
Physical Adversarial Textures That Fool Visual Object Tracking

Rey Reza Wiyatno Anqi Xu

Element AI

Montreal, Canada

{rey.reza, ax}@elementai.com

Abstract

We present a method for creating inconspicuous-looking

textures that, when displayed as posters in the physical

world, cause visual object tracking systems to become con-

fused. As a target being visually tracked moves in front

of such a poster, its adversarial texture makes the tracker

lock onto it, thus allowing the target to evade. This adver-

sarial attack evaluates several optimization strategies for

fooling seldom-targeted regression models: non-targeted,

targeted, and a newly-coined family of guided adversarial

losses. Also, while we use the Expectation Over Transfor-

mation (EOT) algorithm to generate physical adversaries

that fool tracking models when imaged under diverse con-

ditions, we compare the impacts of different scene variables

to find practical attack setups with high resulting adversar-

ial strength and convergence speed. We further showcase

that textures optimized using simulated scenes can confuse

real-world tracking systems for cameras and robots.

1. Introduction

Research on adversarial attacks [24, 9, 18] have shown

that deep learning models, e.g., for classification and detec-

tion tasks, are confused by adversarial examples: slightly-

perturbed images of objects that cause them to make wrong

predictions. While early attacks digitally modified inputs

to a victim model, later advances created photos [14] and

objects in the physical world that lead to misclassification

under diverse imaging conditions [7, 1]. Due to these added

complexities, many physical adversaries were not created

to look indistinguishable from regular items, but rather as

inconspicuous objects such as colorful eyeglasses [20, 21].

We study the creation of physical adversaries for an ob-

ject tracking task, of which the goal is to find the bounding-

box location of a target in the current camera frame given

its location in the previous frame. We present a method for

generating Physical Adversarial Textures (PAT) that, when

displayed as advertisement or art posters, cause regression-

based neural tracking models like GOTURN [10] to break

away from their tracked targets, even though these textures

(a) source texture (b) adversarial texture

Figure 1: A poster of a Physical Adversarial Texture resem-

bling a photograph, causes a tracker’s bounding-box predic-

tions to lose track as the target person moves over it.

do not look like targets to human eyes, as seen in Figure 1.

Fooling a tracking system comes with added challenges

compared to attacking classification or detection models.

Since a tracker adapts to changes in the target’s appear-

ance, an adversary must be universally effective as the target

moves and turns. Also, some trackers like GOTURN only

search within a sub-region of the frame around the previ-

ous target location, and so only a small part of the PAT may

be in view and not obstructed, yet it must still be potent.

Furthermore, it is insufficient for the tracker to be slightly

off-target on any single frame, as it may still end up track-

ing the target semi-faithfully; robust adversaries must cause

the system to break away from the tracked target over time.

Our main contributions are as follows:

1. first known demo of adversaries for sequential tracking

tasks, impacting domains such as surveillance, drone

photography, and autonomous convoying,

2. coining of “guided adversarial losses” concept, which

strikes a middle-ground between targeted and non-

targeted adversarial objectives, and empirically shown

to enhance convergence and adversarial strength,

3. study of Expectation Over Transformation (EOT) [1],

highlighting the need to randomize only certain scene

variables while still creating potent adversaries, and

4. show sim-to-real transfer of PATs created using a non-

photorealistic simulator and diffuse-only materials.
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2. Related Work

Early white-box physical adversarial attacks, which as-

sumed access to the victim model’s internals, created print-

able adversaries that were effective under somewhat vary-

ing views [14], by using gradient-based methods such as

FGSM [9]. Similar approaches were employed to create

eyeglass frames for fooling face recognition models [20,

21], and to make stop signs look like speed limits to a road

sign classifier [7]. Both latter systems only updated gradi-

ents within a masked region in the image, namely over the

eyeglass frame or road sign. Still, neither work explicitly

accounted for the effects of lighting on the imaged items.

