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Abstract

Detection and segmentation of objects in overheard im-

agery is a challenging task. The variable density, ran-

dom orientation, small size, and instance-to-instance het-

erogeneity of objects in overhead imagery calls for ap-

proaches distinct from existing models designed for natural

scene datasets. Though new overhead imagery datasets are

being developed, they almost universally comprise a single

view taken from directly overhead (“at nadir”), failing to

address a critical variable: look angle. By contrast, views

vary in real-world overhead imagery, particularly in dy-

namic scenarios such as natural disasters where first looks

are often over 40◦ off-nadir. This represents an important

challenge to computer vision methods, as changing view an-

gle adds distortions, alters resolution, and changes light-

ing. At present, the impact of these perturbations for algo-

rithmic detection and segmentation of objects is untested.

To address this problem, we present an open source Multi-

View Overhead Imagery dataset, termed SpaceNet MVOI,

with 27 unique looks from a broad range of viewing angles

(−32.5◦ to 54.0◦). Each of these images cover the same

665 km2 geographic extent and are annotated with 126,747

building footprint labels, enabling direct assessment of the

impact of viewpoint perturbation on model performance.

We benchmark multiple leading segmentation and object

detection models on: (1) building detection, (2) general-

ization to unseen viewing angles and resolutions, and (3)

sensitivity of building footprint extraction to changes in res-

olution. We find that state of the art segmentation and object

detection models struggle to identify buildings in off-nadir

imagery and generalize poorly to unseen views, present-

ing an important benchmark to explore the broadly relevant

challenge of detecting small, heterogeneous target objects

in visually dynamic contexts.

1. Introduction

Recent years have seen increasing use of convolutional

neural networks to analyze overhead imagery collected

by aerial vehicles or space-based sensors, for applications

ranging from agriculture [18] to surveillance [39, 32] to

land type classification [3]. Segmentation and object de-

tection of overhead imagery data requires identifying small,

visually heterogeneous objects (e.g. cars and buildings)

with varying orientation and density in images, a task ill-

addressed by existing models developed for identification of

comparatively larger and lower-abundance objects in natu-

ral scene images. The density and visual appearance of tar-

get objects change dramatically as look angle, geographic

location, time of day, and seasonality vary, further compli-

cating the problem. Addressing these challenges will pro-

vide broadly useful insights for the computer vision com-

munity as a whole: for example, how to build segmentation

models to identify low-information objects in dense con-

texts.

Though public overhead imagery datasets explore geo-

graphic and sensor homogeneity [8, 12, 22, 34, 19], they

generally comprise a single view of the imaged location(s)

taken nearly directly overhead (“at nadir”). Nadir imagery

is not representative of collections during disaster response

or other urgent situations: for example, the first public high-

resolution cloud-free image of San Juan, Puerto Rico fol-

lowing Hurricane Maria was taken at 51.9◦ “off-nadir”, i.e.,

a 51.9◦ angle between the nadir point directly underneath

the satellite and the center of the imaged scene [10]. The

disparity between looks in public training data and rele-

vant use cases hinders development of models applicable

to real-world problems. More generally, satellite and drone

images rarely capture identical looks at objects in different

contexts, or even when repeatedly imaging the same geog-

raphy. Furthermore, no existing datasets or metrics permit

assessment of model robustness to different looks, prohibit-
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Figure 1: Sample imagery from SpaceNet MVOI. Four of the 2222 geographically unique image chips in the dataset are

shown (columns), with three of the 27 views of that chip (rows), one from each angle bin. Negative look angle corresponds

to South-facing views, whereas positive look angles correspond to North-facing views (Figure 2). Chips are down-sampled

from 900× 900 pixel high-resolution images. In addition to the RGB images shown, the dataset comprises a high-resolution

pan-chromatic (grayscale) band, a high-resolution near-infrared band, and a lower-resolution 8-band multispectral image for

each geographic location/view combination. The dataset is available at https://spacenet.ai under a CC-BY SA 4.0

License.

ing evaluation of performance. These limitations extend to

tasks outside of the geospatial domain: for example, con-

volutional neural nets perform inconsistently in many nat-

ural scene video frame classification tasks despite minimal

pixel-level variation [1], and Xiao et al. showed that spatial

transformation of images, effectively altering view, repre-

sents an effective adversarial attack against computer vision

models [36]. Addressing generalization across views both

within and outside of the geospatial domain requires two

advancements: 1. A large multi-view dataset with diver-

sity in land usage, population density, and views, and 2. A

metric to assess model generalization.

