
OmniMVS: End-to-End Learning for Omnidirectional Stereo Matching

Changhee Won, Jongbin Ryu and Jongwoo Lim*

Department of Computer Science, Hanyang University, Seoul, Korea.

{chwon, jongbinryu, jlim}@hanyang.ac.kr

Abstract

In this paper, we propose a novel end-to-end deep neural

network model for omnidirectional depth estimation from

a wide-baseline multi-view stereo setup. The images cap-

tured with ultra wide field-of-view (FOV) cameras on an

omnidirectional rig are processed by the feature extraction

module, and then the deep feature maps are warped onto

the concentric spheres swept through all candidate depths

using the calibrated camera parameters. The 3D encoder-

decoder block takes the aligned feature volume to produce

the omnidirectional depth estimate with regularization on

uncertain regions utilizing the global context information.

In addition, we present large-scale synthetic datasets for

training and testing omnidirectional multi-view stereo al-

gorithms. Our datasets consist of 11K ground-truth depth

maps and 45K fisheye images in four orthogonal directions

with various objects and environments. Experimental re-

sults show that the proposed method generates excellent re-

sults in both synthetic and real-world environments, and it

outperforms the prior art and the omnidirectional versions

of the state-of-the-art conventional stereo algorithms.

1. Introduction

Image-based depth estimation, including stereo and

multi-view dense reconstruction, has been widely studied

in the computer vision community for decades. In con-

ventional two-view stereo matching, deep learning meth-

ods [12, 4] have achieved drastic performance improvement

recently. Besides, there are strong needs on omnidirec-

tional or wide FOV depth sensing in autonomous driving

and robot navigation to sense the obstacles and surrounding

structures. Human drivers watch all directions, not just the

front, and holonomic robots need to sense all directions to

move freely. However, conventional stereo rigs and algo-

rithms cannot capture or estimate ultra wide FOV (>180◦)

depth maps. Merging depth maps from multiple conven-

tional stereo pairs can be one possibility, but the useful

global context information cannot be propagated between

*Corresponding author.

the pairs and there might be a discontinuity at the seam.

Recently, several works have been proposed for the om-

nidirectional stereo using multiple cameras [29], reflective

mirrors [25], or wide FOV fisheye lenses [6]. Neverthe-

less, very few works utilize deep neural networks for the

omnidirectional stereo. In SweepNet [30] a convolutional

neural network (CNN) is used to compute the matching

costs of equirectangular image pairs warped from the ultra-

wide FOV images. The result cost volume is then re-

fined by cost aggregation (e.g., Semi-global matching [10]),

which is a commonly used approach in conventional stereo

matching [5, 32, 15]. However, such an approach may

not be optimal in the wide-baseline omnidirectional setup

since the occlusions are more frequent and heavier, and

there can be multiple true matches for one ray (Fig. 2b).

On the other hand, recent methods for conventional stereo

matching such as GC-Net [14] and PSMNet [4] employ the

end-to-end deep learning without separate cost aggregation,

and achieve better performance compared to the traditional

pipeline [32, 8, 26].

We introduce a novel end-to-end deep neural network

for estimating omnidirectional depth from multi-view fish-

eye images. It consists of three blocks, unary feature ex-

traction, spherical sweeping, and cost volume computation

as illustrated in Fig. 1. The deep features built from the

input images are warped to spherical feature maps for all

hypothesized depths (spherical sweeping). Then a 4D fea-

ture volume is formed by concatenating the spherical fea-

ture maps from all views so that the correlation between

multiple views can be learned efficiently. Finally, the 3D

encoder-decoder block computes a regularized cost volume

in consideration of the global context for omnidirectional

depth estimation. While the proposed algorithm can handle

various camera layouts, we choose the rig in Fig. 2a because

it provides good coverage while it can be easily adopted in

the existing vehicles.

Large-scale data with sufficient quantity, quality, and di-

versity are essential to train robust deep neural networks.

Nonetheless, acquiring highly accurate dense depth mea-

surements in real-world is very difficult due to the limita-

tions of available depth sensors. Recent works [16, 21] have

8987

proposed to use realistically rendered synthetic images with

ground truth depth maps for conventional stereo methods.

