MI-adaptation alternatively and iter-

atively in task Caucasian→African, and show the accuracy

at each iteration in Fig. 8. The performance gradually in-

creases until convergence.

Figure 8. Verification accuracy of IMAN*-A at each iteration

when performing pre-adaptation and MI-adaptation alternatively

in task Caucasian→African. The value at the 0-th iteration means

accuracy of Arcface tested on 6K pairs of African set.

Ablation Study. IMAN consists of two main contribu-

tions comparing with existing UDA methods, i.e. pseudo-

adaptation and MI-adaptation. To evaluate their effec-
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Figure 9. (a) Feature visualization in task Caucasian→African. (b)

Distribution discrepancy of source and target domain.

tiveness, we perform ablation study using Arcface loss

as source classification loss. In Table 6, the results of

IMAN w/o pseudo-labels are unsatisfactory because MI

loss depends on pseudo-adaptation to guarantee the accu-

racy of classifier and only performing MI-adaptation with a

randomly-initialized classifier is meaningless. To get a fair

comparison, as we can see from the results of IMAN w/o

MI, pseudo-adaptation is superior to baseline by about 2.3%

on average, and our IMAN outperforms pseudo-adaptation

by about 1.1% benefiting from MI-adaptation. It shows that

each component has unique effect on reducing racial bias.

Methods Indian Asian African

w/o pseudo-labels 91.02 86.88 85.52

w/o MI 92.08 88.80 88.12

IMAN-A (ours) 93.55 89.87 88.88

Table 6. Ablation study on 6000 pairs of RFW dataset.

Visualization. To demonstrate the transferability of

the IMAN learned features, the visualization comparison-

s are conducted at feature level. First, we randomly ex-

tract the deep features of 10K source and target images in

task Caucasian→African with Arcface model and IMAN-

A model, respectively. The features are visualized using t-

SNE, as shown in Fig. 9(a). After adaptation, more source

and target data begin to mix in feature space so that there is

no boundary between them. Second, we compute domain

discrepancy between source and target domain using Arc-

face and IMAN-A activations respectively. Fig. 9(b) shows

that discrepancy using IMAN-A features is much smaller

than that using Arcface features. Therefore, we conclude

that our IMAN does help to minimize domain discrepan-

cy and align feature space between two domains benefited

from MMD.

Additional experiments on IJB-A and GBU. Besides

race gap, there are other domain gaps which make the learn-

t model degenerate in target domain, e.g. different lighting

condition, pose and image quality. To validate our IMAN

method, we further adopt it to reduce these domain gaps

by using CASIA-Webface as source domain and using G-

BU [48] or IJB-A [37] as target domain. The images in

CASIA-Webface are collected from Internet under uncon-

strained environment and most of the figures are celebrities

Method Ugly Bad Good

LRPCA-face [48] 7.00 24.00 64.00

Fusion [47] 15.00 80.00 98.00

VGG [47] 26.00 52.00 85.00

Arcface(CASIA) [21] 75.00 90.32 96.21

DAN-A [40] 80.77 93.66 97.60

IMAN-A (ours) 85.38 96.00 98.88

Table 7. VR at FAR of 0.001 for GBU partitions.

Method

IJB-A: Verif.
IJB-A: Identif.

TAR@FAR’s of

0.001 0.01 0.1 Rank1 Rank10

Bilinear-CNN [20] - - - 58.80 -

Face-Search [62] - 73.30 - 82.00 -

Deep-Multipose [7] - 78.70 - 84.60 94.70

Triplet-Similarity [53] - 79.00 94.50 88.01 97.38

Joint Bayesian [17] - 83.80 - 90.30 97.70

VGG [46] 64.19 84.02 96.09 91.11 98.25

Arcface(CASIA) [21] 74.19 87.11 94.87 90.68 96.07

DAN-A [40] 80.64 90.87 96.22 92.78 97.01

IMAN-A (ours) 84.19 91.88 97.05 94.05 98.04

Table 8. Verification performance (%) of IJB-A. “Verif” represents

the 1:1 verification and “Identif.” denotes 1:N identification.

taken in ambient lighting. GBU is split into three partitions

with face pairs of different recognition difficulty, i.e. Good,

Bad and Ugly. Each partition consists of a target set and a

query set, and both them contain 1085 images of 437 dis-

tinct people. The images are frontal and are taken outdoors

or indoors in atriums and hallways with digital camera. IJB-

A contains 5,397 images and 2,042 videos of 500 subjects,

and covers large pose variations and contains many blur-

ry video frames. The results on GBU and IJB-A databases

are shown in Table 7 and 8. After adaptation, our IMAN-

A surpasses other compared methods, even better than Arc-

face(CASIA) model. In particular, it outperforms the SOTA

counterparts by a large margin on the GBU, although it is

only based on the unsupervised adaptation.

6. Conclusion

An ultimate face recognition algorithm should perform

fairly on different races. We have done the first step and

create a benchmark, i.e. RFW, to fairly evaluate racial bias.

Through experiments on our RFW, we first verify the exis-

tence of racial bias. Then, we address it in the viewpoint

of domain adaptation and design a novel IMAN method

to bridge the domain gap and transfer knowledge between

races. The comprehensive experiments prove the potential

and effectiveness of our IMAN to reduce racial bias.
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