To address the limitations detailed above, we intro-

duce the SpaceNet Multi-View Overhead Imagery (MVOI)

dataset, which includes 62,000 overhead images collected

over Atlanta, Georgia USA and the surrounding areas. The

dataset comprises 27 distinct looks, including both North-

and South-facing views, taken during a single pass of a

Maxar WorldView-2 satellite. The looks range from al-

most directly overhead (7.8◦ off-nadir) to up to 54◦ off-

nadir, with the same 665 km2 geographic area covered by

each. Alongside the imagery we open sourced an atten-

dant 126,747 building footprints created by expert labelers.

To our knowledge, this is the first multi-viewpoint dataset

for overhead imagery with dense object annotations. The

dataset covers heterogeneous geographies, including highly

treed rural areas, suburbs, industrial areas, and high-density

urban environments, resulting in heterogeneous building

size, density, context and appearance (Figure 1). At the

same time, the dataset abstracts away many other time-
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sensitive variables (e.g. seasonality), enabling careful as-

sessment of the impact of look angle on model training and

inference. The training imagery and labels and public test

images are available at https://spacenet.ai under the CC-BY

SA 4.0 International License.

Though an ideal overhead imagery dataset would cover

all the variables present in overhead imagery, i.e. look an-

gle, seasonality, geography, weather condition, sensor, and

light conditions, creating such a dataset is impossible with

existing imagery. To our knowledge, the 27 unique looks

in SpaceNet MVOI represent one of only two such imagery

collections available in the commercial realm, even behind

imagery acquisition company paywalls. We thus chose to

focus SpaceNet MVOI on providing a diverse set of views

with varying look angle and direction, a variable that is

not represented in any existing overhead imagery dataset.

SpaceNet MVOI could potentially be combined with exist-

ing datasets to train models which generalize across more

variables.

We benchmark state-of-the art models on three tasks:

1. Building segmentation and detection.

2. Generalization of segmentation and object detection

models to previously unseen angles.

3. Consequences of changes in resolution for segmenta-

tion and object detection models.

Our benchmarking reveals that state-of-the-art detectors

are challenged by SpaceNet MVOI, particularly in views

left out during model training. Segmentation and object

detection models struggled to account for displacement of

building footprints, occlusion, shadows, and distortion in

highly off-nadir looks (Figure 3). The challenge of address-

ing footprint displacement is of particular interest, as it re-

quires models not only to learn visual features, but to ad-

just footprint localization dependent upon the view context.

Addressing these challenges is relevant to a number of ap-

plications outside of overhead imagery analysis, e.g. au-

tonomous vehicle vision.

To assess model generalization to new looks we devel-

oped a generalization metric G, which reports the relative

performance of models when they are applied to previ-

ously unseen looks. While specialized models designed for

overhead imagery out-perform general baseline models in

building footprint detection, we found that models devel-

oped for natural image computer vision tasks have better G

scores on views absent during training. These observations

highlight the challenges associated with developing robust

models for multi-view object detection and semantic seg-

mentation tasks. We therefore expect that developments in

computer vision models for multi-view analysis made us-

ing SpaceNet MVOI, as well as analysis using our metric

G, will be broadly relevant for many computer vision tasks.

The dataset is available at www.spacenet.ai.