Expectation Over Transformation (EOT) [1] formalized

the strategy used by [20, 7] of optimizing for adversarial

attributes of a mask, by applying a combination of random

transformations to it. By varying the appearance and po-

sition of a 2-D photograph or 3-D textured object as the

mask, EOT-based attacks [1, 3, 15] generated physically-

realizable adversaries that are robust within a range of

viewing conditions. Our attack also applies EOT, but we

importantly study the efficacy and the need to random-

ize over different transformation variables, including fore-

ground/background appearances, lighting, spatial locations

of the camera, target, adversary, and surrounding objects.

CAMOU is a black-box attack that also applied EOT

to create adversarial textures for a car that made it non-

detectable by object detection networks. CAMOU approxi-

mated the gradient of an adversarial objective through both

the complex rendering process and opaque victim network,

by using a learned surrogate mapping [17] from the texture

space directly onto the detector’s confidence score. Both

their attack and evaluations were carried out using a photo-

realistic rendering engine. Still, this method was not tested

in the real world, and also incurs high computational costs

and potential instability risks due to the alternation optimiz-

ing the surrogate model and the adversarial perturbations.

DeepBillboard [27] attacked autonomous driving sys-

tems by creating adversarial billboards that caused a victim

model to deviate its predicted steering angles within real-

world drive-by sequences. While our work shares many

commonalities with DeepBillboard, we confront added

challenges by attacking a sequential tracking model rather

than a per-frame regression network, and we also contrast

the effectiveness of differing adversarial objectives.

3. Object Tracking Networks

Various learning-based tracking methods have been pro-

posed, such as the recent GOTURN [10] deep neural net-

work that regresses the location of an object in a cam-

era frame given its previous location and appearance.

While other tracking methods based on feature-space cross-

correlation [2, 25] and tracking-by-detection [8] are also vi-

able, we focus on GOTURN models to ground our studies

on the effectiveness of different types of adversarial losses,

as well as the compute efficiency of an EOT-based attack.

As seen in Figure 2, given a target’s bounding-box loca-

tion l̂j−1 of size w × h in the previous frame fj−1, GO-

TURN crops out the template f̃j−1 as a region of size

2w×2h around the target within fj−1. The current frame fj
is also cropped to the same region, yielding the search area

f̃j , which is assumed to contain most of the target still. Both

the template and search area are resized to 227 × 227 and

processed through convolutional layers. The resulting fea-

ture maps are then concatenated and passed through fully-

connected layers with non-linear activations, ultimately re-

gressing lj = {(xmin, ymin), (xmax, ymax)} ∈ [0, 1]4, that

is, the top-left and bottom-right coordinates of the target’s

location within the current search area f̃j .

Such predictions can also be used for visual servoing,

i.e., to control an aerial or wheeled robot to follow a tar-

get through space. One approach [11, 22] is to regulate the

center-points and areas of predictions about the center of

the camera frame and the desired target size, respectively,

using Proportional-Integral-Derivative (PID) controllers on

the forward/backward, lateral, and possibly vertical veloci-

ties of the vehicle. In this work, we show that visual track-

ing models, as well as derived visual servoing controllers

for aerial robots, can be compromised by PATs.

4. Attacking Regression Networks

For classification tasks, an adversarial example is de-

fined as a slightly-perturbed version of a source image that

satisfies two conditions: adversarial output — the victim

model misclassifies the correct label, and perceptual simi-

larity — the adversary is perceived by humans as similar

to the source image. We discuss necessary adjustments to

both conditions when attacking regression tasks. While re-

cent work has shown the existence of adversaries that con-

fuse regression tasks [6, 27], there is still a general lack of

analysis on the strength and properties of adversaries as a

function of different attack objectives. In this work, we con-

sider various ways to optimize for an adversary, and notably

formalize a new family of guided adversarial losses. While

this work focuses on images, the concepts discussed below

are generally applicable to other domains as well, such as

fooling audio transcriptions [6].

