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Abstract

Recognizing unseen attribute-object pairs never appear-

ing in the training data is a challenging task, since an object

often refers to a specific entity while an attribute is an ab-

stract semantic description. Besides, attributes are highly

correlated to objects, i.e., an attribute tends to describe dif-

ferent visual features of various objects. Existing methods

mainly employ two classifiers to recognize attribute and ob-

ject separately, or simply simulate the composition of at-

tribute and object, which ignore the inherent discrepancy

and correlation between them. In this paper, we propose a

novel adversarial fine-grained composition learning model

for unseen attribute-object pair recognition. Considering

their inherent discrepancy, we leverage multi-scale feature

integration to capture discriminative fine-grained features

from a given image. Besides, we devise a quintuplet loss

to depict more accurate correlations between attributes and

objects. Adversarial learning is employed to model the dis-

crepancy and correlations among attributes and objects.

Extensive experiments on two challenging benchmarks indi-

cate that our method consistently outperforms state-of-the-

art competitors by a large margin.

1. Introduction

Understanding visual concepts has always been a holy

grail of computer vision. Different from supervised learn-

ing, zero-shot learning deals with the situation wherein not

all samples are assigned with labels, and thus an in-depth

interpretation is required to recognize the samples never ap-

pearing during training. In this paper, we consider a zero-

shot recognition scenario where each sample is respectively

composed of an attribute and an object (namely an adjec-

tive plus a noun). As shown in Figure 1, we train with two

groups of samples young tiger and old car, and expect to
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Figure 1. Overview of unseen attribute-object recognition. For ex-

ample, it is expected to learn the concepts of “old” and “tiger”

from the training data, and predict “old tiger” in the test data.

successfully recognize an unseen sample of old tiger. It is a

challenging task due to: 1) attributes and objects are intrin-

sically different since objects are physical entities while at-

tributes belong to semantic descriptions, and tend to present

different visual content. Therefore, it is difficult to capture

consistent features for attributes and objects simultaneously

and explicitly; 2) attributes are highly correlated to objects

and have larger visual diversity compared with objects. For

example, the attribute “old” in “old tiger” and “old car”

has totally distinct visual presentations. Such imbalance be-

tween attribute and object often results in more unsatisfac-

tory results for recognizing unseen attribute-object pairs.

Traditional methods like [18] regard such problem as

general recognition task by separately training classifiers

for objects and attributes. These methods perform to learn

attribute and object features respectively, but neglect the
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inherent discrepancy and correlation between them. Intu-

itively, it is problematic to represent an attribute with a fixed

feature due to its large visual diversity. On account of this,

it is advisable to approach the intrinsic discrepancy and cor-

relation between attributes and objects, and treat them with

a unified view. Besides, other methods [19, 20] attempt to

model the diverse compositions of attributes and objects,

and project the compositions as well as the image visual

features to a common embedding space with regularization,

such as triplet loss [11, 27, 6]. However, the triplet loss,

only regarding the negative sample as the one whose both

attribute and object are different from the anchor, is unable

to capture the complicated relationships between attribute-

object pairs. In light of our observation in the experiments,

these methods are easily confused by similar images (par-

tially different images, e.g., “young tiger” and “old tiger”)

when predicting an unseen image. Therefore, it is critical to

explore more fine-grained attribute-object relationships for

describing the essential and subtle difference of the similar

images.

In this paper, we propose an adversarial fine-grained

composition learning model for recognizing unseen

attribute-object pairs, aiming at establishing complete

attribute-object relationships. First, we design a quintu-

plet loss to regularize the relationships among images and

attribute-object pairs in a common embedding space. Un-

like the triplet loss, we define the samples that are only

partially different from the anchor as semi-negative sam-

ples. Together with the anchor, positive, semi-negative

and negative samples we can construct a quintuplet for a

more elaborate description of the attribute-object relation-

ship in the common embedding space. Second, we formu-

late our model with GAN [9] to compose the positive and

(semi-)negative samples. Benefiting from the adversarial

learning, we can garner the most discriminative attribute

and object features, such that the attribute-object relation-

ships can be well-preserved and enhanced for the conse-

quent recognition task. Third, because of the different vi-

sual presentations of attributes and objects, we find that at-

tributes often come with details while objects usually fo-

cus on the whole concepts. Hence, we adopt multi-scale

feature integration to attain more discriminative representa-

tions of attribute and object features. We evaluate our pro-

posed method on two challenging benchmarks, i.e., MIT-

State [12] and UT-Zappos [33]. The comparison with five

state-of-the-art methods demonstrates that our method con-

sistently achieves the best results by a large margin. Fur-

thermore, ablation study shows that each of the adopted

techniques i.e. fine-grained multi-scale feature integration,

quintuplet loss design, and adversarial learning contributes

to boosting the performance of our method.