2. Related Work

Object detection and segmentation is a well-studied

problem for natural scene images, but those objects are

generally much larger and suffer minimally from distor-

tions exacerbated in overhead imagery. Natural scene

research is driven by datasets such as MSCOCO [20]

and PASCALVOC [13], but those datasets lack multiple

views of each object. PASCAL3D [35], autonomous driv-

ing datasets such as KITTI [14], CityScapes [7], existing

multi-view datasets [29, 30], and tracking datasets such as

MOT2017[24] or OBT [33] contains different views but are

confined to a narrow range of angles, lack sufficient het-

erogeneity to test generalization between views, and are re-

stricted to natural scene images. Multiple viewpoints are

found in 3D model datasets [5, 23], but those are not photo-

realistic and lack the occlusion and visual distortion proper-

ties encountered with real imagery.

Previous datasets for overhead imagery focus on clas-

sification [6], bounding box object detection [34, 19, 25],

instance-based segmentation [12], and object tracking [26]

tasks. None of these datasets comprise multiple images of

the same field of view from substantially different look an-

gles, making it difficult to assess model robustness to new

views. Within segmentation datasets, SpaceNet [12] repre-

sents the closest work, with dense building and road annota-

tions created by the same methodology. We summarize the

key characteristics of each dataset in Table 1. Our dataset

matches or exceeds existing datasets in terms of imagery

size and annotation density, but critically includes varying

look direction and angle to better reflect the visual hetero-

geneity of real-world imagery.

The effect of different views on segmentation or object

detection in natural scenes has not been thoroughly stud-

ied, as feature characteristics are relatively preserved even

under rotation of the object in that context. Nonetheless,

preliminary studies of classification model performance on

video frames suggests that minimal pixel-level changes can

impact performance [1]. By contrast, substantial occlusion

and distortion occurs in off-nadir overhead imagery, com-

plicating segmentation and placement of geospatially accu-

rate object footprints, as shown in Figure 3A-B. Further-

more, due to the comparatively small size of target objects

(e.g. buildings) in overhead imagery, changing view sub-

stantially alters their appearance (Figure 3C-D). We expect

similar challenges to occur when detecting objects in natu-

ral scene images at a distance or in crowded views. Exist-

ing solutions to occlusion are often domain specific [37] or

rely on attention mechanisms to identify common elements

[40] or landmarks [38]. The heterogeneity in building ap-

pearance in overhead imagery, and the absence of landmark

features to identify them, makes their detection an ideal re-

search task for developing domain-agnostic models that are

robust to occlusion.
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Dataset Gigapixels # Images Resolution (m) Nadir Angles # Objects Annotation

SpaceNet [12, 8] 10.3 24586 0.31 On-Nadir 302701 Polygons

DOTA [34] 44.9 2806 Google Earth* On-Nadir 188282 Oriented Bbox

3K Vehicle Detection [21] N/A 20 0.20 Aerial 14235 Oriented Bbox

UCAS-AOD [41] N/A 1510 Google Earth* On-Nadir 3651 Oriented Bbox

NWPU VHR-10 [4] N/A 800 Google Earth* On-Nadir 3651 Bbox

MVS [2] 111 50 0.31-0.58 [5.3, 43.3] 0 None

FMoW [6] 1,084.0 523846 0.31-1.60 [0.22, 57.5] 132716 Classification

xView [19] 56.0 1400 0.31 On-Nadir 1000000 Bbox

SpaceNet MVOI (Ours) 50.2 60000 0.46-1.67 [-32.5, +54.0] 126747 Polygons

PascalVOC [13] - 21503 - - 62199 Bbox

MSCOCO [20] - 123287 - - 886266 Bbox

ImageNet [9] - 349319 - - 478806 Bbox

Table 1: Comparison with other computer vision and overhead imagery datasets. Our dataset has a similar scale as

modern computer vision datasets, but to our knowledge is the first multi-view overhead imagery dataset designed for seg-

mentation and object detection tasks. *Google Earth imagery is a mosaic from a variety of aerial and satellite sources and

ranges from 15 cm to 12 m resolution [15].

Figure 2: Collect views. Location of collection points dur-

ing the WorldView-2 satellite pass over Atlanta, GA USA.