Cityscape synthetic datasets in [30] are the only available

datasets for the omnidirectional multi-view setup, but the

number of data is not enough to train a large network, and

they are limited to the outdoor driving scenes with few ob-

jects. In this work, we present complementary large-scale

synthetic datasets in both indoor and outdoor environments

with various objects.

The contributions of this paper are summarized as:

(i) We propose a novel end-to-end deep learning model to

estimate an omnidirectional depth from multiple fish-

eye cameras. The proposed model directly projects

feature maps to the predefined global spheres, com-

bined with the 3D encoder-decoder block enabling to

utilize global contexts for computing and regularizing

the matching cost.

(ii) We offer large-scale synthetic datasets for the omni-

directional depth estimation. The datasets consist of

multiple input fisheye images with corresponding om-

nidirectional depth maps. The experiments on the real-

world environments show that our datasets success-

fully train our network.

(iii) We experimentally show that the proposed method out-

performs the previous multi-stage methods. We also

show that our approaches perform favorably compared

to the omnidirectional versions of the state-of-the-art

conventional stereo methods through extensive experi-

ments.

2. Related Work

Deep Learning-based Methods for Conventional Stereo

Conventional stereo setup assumes a rectified image pair

as the input. Most traditional stereo algorithms before

deep learning follow two steps: matching cost computation

and cost aggregation. As summarized in Hirschmuller et

al. [11], sum of absolute differences, filter-based cost, mu-

tual information, or normalized cross-correlation are used

to compute the matching cost, and for cost aggregation, lo-

cal correlation-based methods, global graph cuts [2], and

semi-global matching (SGM) [10] are used. Among them,

SGM [10] is widely used because of its high accuracy and

low computational overhead.

Recently, deep learning approaches report much im-

proved performance in the stereo matching. Zagoruyko et

al. [31] propose a CNN-based similarity measurement for

image patch pairs. Similarly, Zbontar and LeCun [32] in-

troduce MC-CNN that computes matching costs from small

image patch pairs. Meanwhile, several papers focus on

the cost aggregation or disparity refinement. Güney and

Geiger [8] introduce Displets resolving matching ambigu-

ities on reflection or textureless surfaces using objects’ 3D

models. Seki and Pollefeys [26] propose SGM-Net which

predicts the smoothness penalties in SGM [10].

On the other hand, there have been several works on end-

to-end modeling of the stereo pipeline. Kendall et al. [14]

propose GC-Net which regularizes the matching cost by 3D

convolutional encoder-decoder architecture, and performs

disparity regression by the softargmin. Further, PSMNet

by Chang and Chen [4] consists of spatial pyramid pool-

ing modules for larger receptive field and multiply stacked

3D encoder-decoder architecture for learning more context

information. Also, Mayer et al. [16] develop DispNet, an

end-to-end network using correlation layers for disparity

estimation, and it is further extended by Pang et al. [18]

(CRL) and Ilg et al. [12] (DispNet-CSS). These end-to-end

networks have achieved better performance compared to the

conventional multi-stage methods.

Synthetic Datasets for Learning Stereo Matching For

successful training of deep neural networks, an adequate

large-scale dataset is essential. In stereo depth estimation,

Middlebury [24, 11, 23] and KITTI datasets [7, 17] are

most widely used. These databases are faithfully reflect-

ing the real world, but capturing the ground truth depth re-

quires complex calibration and has limited coverage, and

more importantly, the number of images is often insufficient

for training large networks.

Nowadays synthetically rendered datasets are used to

complement the real datasets. Mayer et al. [16] introduce

a large scale dataset for disparity, optical flow, and scene

flow estimation. The proposed dataset consists of 2K scene

images and dense disparity maps generated via rendering,

which is 10× larger than KITTI [17]. Ritcher et al. [20]

provide fully annotated training data by simulating a living

city in a realistic 3D game world. For semantic scene com-

pletion, SUNGC dataset [27] contains 45K synthetic indoor

scenes of 400K rooms and 5M objects with depth and voxel

maps. However, almost all datasets use single or stereo pin-

hole camera models with limited FOV, and there are very

few datasets for omnidirectional stereo.