4.1. Adversarial Strength

There is no task-agnostic analog to misclassification for

regression models, due to the non-discrete representation

of their outputs. Typically, a regression output is charac-

terized as adversarial by thresholding a task-specific error

metric. This metric may also be used to quantify adver-

sarial strength. For instance, adversaries for human pose-

prediction can be quantified by the percentage of predicted

4823



joint poses beyond a certain distance from ground-truth lo-

cations [6]. As another example, DeepBillboard [27] de-

fines unsafe driving for an autonomous vehicle as experi-

encing an excessive amount of total lateral deviation, and

quantifies adversarial strength as the percentage of frames

in a given unit of time where the steering angle error ex-

ceeds a corresponding threshold.

When fooling a visual tracker, the end-goal is for the sys-

tem to break away from the target over time. Therefore, we

consider a sequence of frames F † = {f†
1 , f

†
2 , ..., f

†
N} where

the target moves across a poster containing an adversarial

texture χ, and quantify adversarial strength by the average

amount of overlap between tracker predictions lj (computed

from f†
j−1

, f†
j ) and the target’s actual locations l̂j . We also

separate the tracker’s baseline performance from the effects

of the adversary, by computing the average overlap ratio

across another sequence F = {f1, f2, ..., fN}, in which the

adversarial texture is replaced by an inert source texture.

Thus, in this work, adversarial strength is defined by aver-

aging the mean-Intersection-Over-Union-difference met-

ric, µIOUd, over multiple generated sequences:

IOU(lj , l̂j) =
A(lj ∩ l̂j)

A(lj) +A(l̂j)−A(lj ∩ l̂j)

µIOUd =
1

N − 1

∑

j∈[2,N ],fj∈F

IOU
(

lj(fj−1, fj), l̂j
)

(1)

−
1

N − 1

∑

j∈[2,N ],f
†
j
∈F†

IOU
(

lj(f
†
j−1, f

†
j ), l̂j

)

where ∩ denotes the intersection of two bounding boxes and

A(·) denotes the area of the bounding box l.

4.2. Perceptual Similarity

Perceptual similarity is often measured by the distance

between a source image and its perturbed variant, e.g., using

Euclidean norm in the RGB colorspace [24, 4]. Sometimes,

we apply a loose threshold to this constraint, to generate

universal adversaries that remain potent under diverse con-

ditions [16, 1, 26]. Other times, the goal is not to imitate

a source image, but merely to create an inconspicuous tex-

ture that does not look harmful to humans, yet cause models

to misbehave [20, 3, 27]. With this work, we aim to raise

public awareness that colorful-looking art can be harmful

to vision models.

4.3. Optimizing for Adversarial Behaviors

While our attack’s end-goal is to cause the tracker to

break away from its target, we can encourage different ad-

versarial behaviors, such as locking onto part of an ad-

versarial poster or focusing onto other parts of the scene.

These behaviors are commonly optimized into an adver-

sary through loss minimization, e.g., using gradient descent.

The literature has proposed several families of adversarial

losses, notably:

• the baseline non-targeted loss Lnt maximizes the vic-

tim model’s training loss, thus causing it to become

generally confused (e.g., FGSM [9], BIM [14]);

• targeted losses Lt also apply the victim model’s train-

ing loss, but to minimize the distance to an adversarial

target output (e.g., JSMA [18]);

• we define guided losses Lg as middle-grounds be-

tween Lnt and Lt, which regulate specific adversarial

attributes rather than strict output values, analogous to

misclassification onto a set of output values [14]; and

• hybrid losses use a weighted linear combination of the

above losses to gain adversarial strength and speed up

the attack (e.g., C&W [4], Hot/Cold [19] attacks).

The motivation for guided losses stems from our obser-

vations of the optimization rigidity of targeted losses, and

weak guidance from the non-targeted loss. Although simi-

lar ideas have been used [4, 27], we formally coin “guided

adversarial objectives” as those that regulate attributes of

the victim model’s output about specific adversarial values.