3. Dataset Creation

SpaceNet MVOI contains images of Atlanta, GA

USA and surrounding geography collected by Maxar’s

WorldView-2 Satellite on December 22, 2009 [22]. The

satellite collected 27 distinct views of the same 665 km2

ground area during a single pass over a 5 minute span. This

produced 27 views with look angles (angular distance be-

tween the nadir point directly underneath the satellite and

the center of the scene) from 7.8◦ to 54◦ off-nadir and with

a target azimuth angle (compass direction of image acquisi-

tion) of 17◦ to 182.8◦ from true North (see Figure 2). See

the Supplementary Material and Tables S1 and S2 for fur-

ther details regarding the collections. The 27 views in a

narrow temporal band provide a dense set of visually dis-

tinct perspectives of static objects (buildings, roads, trees,

utilities, etc.) while limiting complicating factors common

to remote sensing datasets such as changes in cloud cover,

sun angle, or land-use change. The imaged area is geo-

Challenges in off-nadir imagery
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Figure 3: Challenges with off-nadir look angles. Though

geospatially accurate building footprints (blue) perfectly

match building roofs at nadir (A), this is not the case off-

nadir (B), and many buildings are obscured by skyscrap-

ers. (C-D): Visibility of some buildings changes at different

look angles due to variation in reflected sunlight.

graphically diverse, including urban areas, industrial zones,

forested suburbs, and undeveloped areas (Figure 1).

3.1. Preprocessing

Multi-view satellite imagery datasets are distinct from

related natural image datasets in several interesting ways.

First, as look angle increases in satellite imagery, the native

resolution of the image decreases because greater distortion
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Figure 4: Dataset statistics. Distribution of (A) building

footprint areas and (B) number of objects per 450m×450m
geographic tile in the dataset.

is required to project the image onto a flat grid (Figure 1).

Second, each view contains images with multiple spectral

bands. For the purposes our baselines, we used 3-channel

images (RGB: red, green, blue), but also examined the con-

tributions of the near-infrared (NIR) channel (see Supple-

mentary Material). These images were enhanced with a sep-

arate, higher resolution panchromatic (grayscale) channel to

double the original resolution of the multispectral imagery

(i.e., “pan-sharpened”). The entire dataset was tiled into

900px× 900px tiles and resampled to simulate a consistent

resolution across all viewing angles of 0.5m×0.5m ground

sample distance. The dataset also includes lower-resolution

8-band multispectral imagery with additional color chan-

nels, as well as panchromatic images, both of which are

common overhead imagery data types.

The 16-bit pan-sharpened RGB-NIR pixel intensities

were truncated at 3000 and then rescaled to an 8-bit range

before normalizing to [0, 1]. We also trained models directly

using Z-score normalized 16 bit images with no appreciable

difference in the results.

3.2. Annotations

We undertook professional labeling to produce high-

quality annotations. An expert geospatial team exhaustively

labeled building footprints across the imaged area using

the most on-nadir image (7.8◦ off-nadir). Importantly, the

building footprint polygons represent geospatially accurate

ground truth, and therefore are shared across all views. For

structures occluded by trees, only the visible portion was

labeled. Finally, one independent validator and one remote

sensing expert evaluated the quality of each label.

3.3. Dataset statistics

Our dataset labels comprise a broad distribution of build-

ing sizes, as shown in Figure 4A. Compared to natural im-

age datasets, our dataset more heavily emphasizes small ob-

jects, with the majority of objects less than 700 pixels in

area, or ∼ 25 pixels across. By contrast, objects in the PAS-

CALVOC [13] or MSCOCO [20] datasets usually comprise

50-300 pixels along the major axis [34].

Task Baseline models

Semantic Segmentation TernausNet [17] , U-NET [27]

Instance Segmentation Mask R-CNN [16]

Object Detection Mask R-CNN [16], YOLT [11]

Table 2: Benchmark model selections for dataset baselines.

TernausNet and YOLT are overhead imagery-specific mod-

els, whereas Mask R-CNN and U-Net are popular natural

scene analysis models.