To sum up, the contributions of this work are threefold:

• We refer to the unseen attribute-object pair recognition

as a fine-grained classification task, and introduce the

multi-scale feature integration to capture discrimina-

tive fine-grained features.

• A novel quintuplet loss is devised to regularize the

common embedding space for an in-depth interpreta-

tion of the complicated relationships among attribute-

object pairs.

• We leverage adversarial learning to build the attribute-

object relationships. Different from the existing meth-

ods, we do not simply generate training samples, but

flexibly compose positive and (semi-)negative pairs

with an adversarial manner.

2. Related Work

Zero-Shot Learning (ZSL) is a subproblem of trans-

fer learning, whose goal is extending supervised learning

to the setting where not enough labels are available for all

classes. ZSL can be extended to a more general problem,

i.e., Generalized ZSL (GZSL), where the model is tested

with both seen and unseen labels while the seen labels are

excluded in ZSL. In such a setting, it is expected that we

can utilize auxiliary information, e.g., attributes of the seen

samples, to learn the composition of these attributes for

the unseen ones. Recently, much progress has been made

in addressing this issue with different manners, which can

be typically divided into two categories: embedding-based

methods [1, 22, 2, 25, 15, 30, 28] aiming to build a space

to bridge the images and their corresponding semantic fea-

tures, and generative-based methods [3, 5, 14] that incor-

porate a generative module to synthesize features of unseen

categories.

Generative Adversarial Network (GAN) [9] has been

involved in copious amounts of computer vision and ma-

chine learning tasks [34, 32, 31] due to its promising per-

formance. In general, GAN involves two components, i.e.,

a generator and a discriminator. The generator learns to

model the distribution of training samples and generate fake

samples imitating the training ones, while the discrimina-

tor tries to distinguish the generated fake samples from the

real ones. By implicitly defining the loss function with the

discriminator trained adversarially along with the genera-

tor, GAN-based methods are more flexible to capture the

semantic relationships between images and the correspond-

ing class labels in zero-shot learning. Generally, most of the

GAN-based ZSL methods [3, 5, 26, 8] inherit the inspira-

tion of cGAN [17] which extends GAN from unsupervised

learning into the semi-supervised setting by inputting the

conditional variables along with the noise vectors. Our pro-

posed method is also formulated with a GAN structure, but

different from the existing methods, we use GAN to com-

pose and enhance the diverse attribute-object pair relation-
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Figure 2. The framework of our proposed method, which consists of a pre-trained feature extractor, a generator and a discriminator. Given

an image, the extractor captures its multi-scale features, which are then projected to a common embedding space as the anchor. Meanwhile,

the generator composes four samples with concatenated attribute-object word vectors, and the positive sample is sent to a classifier with the

auxiliary classification loss Laux. Then we construct a quintuplet in the common embedding space, which is regularized with the quintuplet

loss Lquin. The discriminator takes as input the anchor and the positive sample, and determines which input comes from the generator with

the adversarial loss Ladv.

ships in the common embedding space rather than simply

synthesize training samples.

Unseen Attribute-Object Pair Recognition. This pa-

per focuses on a special case of zero-shot learning sce-

nario. Specifically, we study the situation where samples

are respectively composed of an attribute (an adjective) and

an object (a noun). In this setting, it is expected that we

can recognize unseen attribute-object pairs with the model

only trained on seen samples. To address this challenging

problem, conventional methods [4, 18] utilize one or more

classifiers to compose unseen attribute-object pairs with the

primitive seen ones. A recent study [19] proposes to model

different attributes as operators, and attribute-object pairs as

objects transformed by the operators. More recently, Nan et

al. [20] propose to find an intrinsic attribute-object repre-

sentation with an encoder-decoder mechanism. In this pa-

per, we explore the attribute-object relationships in the com-

mon embedding space, and construct the learned relation-

ships under a GAN-based framework.