To fool object trackers, we consider these specific losses:

• Lnt = −||l†j−l̂j ||1 increases GOTURN’s training loss;

• Lt− = ||l†j − {(0.0, 0.9), (0.1, 1.0)}||1 shrinks predic-

tions towards the bottom-left corner of the search area;

• Lt= = ||l†j − {(0.25, 0.25), (0.75, 0.75)}||1 predicts

the exact location of the target in the previous frame;

• Lt+ = ||l†j − {(0.0, 0.0), (1.0, 1.0)}||1 grows predic-

tions to the maximum size of the search area;

• Lga− = min(A(l†j)−A(l̂j), 0) encourages the area of

each prediction to shrink from the ground-truth value;

• Lga+ = max(A(l†j) − A(l̂j), 0): encourages the area

of each prediction to grow from the ground-truth value.

Note that other guided losses are also possible, such as

maximizing or minimizing the magnitudes of predictions.

For succinctness, we evaluated against a non-targeted loss

and the simplest of targeted losses as baselines, to show that

a well-engineered guided loss has the potential for better

convergence and adversarial strength.

Additionally, we can enforce perceptual similarity by

adding a Lagrangian-relaxed loss Lps [24, 4, 1]. Its asso-

ciated weight can be set heuristically, or fine-tuned via line

search into the smallest value resulting in sufficient adver-

sarial strength. While most of our experiments generate in-

conspicuous adversaries that do not enforce perceptual sim-

ilarity, Section 6.4 specifically showcases imitation attacks.
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In summary, our attack method optimizes a (possibly-

imitated) source texture χ0 into an adversarial variant χi

over i ∈ [1, Imax] iterations, by minimizing a weighted lin-

ear combination of loss terms:

L = w̄ · [Lnt,Lt...,Lg...,Lps]
T (2)

where the texture is incrementally updated as:

χi = χi−1 + αi ·∆χ (3)

Here, αi denotes the step size at the i-th iteration, and ∆χ
denotes a perturbation term based on the gradient ∇χL.

5. Physical Adversarial Textures

We now discuss how the above attack formulation can be

generalized to produce Physical Adversarial Textures (PAT)

that resemble colorful art. Such PATs, when displayed on a

digital poster and captured by camera frames near a tracked

target, causes a victim model to lose track of the target.

In this work, we assume to have white-box access to the

GOTURN network’s weights and thus the ability to back-

propagate through it. We focus on tracking people and hu-

manoid robots in particular and assume that the tracker was

trained on such types of targets.

As mentioned in Section 1, several challenges arise when

creating adversaries to fool temporal tracking models. We

address these by applying the Expectation Over Transfor-

mation (EOT) algorithm [1], which minimizes the expected

loss E [L] over a minibatch of B scenes imaged under di-

verse conditions. EOT marginalizes across the distributions

of different transformation variables, such as the poses of

the camera, tracked target, and poster, as well as the appear-

ances of the target, environmental surroundings, and ambi-

ent lighting. However, marginalizing over wide ranges of

condition variables can be very computationally expensive.

Thus, Section 6.3 studies the effects on adversarial strength

and attack speeds resulting from varying EOT variables.

An essential addition when generating a physical adver-

sarial item, as opposed to a digital one, is the need to render

the textured item into scenes as it evolves during the attack

process. Our attack creates PATs purely from scenes ren-

dered using the Gazebo simulator [13], yet Section 6.5 will

show that these adversaries are also potent in the real world.

5.1. Modeling rendering and lighting

To optimize the loss with respect to the texture of a phys-

ical poster, we need to differentiate through the rendering

process. Rendering can be simplified into two steps: pro-

jecting the texture onto the surface of a physical item and

then onto the camera’s frame, and shading the color of each

frame pixel depending on light sources and material types.

Similar to [15], we sidestep shading complexities, such

as spotlight gradients and specular surfaces, by assuming

controlled imaging conditions: the PAT is displayed on a

matte material and is lit by a far-away sun-like source, and

the camera’s exposure is adjusted not to cause pixel satu-

ration. Consequently, we employ a linear lighting model,

where each pixel’s RGB intensities in the camera frame is a

scaled and shifted version of pixel values for the projected

texture coordinate. During our attack, we query the Gazebo

simulation software to obtain exact gains for light intensity

and material reflectance, while before each real-world test

we fit parameters of this per-channel linear lighting model

once, using a displayed color calibration target.