An additional challenge presented by this dataset, con-

sistent with many real-world computer vision tasks, is the

heterogeneity in target object density (Figure 4B). Images

contained between zero and 300 footprints, with substantial

coverage throughout that range. This variability presents

a challenge to object detection algorithms, which often re-

quire estimation of the number of features per image [16].

Segmentation and object detection of dense or variable den-

sity objects is challenging, making this an ideal dataset to

test the limits of algorithms’ performance.

4. Building Detection Experiments

4.1. Dataset preparation for analysis

We split the training and test sets 80/20 by randomly se-

lecting geographic locations and including all views for that

location in one split, ensuring that each type of geography

was represented in both splits. We group each angle into

one of three categories: Nadir (NADIR), θ ≤ 25◦; Off-

nadir (OFF), 25◦ < θ < 40◦; and Very off-nadir (VOFF),

θ ≥ 40◦. In all experiments, we trained baselines using all

viewing angles (ALL) or one of the three subsets. These

trained models were then evaluated on the test set of each

of the 27 viewing angles individually.

4.2. Models

We measured several state of the art baselines for se-

mantic or instance segmentation and object detection (Table

2). Where possible, we selected overhead imagery-specific

models as well as models for natural scenes to compare their

performance. Object detection baselines were trained us-

ing rectangular boundaries extracted from the building foot-

prints. To fairly compare with semantic segmentation stud-

ies, the resulting bounding boxes were compared against the

ground truth building polygons for scoring (see Metrics).

4.3. Segmentation Loss

Due to the class imbalance of the training data – only

9.5% of the pixels in the training set correspond to buildings

– segmentation models trained with binary cross-entropy

(BCE) loss failed to identify building pixels, a problem ob-

served previously for overhead imagery segmentation mod-

els [31]. For the semantic segmentation models, we there-
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F1

Task Model NADIR OFF VOFF Avg.

Seg TernausNet 0.62 0.43 0.22 0.43

Seg U-Net 0.39 0.27 0.08 0.24

Seg Mask R-CNN 0.47 0.34 0.07 0.29

Det Mask R-CNN 0.40 0.30 0.07 0.25

Det YOLT 0.49 0.37 0.20 0.36

Table 3: Overall task difficulty. As a measure of over-

all task difficulty, the performance (F1 score) is assessed

for the baseline models trained on all angles, and tested on

the three different viewing angle bins: nadir (NADIR), off-

nadir (OFF), and very off-nadir (VOFF). Avg. is the linear

mean of the three bins. Seg, segmentation; Det, object de-

tection.

fore utilized a hybrid loss function that combines the binary

cross entropy loss and intersection over union (IoU) loss

with a weight factor α [31]:

L = αLBCE + (1− α)LIoU (1)

The details of model training and evaluation, including aug-

mentation, optimizers, and evaluation schemes can be found

in the Supplementary Material.

4.4. Metrics

We measured performance using the building IoU-F1

score defined in Van Etten et al. [12]. Briefly, building foot-

print polygons were extracted from segmentation masks (or

taken directly from object detection bounding box outputs)

and compared to ground truth polygons. Predictions were

labeled True Positive if they had an IoU with a ground truth

polygon above 0.5 and all other predictions were deemed

False Positives. Using these statistics and the number of un-

detected ground truth polygons (False Negatives), we calcu-

lated the precision P and recall R of the model predictions

in aggregate. We then report the F1 score as

F1 =
2× P ×R

P +R
(2)

F1 score was calculated within each angle bin (NADIR,

OFF, or VOFF) and then averaged for an aggregate score.

4.5. Results

The state-of-the-art segmentation and object detection

models we measured were challenged by this task. As

shown in Table 3, TernausNet trained on all angles achieves

F1 = 0.62 on the nadir angles, which is on par with

previous building segmentation results and competitions

[12, 8]. However, performance drops significantly for off-

nadir (F1 = 0.43) and very off-nadir (F1 = 0.22) images.

Other models display a similar degradation in performance.

Example results are shown in Figure 5.