3. Methodology

The goal of this paper is to recognize the attribute-object

pair of an unseen image without additional information. For

instance, training with the images of “young tiger” and “old

car”, the expected result of the task is to correctly predict a

given unseen image as “old tiger”. The challenges include:

1) For zero-shot learning, the model knows little about

the test attribute-object pairs that never appear in training;

2) As discussed before, this task to some extent refers to

a fine-grained recognition problem. Thus, how to capture

the discriminative fine-grained features is crucial;

3) The object often plays a more dominant role than the

attribute, which can invalidate the recognition task.

To address these challenges, we design a quintuplet loss

to regularize the composition of attribute-object pairs. We

adopt GAN to adversarially compose and preserve discrim-

inative attribute-object features. At last, fine-grained fea-

tures are captured by using multi-scale feature integration.

In the following subsections, we will describe the quin-

tuplet loss, the adversarial learning framework, the multi-

scale feature integration, the overall objective function, and

the training and inference procedure.

3.1. The Quintuplet Loss

Given an image Ia,o, our goal is to predict its correspond-

ing attribute-object pair label 〈a, o〉. For simplicity, we use

“¯” to denote a negative label, e.g., 〈a, ō〉 indicates a pair

with the same attribute and the different object compared to

〈a, o〉. As shown in Figure 2, an image Ia,o is fed into a

pre-trained feature extractor and its visual feature vector is

extracted. Then the visual feature vector is projected into a

common embedding space as an anchor of a triplet and de-

3743



Anchor

Positive sample

Semi-negative sample

Negative sample

young

tiger

〈𝑎𝑎, 𝑜𝑜〉
〈𝑎𝑎, 𝑜𝑜〉 〈𝑎𝑎, �̅�𝑜〉

〈�𝑎𝑎, �̅�𝑜〉〈�𝑎𝑎, 𝑜𝑜〉
young
tiger

young

cat

old

cat

old

tiger

Figure 3. Illustration of the proposed quintuplet loss.

fined as xa,o, which is widely adopted in traditional meth-

ods [19, 20, 29]. Apart from the anchor xa,o, the triplet

contains two other composed samples from the generator

(see details in Subsection 3.2), i.e., a positive sample x̂a,o

and a negative one x̂ā,ō. The standard triplet loss ensures

the anchor xa,o to be close to the positive sample x̂a,o and

far from the negative one x̂ā,ō, which is formulated as:

Ltriplet(xa,o, x̂a,o, x̂ā,ō) =

max
(

0, d(xa,o, x̂a,o)−d(xa,o, x̂ā,ō)+m
)

, (1)

where d(·, ·) denotes Euclidean distance, and m is the mar-

gin value (set to 0.5 in all involved experiments).

The triplet loss only considers x̂ā,ō as the negative sam-

ple of the anchor xa,o. However, for the task of recogniz-

ing unseen attribute-object pairs, this definition for negative

samples is actually insufficient. Thus, we design a quintu-

plet loss to regularize the common embedding space. As

illustrated in Figure 3, we think that x̂ā,o and x̂a,ō (e.g.,

“young cat” and “old tiger”) should lie closer to the an-

chor xa,o (e.g., “young tiger”) than the negative sample

x̂ā,ō (e.g., “old cat”) does in the common embedding space.

We also observe that large numbers of classification errors

occur to the samples that are predicted as 〈ā, o〉 or 〈a, ō〉
rather than the ground truth 〈a, o〉. Therefore, we regard

x̂ā,o and x̂a,ō as “semi-negative samples”. Together with

the anchor xa,o, the positive sample x̂a,o and the negative

sample x̂ā,ō, we can construct a quintuplet for a better de-

piction of the attribute-object relationships in the common

embedding space. The quintuplet loss is formulated as the

summation of three triplet losses:

Lquin(xa,o, x̂a,o, x̂ā,ō, x̂a,ō, x̂ā,o) =

λ1Ltriplet (xa,o, x̂a,o, x̂ā,ō)

+ λ2Ltriplet (xa,o, x̂a,o, x̂a,ō)

+ λ3Ltriplet (xa,o, x̂a,o, x̂ā,o) , (2)

where λ1, λ2 and λ3 are trade-off parameters, which are re-

spectively set to 1, 0.5, and 0.5 in all involved experiments.