Omnidirectional Depth Estimation Various algorithms

and systems have been proposed for the omnidirectional

depth estimation [6, 25, 29], but very few use deep neu-

ral networks. Schönbein et al. [25] use two horizontally

mounted 360°-FOV catadioptric cameras, and estimate the

disparity from rectified omnidirectional images. Using two

vertically mounted ultra-wide FOV fisheye cameras, Gao

and Shen [6] estimate omnidirectional depth by project-

ing the input images onto four predefined planes. Im et

al. [13] propose a temporal stereo algorithm that estimates

an all around depth of the static scene from a short mo-

tion clip. Meanwhile, purely learning-based approaches

Zioulis et al. [33] and Payen et al. [19] have been proposed

estimating a 360° depth from a single panoramic image.

Recently, Won et al. [30] propose SweepNet with a

8988

Unary feature extraction Spherical sweeping Cost volume computation

2D CNN

Sharing weight

Concat

Feature Alignment

Softargmin

Omnidirectional depth

Intrinsic

& Extrinsic

3D encoder-decoder

Input

Figure 1: Overview of the proposed method. Each input image is fed into the 2D CNN for extracting feature maps. We

project the unary feature maps into spherical features to build the matching cost volume. The final depth is acquired through

cost volume computation by the 3D encoder-decoder architecture and softargmin.

multi-camera rig system for the omnidirectional stereo.

They warp the input fisheye images onto the concentric

global spheres, and SweepNet computes matching costs

from the warped spherical images pair. Then, the cost vol-

ume is refined by applying SGM [10]. However, SGM

cannot handle the multiple true matches occurring in such

global sweeping approaches as in Fig. 2b.

In this paper, we present the first end-to-end deep neu-

ral network for the omnidirectional stereo and large-scale

datasets to train the network. As shown in the experiments,

the proposed method achieves better performance compared

to the previous methods and performs favorably in the real-

world environment with our new datasets.

3. Omnidirectional Multi-view Stereo

In this section, we introduce the multi-fisheye camera rig

and the spherical sweeping method, and then describe the

proposed end-to-end network architecture for the omnidi-

rectional stereo depth estimation. As shown in Fig. 1 our al-

gorithm has three stages, unary feature extraction, spherical

sweeping, and cost volume computation. In the following

subsections, the individual stages are described in detail.

3.1. Spherical sweeping

The rig consists of multiple fisheye cameras mounted at

fixed locations. Unlike the conventional stereo which uses

the reference camera’s coordinate system, we use the rig

coordinate system for depth representation, as in [30]. For

convenience we set the y-axis to be perpendicular to the

plane closest to all camera centers, and the origin at the

center of the projected camera centers. A unit ray p̄ for

the spherical coordinate 〈θ, φ〉 corresponds to p̄(θ, φ) =
(cos(φ) cos(θ), sin(φ), cos(φ) sin(θ))⊤. With the intrinsic

and extrinsic parameters of the i-th camera (calibrated us-

ing [22, 28, 1]), the image pixel coordinate xi for a 3D point

X can be written as a projection function Πi; xi = Πi(X).
Thus a point at 〈θ, φ〉 on the sphere of radius ρ is projected

(a)

തpሺ�, �ሻ
(b)

Figure 2: (a) Wide-baseline multi-camera rig system. (b)

Multiple true matches problem. There can be several ob-

servations on a ray in such global sweeping approach.

to Πi(ρ p̄(θ, φ)) in the i-th fisheye image.

Spherical sweeping generates a series of spheres with

different radii and builds the spherical images of each input

image. Similar to plane sweeping in conventional stereo,

the inverse radius dn is swept from 0 to dmax, where

1/dmax is the minimum depth to be considered and N is

the number of spheres. The pixel value of the equirectangu-

lar spherical image warped onto n-th sphere is determined

as

Sn,i(θ, φ) = Ii(Πi(p̄(θ, φ)/dn)), (1)

where Ii is the input fisheye image captured by i-th camera

and dn is the n-th inverse depth.

3.2. Feature Learning and Alignment

Instead of using pixel intensities, recent stereo algo-

rithms use deep features for computing matching costs.

MC-CNN [32] shifts the right features by −k pixels to align

them with the left features, so as to compute the cost for k
disparity by 1×1 convolutional filters. Further, GC-Net [14]

builds a 4D cost volume by shifting and concatenating the

feature maps across each disparity, so that it can be regular-

8989

ized by a 3D CNN. In this way, the network can utilize geo-

metric context (e.g., for handling occlusion) by depth-wise

convolution, and also, the simple shifting operation makes

gradient back-propagation easy. However, these approaches

are limited to rectified conventional stereo, and cannot be

applied to multi-view images in wide FOV or omnidirec-

tional setups.