Training Resolution

Original Equalized

Test Angles (0.46-1.67 m) 1.67 m

NADIR 0.62 0.59

OFF 0.43 0.41

VOFF 0.22 0.22

Summary 0.43 0.41

Table 4: TernausNet model trained on different resolu-

tion imagery. Building footprint extraction performance

for a TernausNet model trained on ALL original-resolution

imagery (0.46 m ground sample distance (GSD) for 7.8◦

to 1.67 m GSD at 54◦), left, compared to the same model

trained and tested on ALL imagery where every view is

down-sampled to 1.67 m GSD (right). Rows display per-

formance (F1 score) on different angle bins. The original

resolution imagery represents the same data as in Table 3.

Training set imagery resolution had only negligible impact

on model performance.

Directional asymmetry. Figure 6 illustrates perfor-

mance per angle for both segmentation and object detection

models. Note that models trained on positive (north-facing)

angles, such as Positive OFF (Red), fair particularly poorly

when tested on negative (south-facing) angles. This may be

due to the smaller dataset size, but we hypothesize that the

very different lighting conditions and shadows make some

directions intrinsically more difficult (Figure 3C-D). This

observation reinforces that developing models and datasets

that can handle the diversity of conditions seen in overhead

imagery in the wild remains an important challenge.

Model architectures. Interestingly, segmentation mod-

els designed specifically for overhead imagery (TernausNet

and YOLT) significantly outperform general-purpose seg-

mentation models for computer vision (U-Net, Mask R-

CNN). These experiments demonstrate the value of spe-

cializing computer vision models to the target domain of

overhead imagery, which has different visual, object den-

sity, size, and orientation characteristics.

Effects of resolution. OFF and VOFF images have

lower base resolutions, potentially confounding analyses of

effects due exclusively to look angle. To test whether reso-

lution might explain the observed performance drop, we ran

a control study with normalized resolution. We trained Ter-

nausNet on images from all look angles artificially reduced

to the same resolution of 1.67m, the lowest base resolution

from the dataset. This model showed negligible change in

performance versus the model trained on original resolution

data (original resolution: F1 = 0.43, resolution equalized:

F1 = 0.41) (Table 4). This experiment indicates that view-

ing angle-specific effects, not resolution, drive the decline

in segmentation performance as viewing angle changes.

Generalization to unseen angles. Beyond exploring
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Figure 5: Sample imagery (left) with ground truth building footprints and Mask R-CNN bounding boxes (middle left),

TernausNet segmentation masks (middle right), and YOLT bounding boxes (right). Ground truth masks (light blue) are

shown under Mask R-CNN and TernausNet predictions (yellow). YOLT bounding boxes shown in blue. Sign of the look

angle represents look direction (negative=south-facing, positive=north-facing). Predictions from models trained on on all

angles (see Table 3).

Figure 6: Performance by look angle for various training subsets. TernausNet (left), Mask R-CNN (middle), and YOLT

(right) models, trained on ALL, NADIR, OFF, or VOFF, were evaluated in the building detection task and F1 scores are

displayed for each evaluation look angle. Imagery acquired facing South is represented as a negative number, whereas

looks facing North are represented by a positive angle value. Additionally, TernausNet models trained only on North-facing

OFF imagery (positive OFF) and South-facing OFF imagery (negative OFF) were evaluated on each angle to explore the

importance of look direction.

performance of models trained with many views, we also

explored how effectively models could identify building

footprints on look angles absent during training. We found

that the TernausNet model trained only on NADIR per-

formed worse on evaluation images from OFF (0.32) than

models trained directly on OFF (0.44), as shown in Table 5.

Similar trends are observed for object detection (Figure 6).