3.2. Adversarial learning for Composition Pairs

We construct a GAN to model the composition of

attribute-object pairs and enhance the attribute-object rela-

tionships with adversarial learning. GAN consists of a gen-

erator G and a discriminator D, where G is to compose the

attribute-object pairs and D is to distinguish whether a pair

is composed by the generator G.

In particular, the generator G takes as input the attribute

word vector wa and the object word vector wo correspond-

ing to the anchor xa,o. Then, the two word vectors are con-

catenated and projected to the common embedding space as

a composed attribute-object pair vector, which is defined as

a positive sample x̂a,o. Accordingly, with different input

word vectors (wa, wā, wo, and wō), the generator com-

poses x̂a,ō, x̂ā,o and x̂ā,ō as the semi-negative and nega-

tive samples. The discriminator D takes as input the an-

chor xa,o and the composed positive sample x̂a,o, and de-

termines which input is produced by the generator G. The

discriminator D is designed as a multi-layer perceptron,

which promotes the generator G to compose discriminative

attribute-object features with the overall adversarial loss:

Ladv = Exa,o

(

logD (xa,o)
)

+ Ewa,wo

(

log
(

1−D
(

G (wa,wo)
)

)

)

, (3)

where G (wa,wo) = x̂a,o, and G tries to minimize Ladv

while D tries to maximize it.

3.3. MultiScale Feature Integration

As discussed in Section 1, recognizing the unseen

attribute-object pairs requires fine-grained discriminative

attribute features. In fact, the commonly-used feature ex-

tractor (ResNet-18 [10]) is pre-trained on the ImageNet

dataset [23], which is collected for the object recognition

task. As a result, the extracted visual feature vector con-

tains considerably more object features than the attribute

ones, such that the visual features of images Ia,o and Iā,o

(e.g., “young tiger” and “old tiger”) can be extremely sim-

ilar. To address this problem, we introduce the multi-scale

feature integration. Without fine-tuning the pre-trained fea-

ture extractor, the features are fused from layers of differ-

ent depths as shown in Figure 2. Compared with the fea-

tures only extracted from the last layer, the features from

lower ones contain more fine-grained information, which is

beneficial to acquiring more discriminative visual features.

Through global average pooling and concatenating, we can

derive the final visual feature vector. The effectiveness of

the multi-scale feature integration will be proven in the ex-

periment part in Section 4.
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3.4. Overall Objective Function

In our method, the composition of attribute-object pairs

is flexible. There is always a possibility that either an at-

tribute or an object plays a prominent role in the composi-

tion process, which may bring about an imbalance between

attributes and objects. Such imbalance often leads to the

high classification accuracy for the major one and low for

the other one, which can cause the overall attribute-object

prediction inaccurate. Therefore, we introduce an auxil-

iary classification loss that guides the composition process,

which is formulated as:

Laux = ha(x̂a,o, a) + ho(x̂a,o, o) , (4)

where ha(·) and ho(·) are both a fully-connected layer with

the cross-entropy loss trained to classify attributes and ob-

jects respectively. The feature of attribute and object can

be reserved in the composition with the supervision of the

auxiliary classification loss.

Finally, the objectives of G and D are written as:

LD =− Ladv , (5)

LG = Ladv + λquinLquin + λauxLaux , (6)

where λquin and λaux are trade-off parameters, which are

respectively set to 1 and 1000 in all involved experiments.

3.5. Training and Inference

During training, we project each image Ia,o into a com-

mon embedding space as the anchor xa,o. The attribute and

object word vectors wa, wā, wo, and wō are concatenated

and projected into the common embedding space as four

samples x̂a,o, x̂a,ō, x̂ā,o, and x̂ā,ō by the generator G. We

note that wā and wō are randomly selected to be differ-

ent from wa and wo. The quintuplet loss pulls x̂a,o close

to xa,o, and x̂a,ō, x̂ā,o, x̂ā,ō away from xa,o. The losses

guarantee the discrimination of generated composition for

promising classification results.