As for the projection component, we modified Gazebo’s

renderer to provide projected frame coordinates for each

texture pixel (similar to [1]), as well as occlusion masks and

bounding boxes of the target in the foreground. We then use

this texture-to-frame mapping to manually back-propagate

through the projection process onto the texture space.

5.2. PAT Attack

Figure 2 shows the overall procedure for generating a

Physical Adversarial Texture. Starting from a source texture

χ0, we perform minibatch gradient descent on L to optimize

pixel perturbations that adds onto the texture, for a total of

Imax iterations. On each iteration i, we apply EOT to a

minibatch of B scenes, each with randomized settings for

the poses of the camera, target, and poster, the identities

of the target and background, and the hue-saturation-value

settings of a single directional light source.

Each scene entails two frames {fj−1, fj}, in which both

the camera and tracked target may have moved between the

previous and current frames. Given the target’s previous

actual location l̂j−1, we crop both frames around a cor-

respondingly scaled region, then resize and process them

through the GOTURN network, to predict the bounding-

box location lj of the target in the current frame. We then

back-propagate from the combined loss objective L onto

the texture space through all partial-derivative paths. After

repeating the above process for all B scenes, we compute

the expected texture gradient, and update the texture using

the Fast Gradient Sign optimizer [9], scaled by the current

iteration’s step size αi:

∆χ = −sign(∇χE [L]) (4)

6. Experiments

In this section, we present an empirical comparison

of PAT attacks using non-targeted, targeted, guided, and

hybrid losses. We also assess which EOT conditioning

variables are most useful for producing strong adversaries

quickly. Furthermore, we analyze PATs resulting from im-

itation attacks and their induced adversarial behaviors. Fi-

nally, we showcase the transfer of PATs generated in simu-

lation for fooling tracking system in a real-world setup.
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Figure 2: The Physical Adversarial Texture (PAT) Attack creates adversaries to fool the GOTURN tracker, via minibatch

gradient descent to optimize various losses, using randomized scenes following Expectation Over Transformation (EOT).

6.1. Setup

All PAT attacks were carried out using simulated scenes

rendered by Gazebo. This conveniently provides an endless

stream of independently-sampled scenes, with controlled

poses and appearances for the target, textured poster, cam-

era, background, and lighting. We created multiple scenar-

ios, including 3 outdoor views of a 2.6m×2m poster in front

of a building, forest, or playground, and an indoor coffee

shop scene where a half-sized poster is hung on the wall.

We also varied tracked targets among models of 3 different

persons and 2 humanoid robots.

6.1.1 Trained GOTURN models

We trained several GOTURN networks on various combina-

tions of synthetic and real-world labeled datasets for track-

ing people and humanoid robots. The synthetic dataset con-

tains over 1, 400 short tracking sequences with more than

300, 000 total frames, while the real-world dataset consists

of 29 videos with over 50, 000 frames of one of two per-

sons, moving around an office garage and at a park. We

used the Adam optimizer [12] with an initial learning rate

of 10−5 and a batch size of 32. Models trained on synthetic-

only data (sim) lasted 300, 000 iterations with the learning

rate halved every 30, 000 iterations, while those trained on

combined datasets (s+r) or on the real-world dataset after

bootstrapping from the synthetic-trained model (s2r) ran

for 150, 000 iterations with the learning rate halved every

15, 000 iterations. In addition to the architecture of [10]

(Lg), we also trained smaller-capacity models with more

aggressive striding instead of pooling layers and fewer units

in the fully-connected layers (Sm). While this section eval-

uates a subset of model instances, our supplementary mate-

rials present comprehensive results on other networks.