To measure performance on unseen angles, we introduce a

generalization score G, which measures the performance of

a model trained on X and tested on Y , normalized by the
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Training Angles

Test Angles All NADIR OFF VOFF

NADIR 0.62 0.59 0.23 0.13

OFF 0.43 0.32 0.44 0.23

VOFF 0.22 0.04 0.13 0.27

Summary 0.43 0.32 0.26 0.21

Table 5: TernausNet model tested on unseen angles. Per-

formance (F1 score) of the TernausNet model when trained

on one angle bin (columns), and then tested on each of the

three bins (rows). The model trained on NADIR performs

worse on unseen OFF and VOFF views compared to models

trained directly on imagery from those views.

performance of a model trained on Y and tested on Y :

GY =
1

N

∑

X

F1(train = X, test = Y )

F1(train = Y, test = Y )
(3)

This metric measures relative performance across viewing

angles, normalized by the task difficulty of the test set. We

measured G for all our model/dataset combinations, as re-

ported in Table 6. Even though the Mask R-CNN model

has worse overall performance, the model achieved a higher

generalization score (G = 0.78) compared to TernausNet

(G = 0.42) as its performance did not decline as rapidly

when look angle increased. Overall however, generaliza-

tion scores to unseen angles were low, highlighting the im-

portance of future study in this challenging task.

4.6. Effects of geography

We broke down geographic tiles into Industrial, Sparse

Residential, Dense Residential, and Urban bins, and exam-

ined how look angle influenced performance in each. We

observed greater effects on residential areas than other types

(Table S3). Testing models trained on MVOI with unseen

cities[12] showed almost no generalization (Table S4). Ad-

ditional datasets with more diverse geographies are needed.

5. Conclusion

We present a new dataset that is critical for extending ob-

ject detection to real-world applications, but also presents

challenges to existing computer vision algorithms. Our

benchmark found that segmenting building footprints from

very off-nadir views was exceedingly difficult, even for

state-of-the-art segmentation and object detection models

tuned specifically for overhead imagery (Table 3). The rel-

atively low F1 scores for these tasks (maximum VOFF F1

score of 0.22) emphasize the amount of improvement that

further research could enable in this realm.

Furthermore, on all benchmark tasks we concluded that

model generalization to unseen views represents a signifi-

cant challenge. We quantify the performance degradation

from nadir (F1 = 0.62) to very off-nadir (F1 = 0.22), and

Generalization Score G

Task Model NADIR OFF VOFF

Segmentation TernausNet 0.45 0.43 0.37

Segmentation U-Net 0.64 0.40 0.37

Segmentation Mask R-CNN 0.60 0.90 0.84

Detection Mask R-CNN 0.64 0.92 0.76

Detection YOLT 0.57 0.68 0.44

Table 6: Generalization scores. To measure segmentation

model performance on unseen views, we compute a gen-

eralization score G (Equation 3), which quantifies perfor-

mance on unseen views normalized by task difficulty. Each

column corresponds to a model trained on one angle bin.

note an asymmetry between performance on well-lit north-

facing imagery and south-facing imagery cloaked in shad-

ows (Figure 3C-D and Figure 6). We speculate that distor-

tions in objects, occlusion, and variable lighting in off-nadir

imagery (Figure 3), as well as the small size of buildings in

general (Figure 4), pose an unusual challenge for segmen-

tation and object detection of overhead imagery.

The off-nadir imagery has a lower resolution than nadir

imagery (due to simple geometry), which theoretically com-

plicates building extraction for high off-nadir angles. How-

ever, by experimenting with imagery degraded to the same

low 1.67m resolution, we show that resolution has an in-

significant impact on performance (Table 4). Rather, vari-

ations in illumination and viewing angle are the dominant

factors. This runs contrary to recent observations [28],

which found that object detection models identify small cars

and other vehicles better in super-resolved imagery.

The generalization score G is low for the highest-

performing, overhead imagery-specific models in these

tasks (Table 6), suggesting that these models may be over-

fitting to view-specific properties. This challenge is not spe-

cific to overhead imagery: for example, accounting for dis-

tortion of objects due to imagery perspective is an essen-

tial component of 3-dimensional scene modeling, or rota-

tion prediction tasks [23]. Taken together, this dataset and

the G metric provide an exciting opportunity for future re-

search on algorithmic generalization to unseen views.