For inference, given an unseen image I with the vector x

in common embedding space, we generate the compositions

of candidate pairs from all available word vectors. The dis-

tances between x and each candidate pair x̂ are computed

and sorted. Then, the candidate pair x̂a,o corresponding to

the shortest distance is regarded as the prediction, i.e., the

unseen image I is predicated as Ia,o.

4. Experiments

In this section, all involved datasets, evaluation metrics

and baselines are introduced in detail. Then, we will present

the implementation details as well as the experimental re-

sults of our method and several state-of-the-art competitors.

Finally, two ablation studies will prove the effectiveness of

our proposed approach.

4.1. Datasets

We evaluate our method on two popular datasets.

MIT-States [12] has a wide range of objects and at-

tributes. It contains 245 object classes, 115 attribute classes,

with 53,753 images in total. Each image is annotated with

an attribute-object pair such as “young tiger”. Since not

all pairs make sense in the real world, it contains 1962

attribute-object pairs rather than 28,175 pairs. We use the

compositional split [18], i.e., 1262 pairs (34,562 images)

for training and 700 pairs (19,191 images) for testing. The

training pairs and testing pairs are non-overlapping.

UT-Zappos [33] contains 50,025 images of shoes with

attribute labels, which has 16 attribute classes and 12 ob-

ject classes. Following the same setting in [19], we use 83

attribute-object pairs (24,898 images) for training and 33

pairs for testing (4228 images).

4.2. Evaluation

We evaluate the methods by Top-1 accuracy on recogniz-

ing unseen attribute-object pairs. The accuracy is reported

via three metrics:

Closed: testing pair candidates are restricted to the un-

seen pairs. At the test stage, we measure the embedding

distances between a given image and only the unseen pairs,

then predict the image as the nearest composed pair. The

Closed metric reduces the number of testing candidates and

usually achieves better accuracy, but is not practical for real-

world applications.

Open: testing pair candidates are open for all seen and

unseen pairs. During testing, we consider both seen and un-

seen composed pairs as candidates for recognition, which is

more practical and challenging. The embedding distances

are measured between a given image and the pair candi-

dates, and then the image is predicted as the nearest com-

posed pair.

H-Mean: Harmonic Mean measures the overall perfor-

mance of both Closed and Open metrics, defined as:

AH = 2×
AC ×AO

AC +AO

, (7)

where AH, AC, and AO respectively denote the accuracy

with H-Mean, Closed, and Open metrics. As a broadly used

evaluation metric [14, 26, 5, 24], Harmonic Mean balances

the performance between the Closed and Open metrics.

4.3. Compared Baselines

Our method is compared with the following baselines:

VisProd [16] trains two classifiers to predict the attribute

and object separately. The Linear SVM is employed as

the classifiers, and the overall accuracy is calculated as the

product of the separate accuracy for attributes and objects.
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Figure 4. Classification accuracy of unseen pair recognition with the three evaluation metrics on the two datasets. We note that “Chance”

indicates random prediction.

AnalogousAttr [4] trains a Linear SVM classifier on

seen attribute-object pairs, and predicts unseen pairs with

the trained classifier.

RedWine [18] uses pre-trained classifier weights (Linear

SVM) to compose word vector representations, and trains a

neural network to recognize unseen attribute-object pairs.

LabelEmbed [7] uses pre-trained GloVe [21] word em-

beddings to compose word vector representations, which is

the difference compared with RedWine.

AttOperator [19] regards attributes as operators, and

simulates attribute-object pair compositions as attribute-

conditioned transformations. The training and testing pairs

are also non-overlapping.

4.4. Implementation

For each image, we extract a 960-dimensional multi-

scale visual feature vector using ResNet-18 [10] pre-trained

on the ImageNet dataset [23]. For each attribute-object

pair, we extract a 960-dimensional linguistic feature vec-

tor for both attribute and object with word embeddings.

Our model is implemented with PyTorch1 and optimized

by ADAM optimizer [13] on an NVIDIA GTX 1080Ti

GPU. The learning rate and batch size are respectively set

to 0.0001 and 512. For the MIT-States dataset, the train-

ing time is approximately 5h for 1000 epochs. For the UT-

Zappos dataset, it takes around 2h for 1000 epochs in train-

ing.

4.5. Results and Analysis

Figure 4 shows the results of our method compared

with the baselines. Our method consistently outperforms

1https://pytorch.org/

all the baselines with all the metrics by a large margin.