6.1.2 Evaluation Metric

As discussed in Section 4.1, we evaluate each PAT by gen-

erating sequences in which a tracked target moves from one

side of the textured poster to the other. Each sequence ran-

domly draws from manually-chosen ranges for the target,

camera, and poster poses, hue-saturation-value settings for

the light source, target identities, and background scenes.

We run the GOTURN tracker on each sequence twice, dif-

fered by the display of either the PAT or an inert source tex-

ture on the poster. Adversarial strength is then computed as

the average µIOUd metric over 20 random sequence pairs.

Anecdotally, for average µIOUd values around 0.2, the

tracker’s predictions expanded and worsened as the target

moved over the poster, yet GOTURN locked back onto the

target as it moved away. In contrast, values greater than

0.4 reflected cases where GOTURN consistently lost track

of the target during and at the end of the sequence, thus

showing notably worse tracking compared to an inert poster.
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6.1.3 Baseline Attack Settings

We carried out hyperparameter search to determine a set of

attack parameters that produce strong adversaries (see sup-

plementary materials). Unless otherwise stated, each PAT

attack ran on the regular-capacity synthetic-trained GO-

TURN model (Lg,sim), with: Imax = 1, 000 attack itera-

tions, EOT minibatch with B = 20 samples, FGS optimizer

with step sizes of αi≤500 = 0.75 and then αi>500 = 0.25,

and starting from a randomly-initialized source texture with

128×128 pixels. All presented results are averaged over 10
attack instances, with different initial random seeds.

6.2. Efficacy of Adversarial Losses for Regression

0 200 400 600 800 1000
attack iteration

0.0

0.1

0.2

0.3

0.4

0.5
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d ga-
nt (baseline)
t=
t-
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(a) Different adversarial losses
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(b) Individual vs hybrid adversarial losses

Figure 3: PAT attack strength for various adversarial losses.

Figure 3a depicts the progression in adversarial strength

throughout PAT attack runs for the different adversarial

losses proposed in Section 4.3. Comparing against the

non-targeted baseline EOT attack (Lnt) , most targeted and

guided losses resulted in slower convergence and worse fi-

nal adversarial strength. This is not surprising as these

adversarial objectives apply stricter constraints on the de-

sired adversarial behaviors and thus need to be optimized

for longer. As the sole exception, the guided loss encour-

aging smaller-area predictions (Lga−) attained the fastest

convergence and best adversarial strength overall. This

suggests that well-engineered adversarial objectives, espe-

cially loosely-guided ones, benefit by speeding up and im-

proving the attack process on regression tasks.

In Figure 3b, we see that combining Lnt with most tar-

geted or guided losses did not significantly change perfor-

mance. While not shown, we saw similar results when us-

ing 1:1000 weight ratios. However, the 1:1 combination of

Lnt & Lt= attained better overall performance than both

Lnt and Lt=. This suggests that sometimes adding a non-

targeted loss to a targeted or guided one helps, possibly due

to the widening of conditions for adversarial behaviors.

uIOUd:0.50

loss: nt

uIOUd:0.53

loss: ga-

uIOUd:0.34

loss: ga+

uIOUd:0.33

loss: t-

uIOUd:0.38

loss: t=

uIOUd:0.37

loss: t+

Figure 4: PATs generated using different adversarial losses.

As seen in Figure 4, various patterns emerge in PATs

generated by different losses. We note that dark “striped

patches” always appeared in PATs generated from certain

losses, and these patches caused GOTURN to lock on and

break away from the tracked target. On the other hand,

“striped patches” did not show up for PATs created using

Lga+ or Lt+ , which showed uniform patterns. This is ex-

pected as these losses encourage the tracker’s predictions to

grow in size, rather than fixating onto a specific location.

6.3. Ablation of EOT Conditioning Variables

Here, we assess which variables for controlling the ran-

dom sampling of scenes had strong effects, and which ones

could be set to fixed values without impact, thus reducing

scene randomization and speeding up EOT-based attacks.

As seen in Figure 5a, reducing variety in appearances of

the background (-bg), target (-target), and light vari-

ations (-light), did not substantially affect adversarial

strength when other parameter ranges were held constant.