Our aim for future work is to expose problems of inter-

est to the larger computer vision community with the help of

overhead imagery datasets. While only one specific appli-

cation, advances in enabling analysis of overhead imagery

in the wild can concurrently solve broader tasks. For ex-

ample, we had anecdotally observed that image translation

and domain transfer models failed to convert off-nadir im-

ages to nadir images, potentially due to the spatial shifts

in the image. Exploring these tasks as well as other novel

research avenues will enable advancement of a variety of

current computer vision challenges.

999



References

[1] Aharon Azulay and Yair Weiss. Why do deep convolutional

networks generalize so poorly to small image transforma-

tions? CoRR, abs/1805.12177, 2018.

[2] Marc Bosch, Zachary Kurtz, Shea Hagstrom, and Myron

Brown. A multiple view stereo benchmark for satellite im-

agery. In 2016 IEEE Applied Imagery Pattern Recognition

Workshop (AIPR), pages 1–9, Oct 2016.

[3] Yushi Chen, Xing Zhao, and Xiuping Jia. Spectral–Spatial

Classification of Hyperspectral Data Based on Deep Be-

lief Network. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 8(6):2381–2392,

July 2015.

[4] Gong Cheng, Peicheng Zhou, and Junwei Han. Learning

rotation-invariant convolutional neural networks for object

detection in vhr optical remote sensing images. IEEE Trans-

actions on Geoscience and Remote Sensing, 54:7405–7415,

2016.

[5] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen

Koltun. A large dataset of object scans. CoRR,

abs/1602.02481, 2016.

[6] Gordon Christie, Neil Fendley, James Wilson, and Ryan

Mukherjee. Functional Map of the World. In 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition. IEEE, Jun 2018.

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The Cityscapes

Dataset for Semantic Urban Scene Understanding. In The

2009 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[8] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan

Pang, Jing Huang, Saikat Basu, Forest Hughes, Devis Tuia,

and Ramesh Raskar. DeepGlobe 2018: A Challenge to Parse

the Earth Through Satellite Images. In The 2018 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR)

Workshops, June 2018.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, , Kai Li, and

Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In The 2009 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2009.

[10] DigitalGlobe. Digitalglobe search and discovery. "https:

//discover.digitalglobe.com". Accessed: 2019-

03-19.

[11] Adam Van Etten. You only look twice: Rapid multi-scale

object detection in satellite imagery. CoRR, abs/1805.09512,

2018.

[12] Adam Van Etten, Dave Lindenbaum, and Todd M. Bacastow.

SpaceNet: A Remote Sensing Dataset and Challenge Series.

CoRR, abs/1807.01232, 2018.

[13] Marc Everingham, Luc Van Gool, Christopher K. I.

Williams, John Winn, and Andrew Zisserman. The pascal

visual object classes (voc) challenge. International Journal

of Computer Vision, 88(2):303–338, June 2010.

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the KITTI vision benchmark

suite. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2012.

[15] Google. Google maps data help. https://support.

google.com/mapsdata. Accessed: 2019-3-19.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask R-CNN. In The 2017 IEEE International Con-

ference on Computer Vision (ICCV), Oct 2017.

[17] Vladimir Iglovikov and Alexey Shvets. Ternausnet: U-net

with VGG11 encoder pre-trained on imagenet for image seg-

mentation. CoRR, abs/1801.05746, 2018.

[18] F.M. Lacar, Megan Lewis, and Iain Grierson. Use of hyper-

spectral imagery for mapping grape varieties in the Barossa

Valley, South Australia. In IGARSS 2001. Scanning the

Present and Resolving the Future. Proceedings. IEEE 2001

International Geoscience and Remote Sensing Symposium

(Cat. No.01CH37217), pages 2875–2877 vol.6, 2001.

[19] Darius Lam, Richard Kuzma, Kevin McGee, Samuel Doo-

ley, Michael Laielli, Matthew Klaric, Yaroslav Bulatov, and

Brendan McCord. xView: Objects in context in overhead

imagery. CoRR, abs/1802.07856, 2018.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollr, and C. Lawrence

Zitnick. Microsoft COCO: Common Objects in Context.

In 2014 European Conference on Computer Vision (ECCV),

Zurich, 2014. Oral.
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