On the MIT-States dataset, compared with state of the art,

our method increases the classification accuracy by 1.2%

(Closed), 2.1% (Open), and 2.3% (H-Mean). On the UT-

Zappos dataset, the accuracy of our method increases by

6.4% (Closed), 25.1% (Open), and 23.2% (H-Mean). The

experimental result sufficiently proves the superiority of our

proposed method. Since the baselines directly use visual

features extracted from the last layer of ResNet-18, for fair

comparisons, we also present the result of our method with-

out multi-scale feature integration (denoted as “No Multi”).

Our classification accuracy is slightly worse than the final

ones but still better than the baselines.

Compared with UT-Zappos, MIT-States has a much

larger number of attributes, objects, unseen pairs, more

complex backgrounds, and fewer training samples for each

attribute-object pair, and thus is more difficult to learn ro-

bust composition for unseen pairs. Therefore, MIT-States

benefits relatively less than UT-Zappos.

With the Closed metric, it is relatively easy to produce

satisfactory results by artificially decreasing the number of

pair label candidates. As shown in Figure 4, except Att-

Operator and ours, all other methods perform considerably

worse with the challenging Open metric than the Closed

one, which indicates over-fitting on the datasets.

Figure 5 shows some qualitative results on the two

datasets. On the MIT-States dataset, our method is able

to recognize some samples like “Ancient Building”, “Clut-

tered Cabinet” and “Huge Dog”, which present obvious at-

tributes and objects. For “Broken Laptop”, the attribute

“Broken” is relatively apparent whereas the object “Lap-

top” can vary to a large extent, which causes the error pre-

dictions as 〈a, ō〉. As for “Cored Apple”, the appearance of
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Figure 5. Qualitative results of our method on the two datasets. For each dataset, the left three columns (marked in green) show the samples

with correct predictions 〈a, o〉, the next two columns (in orange) show the samples with predictions as 〈a, ō〉 and 〈ā, o〉 respectively, and

the last column (in red) shows the samples with false predictions 〈ā, ō〉.

Table 1. Ablation study: classification accuracy (%) with three different modules. “Lquin”, “Ladv” and “Multi” respectively indicate the

quintuplet loss, adversarial learning and multi-scale feature integration.

MIT-States UT-Zappos

Method Closed Open H-Mean Closed Open H-Mean

Base 13.4 4.5 6.7 37.4 9.4 15.0

+ Lquin 12.8 11.3 12.0 49.9 47.7 48.8

+ Ladv 14.0 4.4 6.7 43.4 16.0 23.3

+ Multi 13.9 5.3 7.7 47.8 11.2 18.2

+ Lquin+ Ladv 13.9 12.3 13.1 52.1 48.4 50.2

+ Lquin + Multi 14.1 12.9 13.5 51.0 47.8 49.3

+ Ladv + Multi 15.0 5.8 8.4 52.5 16.3 24.9

+ Lquin + Ladv + Multi 14.6 13.5 14.0 53.1 48.5 50.7

“Apple” is obvious, but “Cored” is various and visually hard

to understand. As for “Diced Fruit”, there can be many ob-

jects in different states mixed in the images, which is a big

challenge for our method. Besides, some attributes are con-

fusable and some objects have similar appearances, which

is one of the main reasons leading the false prediction. For

example, the attribute “Old” is similar to “Ancient”, the ob-

ject “Cat” is similar to “Tiger”. On the UT-Zappos dataset,

as the number of attribute-object pairs is small, the results

are relatively better. We can observe that some attributes

or objects with indistinctive visual cues can be recognized

wrongly, such as “ Sheepskin” and “Oxfords Shoes”.

4.6. Ablation Study

We conduct two groups of experiments to study the ef-

fectiveness of the three modules.