Also, increasing diversity in +target and +bg did not re-

sult in different end-performance. This suggests that diver-

sity in target and background appearances do not strongly

affect EOT-based attacks. On the other hand, +light con-

verged much slower than other settings. Thus, we conclude

that if randomized lighting is needed to generalize the ro-

bustness of PATs during deployment, then more attack iter-

ations are needed to ensure convergence.

For pose-related variables in Figure 5b, halving the

poster size (small poster) caused the PAT attack to

fail. Changing the ranges of camera poses (+cam pose,

-cam pose) resulted in notable performance differences,

therefore we note that more iterations are needed to gen-

erate effective PATs under wider viewpoint ranges. Per-

haps surprisingly, for -target pose, locking the tar-

get’s pose to the center of the poster resulted in faster and

stronger convergence. This is likely because regions around

the static target obtained consistent perturbations across all

scenes, and so developed adversarial patterns faster.
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(a) Variables controlling randomized appearances
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Figure 5: PAT attack strength for various EOT variables.

6.4. Imitation Attacks

As discussed in Section 4.3, we can add a perceptual

similarity loss term to make the PAT imitate a meaningful

source image. A larger perceptual similarity weight wps

perturbs the source less, but at the cost of slower conver-

gence and weaker or ineffective adversarial strength. Re-

sults below reflect a manually-tuned setting of wps = 0.6.
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Figure 6: Adversarial imitations under various losses.

Figure 6 shows that some source images, coupled with

the right adversarial loss, led to stronger imitations than oth-

ers. For instance, the waves source was optimized into a

potent PAT using Lnt & Lga+, yet using Lnt alone failed

to produce an adversarial texture. However, we found that

for a given threshold on L2 distance, guided losses gener-

ally converged faster to reach potent behaviors, yet suffered

from weakened adversarial strength compared to Lnt over

prolonged attack iterations (see supplementary materials for

quantitative details). Also, under larger wps constraints, we

saw that adversarial perturbations appeared only in selective

parts of the texture. Notably, the “striped patches” seen in

non-imitated PATs (Figure 4) also emerged near the dogs’

face and over the PR2 robot, when optimized using Lnt. We

thus conclude that the PAT attack produces critical adver-

sarial patterns such as these patches first, and then perturbs

other regions into supporting adversarial patterns.

Further substantiating this claim, Figure 7 visualizes pre-

dicted bounding-boxes within search areas located at differ-

ent sub-regions of PATs. We see from Figure 7a that pre-

dictions around the adversarial “striped patch” made GO-

TURN track towards it. This suggests that such critical

adversarial patterns induce potent lock-on behaviors that

break tracking, regardless of where the actual target is po-

sitioned. On the other hand, shown in Figure 7b, the “regu-

lar wavy” pattern optimized using Lga+ resulted in the in-

tended adversarial behavior of larger-sized predictions, re-

gardless of the search area’s location.

(a) Lg,sim tracker; Lnt loss (b) Lg,s+r tracker; Lga+ loss

Figure 7: Adversarial behaviors emerging from PATs.

6.5. Demonstration of Simtoreal Transfer

To assess the real-world effectiveness of PATs generated

purely using simulated scenes, we displayed them on a 50′′

TV within an indoor environment with static lighting. We

carried out two sets of person-following experiments using

the camera on a Parrot Bebop 2 drone: tracking sessions

with a stationary drone, and servoing runs where the tracked

predictions were used to control the robot to follow the tar-

get through space (see Section 3 for details).

In both experiments, we tasked the s+r GOTURN in-

stance to follow people that were not seen in the tracker’s

training dataset. While we tested under different light in-

tensities, for each static setting, we first fit a linear per-

channel lighting model to a color calibration target, and then

adjusted camera frames accordingly, as explained in Sec-

tion 5.1. We carried out this optional step to showcase ad-

versarial performance in best-case conditions, and note that

none of the simulated evaluations corrected for per-scenario

lighting. Also, this correction compensates for fabrication

errors that may arise when displaying the PAT on a TV or

printed as a static poster, and further serves as an alternative

to adding a Non-Printability Score to the attack loss [20].
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During our experiments, we observed 57/80 stationary

runs and 6/18 servoing runs to have strong lock-on adver-

sarial behaviors. For succinctness, we focus on qualitative

analyses below; please refer to supplementary materials for

more extensive quantitative results and visual samples.