Instead of extracting features from the spherical images

at all spheres, we choose to build a feature map in the input

fisheye image space and warp the feature map according

to Eq. 1. This saves huge amount of computation, and the

impact on performance is minimal since the distortion in the

original image is learned by the feature extraction network.

The unary feature map U = FCNN (I) has 1
r
HI ×

1
r
WI ×

C resolution, where FCNN is a 2D CNN for the feature

extraction, HI and WI are the height and width of the input

image, r is the reduction factor, and C is the number of

channels.

The unary feature maps of the input images are then pro-

jected onto the predefined spheres. Following Eq. 1, the

spherical feature map at n-th sphere for i-th image is deter-

mined as

Si(φ, θ, n, c) = Uc

(

1

r
Πi(p̄(θ, φ)/dn)

)

, (2)

where θ varies from −π to π, and φ varies up to ±π/2 ac-

cording to the resolution. To ensure sufficient disparities

between neighboring warped feature maps and to reduce

the memory and computation overhead, we use every other

spheres, i.e., n ∈ [0, 2, . . . , N − 1], to make the warped 4D

feature volume Si of the size H×W× N
2 ×C. With the cal-

ibrated intrinsic and extrinsic parameters, we use the coor-

dinate lookup table and 2D bilinear interpolation in warping

the feature maps, and during back-propagation the gradients

are distributed inversely. We compute the validity mask Mi

for each input image, and the pixels outside the valid region

are ignored both in warping and back-propagation.

Finally, all spherical feature volumes {Si} are merged

and used as the input of the cost computation network. Our

approaches enables the network to learn finding omnidirec-

tional stereo correspondences from multiple fisheye images,

and to utilize spherical geometric context information for

the regularization by applying a 3D CNN to the spherical

features.

3.3. Network Architecture

The architecture of the proposed network is detailed in

Table 1. The input of the network is a set of grayscale fish-

eye images. We use the residual blocks [9] for the unary fea-

ture extraction, and the dilated convolution for the larger re-

ceptive field. The output feature map size is half (r = 2) of

the input image. Each feature map is aligned by the spheri-

cal sweeping (Sec. 3.2), and transferred to the spherical fea-

Name Layer Property Output (H,W,N,C)

U
n

ar
y

fe
at

u
re

ex
tr

ac
ti

o
n

Input HI ×WI

conv1 5× 5, 32


























1/2HI × 1/2WI × 32

conv2 3× 3, 32
conv3 3× 3, 32, add conv1

conv4-11 repeat conv2-3

conv12-17
repeat conv2-3

with dilate = 2, 3, 4

S
p

h
er

ic
al

sw
ee

p
in

g warp H × W × 1/2N × 32

transference 3× 3× 1, 32 1/2 × 1/2 × 1/2 × 32

concat(4)* 1/2 × 1/2 × 1/2 ×128

fusion 3× 3× 3, 64 1/2 × 1/2 × 1/2 × 64

C
o

st
v
o

lu
m

e
co

m
p

u
ta

ti
o

n

3Dconv1-3 3× 3× 3, 64 1/2 × 1/2 × 1/2 × 64

3Dconv4-6 from 1, 3× 3× 3, 128 1/4 × 1/4 × 1/4 ×128

3Dconv7-9 from 4, 3× 3× 3, 128 1/8 × 1/8 × 1/8 ×128

3Dconv10-12 from 7, 3× 3× 3, 128 1/16 × 1/16 × 1/16 ×128

3Dconv13-15 from 10, 3× 3× 3, 256 1/32 × 1/32 × 1/32 ×256

3Ddeconv1
3× 3× 3, 128,
add 3Dconv12

1/16 × 1/16 × 1/16 ×128

3Ddeconv2
3× 3× 3, 128,
add 3Dconv9

1/8 × 1/8 × 1/8 ×128

3Ddeconv3
3× 3× 3, 128,
add 3Dconv6

1/4 × 1/4 × 1/4 ×128

3Ddeconv4
3× 3× 3, 64,
add 3Dconv3

1/2 × 1/2 × 1/2 × 64

3Ddeconv5 3× 3× 3, 1 H ×W ×N

softargmin H ×W

Table 1: The input images pass separately from conv1 to

transference, then are merged by concat and fusion. H ,

W , and N are omitted for brevity. In this work we use 4

cameras, thus concat outputs 32× 4 = 128 channels.

ture by a 3× 3 convolution. The spherical feature maps are

concatenated and fused into the 4D initial cost volume by a

3×3×3 convolution. We then use the 3D encoder-decoder

architecture [14] to refine and regularize the cost volume

using the global context information.