The results of our base model adding different modules

are presented in Table 1. The base model is constrained by

the triplet loss, which is to be replaced by our quintuplet

loss when adding “Lquin”. As shown in Table 1, both ad-

versarial learning (denoted as “Ladv”) and multi-scale fea-

ture integration (denoted as “Multi”) can improve the per-

formance with all Closed, Open and H-Mean metrics on

the two datasets. The improvement of adding “Multi” in-

dicates the multi-scale feature integration is able to capture

more discriminative fine-grained visual features by fusing

the outputs of layers in different depth. The improvement

of adding “Ladv” demonstrates that adversarial training is

helpful to compose attribute-object pairs and preserve dis-

criminative features. However, these two modules cannot

minimize the performance disparity between Closed and

Open metrics, which indicates the model still over-fits the
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Table 2. Ablation study: classification accuracy (%) with the triplet/quintuplet loss on MIT-States. “Attribute-Object”, “Attribute”, and

“Object” respectively indicate the performances for predicting the attribut-object pairs, only attributes, and only objects.

Closed Open

Method Attribute-Object Attribute Object Attribute-Object Attribute Object

Ours (with Ltriplet) 15.0 23.0 25.9 5.8 16.4 24.3

Ours (with Lquin) 14.6 23.4 24.4 13.5 22.0 24.9

Table 3. Ablation study: classification accuracy (%) with the triplet/quintuplet loss on UT-Zappos. “Attribute-Object”, “Attribute”, and

“Object” respectively indicate the performances for predicting the attribut-object pairs, only attributes, and only objects.

Closed Open

Method Attribute-Object Attribute Object Attribute-Object Attribute Object

Ours (with Ltriplet) 52.2 55.5 77.3 16.3 30.4 67.2

Ours (with Lquin) 53.1 56.2 78.4 48.5 52.5 78.4

Table 4. Ablation study: numbers of partly correct predictions on

MIT-States. We note that there are 19,191 images in the test set.

Closed Open

Method 〈ā, o〉 〈a, ō〉 〈ā, o〉 〈a, ō〉

Ours (with Ltriplet) 2096 1616 3536 2029

Ours (with Lquin) 1875 1598 2191 1632

Table 5. Ablation study: numbers of partly correct predictions on

UT-Zappos. We note that there are 4228 images in the test set.

Closed Open

Method 〈ā, o〉 〈a, ō〉 〈ā, o〉 〈a, ō〉

Ours (with Ltriplet) 1047 128 2152 593

Ours (with Lquin) 1072 130 1265 168

two datasets. As adding “Lquin” to the base model, the ac-

curacy with Closed and Open metrics is balanced, which

implies the quintuplet loss can regularize the common em-

bedding space effectively. Finally, we combine the three

modules and achieve the best results with all the three eval-

uation metrics on the two datasets.

We also conduct another experiment to evaluate the ca-

pacity of our method to resist the situation predicting Ia,o

as 〈a, ō〉 or 〈ā, o〉. In Table 2 and 3, we report the re-

sults (accuracy of classifying attribute-object pair, only the

attribute, and only the object) of our method on the two

datasets with the triplet/quintuplet loss. We notice that the

accuracy with the Closed metric seems not influenced by

replacing the triplet loss with the quintuplet one, the reason

of which is that the number of the interference candidates

(i.e., 〈a, ō〉 or 〈ā, o〉) is very small. This situation is oppo-

site with the Open metric where the accuracy increases by

a large margin. As listed in Table 4 and 5, we count the

images predicted as 〈a, ō〉 or 〈ā, o〉 rather than the ground

truth 〈a, o〉 with the two losses. As replacing the triplet loss

with the quintuplet one, we see a considerable decrease of

partly correct predictions with the Open metric on both the

two datasets. We can infer from Table 2, 3, 4, and 5 that

the classification accuracy of only attribute (or only object)

increases just following the pattern of which partly correct

predictions decrease. Thus, we can conclude that our pro-

posed quintuplet loss is able to resist the interference from

partly correct samples.

5. Conclusion

In this paper, we have proposed a novel adversarial fine-

grained composition learning model to recognize unseen

attribute-object pairs. We design a quintuplet loss to reg-

ularize the common embedding space, achieving a better

interpretation of the inherent and complex attribute-object

relationships. The adversarial learning strategy is lever-

aged to model the composition of attributes and objects and

preserve attribute-object relationships. We introduce the

multi-scale feature integration to acquire more discrimina-

tive fine-grained features. Experiments show our method

outperforms state-of-the-art competitors by a large margin

on two benchmark datasets with all Closed, Open, and Har-

monic Mean metrics. In the future, we plan to continue

investigating the relationships between attributes and ob-

jects, and cope with the compositions involving multiple

attributes and objects.
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