For stationary tracking runs, only adversaries containing

“striped patches” consistently made GOTURN break away

from the person. Other PATs optimized by, e.g., Lga+,

caused the tracker to make worse predictions as the target

moved in front of the poster, yet it ultimately locked back

onto the person. While these results were partially due to

our limited-size digital poster, a more general cause is likely

because such losses induced weak adversarial behaviors: by

encouraging growing predictions, GOTURN could still see

and thus track the person within an enlarged search area.

Returning to the best-performing PATs containing

“striped patches”, the tracker strongly preferred to lock

onto these rather than the person. Moreover, even though

the person could regain GOTURN’s focus by completely

blocking the patch, as soon as he or she moved away, the

tracker locked back onto the patch, as seen in Figure 8. Fur-

thermore, these physical adversaries were robust to various

viewing distances and angles, and even for settings outside

the ranges used to randomize scenes during the PAT attack.

Our servoing tests showed that it was generally harder

to make GOTURN completely break away from the tar-

get. Since the drone was moving to follow the target,

even though the tracker’s predictions were momentarily dis-

turbed or locked onto the PAT, often the robot’s momentum

caused GOTURN to return its focus onto the person. We at-

tribute the worsened PAT performance to motion blurring,

light gradients, and specular reflections that were present

due to the moving camera, all of which were assumed away

by our PAT attack. Nevertheless, we believe that these ad-

vanced scene characteristics can be marginalized by the

EOT algorithm, using a higher-fidelity rendering engine

than our implementation.

Figure 8: An imitated PAT, created in simulation, can fool a

person-tracker in the real world.

Finally, we speculate that synthetically-generated adver-

sarial patterns like the “striped patches” may look like simu-

lated people or robot targets in GOTURN’s view. If so, then

our real-world transfer experiments may have been aided by

GOTURN’s inability to tell apart synthetic targets from real

people. This caveat may be overcome by carrying out PAT

attack using scenes synthesized with textured 3-D recon-

structions or photograph appearances of the intended target.

7. Conclusion

We presented a system to generate Physical Adver-

sarial Textures (PAT) for fooling object trackers. These

“PATterns” induced diverse adversarial behaviors, emerg-

ing from a common optimization framework with the end-

goal of making the tracker break away from its intended

target. We compared different adversarial objectives and

showed that a new family of guided losses, when well-

engineered, resulted in stellar adversarial strength and con-

vergence speed. We also showed that a naive application of

EOT by randomizing all aspects of scenes was not neces-

sary. Finally, we showcased synthetically-generated PATs

that can fool real-world trackers.

We hope to raise awareness that inconspicuously-colored

items can mislead modern vision-based systems by merely

being present in their vicinity. Despite recent advances, we

argue that purely vision-based tracking systems are not ro-

bust to physical adversaries, and thus recommend commer-

cial tracking and servoing systems to integrate auxiliary sig-

nals (e.g., GPS and IMU) for redundancy and safety.

Since a vital goal of this work is to show the existence

of inconspicuous patterns that fool trackers, we made the

simplifying assumption of white-box access. More practi-

cally, it might be possible to augment the PAT attack us-

ing diverse techniques [17, 5, 23] to fool black-box victim

models. Another improvement could be to directly opti-

mize non-differentiable metrics such as µIOUd by, e.g.,

following the Houdini method [6]. Finally, although the tex-

tures shown in this work may appear inconspicuous prior to

our demonstrations, they are nevertheless clearly visible and

thus can be detected and protected against. As the research

community aims to defend against physical adversaries, we

should continue to be on the lookout for potent PATs that

more closely imitate natural items in the physical world.
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