Finally, the inverse depth index n̂ can be computed by

the softargmin [14] as

n̂(θ, φ) =

N−1
∑

n=0

n×
e−C(φ,θ,n)

∑

ν e
−C(φ,θ,ν)

where C is the (H ×W ×N) regularized cost volume.

To train the network in an end-to-end fashion, we use the

input images and the ground truth inverse depth index as

n∗(θ, φ) = (N − 1)
d∗(θ, φ)− d0
dN−1 − d0

,

where d∗(·) = 1/D∗(·) is the ground truth inverse depth,

and d0 and dN−1 are the min and max inverse depth respec-

tively. We use the absolute error loss between the ground

truth and predicted index as

L(θ, φ) =
1

∑

i Mi(θ, φ)

∣

∣

∣
n̂(θ, φ)− round(n∗(θ, φ))

∣

∣

∣
.

We use the stochastic gradient descent with a momentum to

minimize the loss. The overall flow of the proposed network

is illustrated in Fig. 1.

8990

Figure 3: Examples of our proposed datasets. From

left: input fisheye images with visibility (left-top), reference

panorama image, and ground truth inverse depth map.

Dataset
Training # Training # Test

Scenes Frames Frames

SceneFlow [16]

FlyingThings3D 2247 21818 4248

Monkaa 8 8591 -

Driving 1 4392 -

Won et al. [30]

Sunny 1 700 300

Cloudy 1 700 300

Sunset 1 700 300

Ours
OmniThings 9216 9216 1024

OmniHouse 451 2048 512

Table 2: Comparison with the published datasets. Our

datasets have more training scenes and the comparable

number of training and test frames to exsiting datasets.

4. Datasets

Although there exist many datasets for conventional

stereo [7, 17, 16], only one dataset [30] is available for

the omnidirectional stereo, but it only contains the outdoor

road scenes. Therefore we create new synthetic datasets for

more generic scenes and objects. Our datasets contain in-

put fisheye images, omnidirectional depth maps, and ref-

erence panorama images. In addition to [30], we generate

two much larger datasets (OmniThings and OmniHouse) in

different environments using Blender.

OmniThings Similar to [16], OmniThings dataset consists

of randomly generated objects around the camera rig. We

collect 33474 3D object models from ShapeNet [3] and

4711 textures from Flickr and ImageAfter1. For each scene,

we randomly choose 64 objects and place them onto the N
spheres with random positions, rotations, scales, and tex-

tures, so that complex shapes of various objects and oc-

clusions can be learned. We also place a randomly shaped

room or sky for learning the background depth. The dataset

has 9216 scenes for training and 1024 scenes for test.

OmniHouse In order to generate realistic indoor scenes,

we reproduce the SUNCG dataset [27] which consists of

45K synthetic indoor scenes. We collect 451 house models

from the SUNCG dataset, and place the virtual camera rig

in them with random positions and orientations. We render

2048 frames for training and 512 frames for test.

1https://www.flickr.com and http://www.imageafter.com

Reference view

Ground truth Estimated inverse depth

Stitching

Conventional

Stereo

Rectification

Right Left Disparity

Figure 4: We rectify the input images into 512 × 512 and

120° FOV left-right pairs. The predicted disparity maps are

merged into a H ×W omnidirectional inverse depth index.

The overview of our proposed datasets is described in

Table 2, and the examples are shown in Fig. 3. Each frame

consists of four 220° FOV fisheye images, which have a

resolution of HI = 768 and WI = 800, and one ground

truth omnidirectional depth map, which has H = 360 and

W = 640 (θ ranges from −π to π and φ from −π/2 to π/2).

In the next section, we show that the networks trained with

our datasets successfully estimate the omnidirectional depth

in the real-world environments, which proves the effective-

ness of our synthetic datasets.

5. Experimental Results

5.1. Implementation and Training Details

To train the network, the input images are converted to

grayscale, and the validity mask is set to only contain the

pixels within 220° FOV. The intensity values in the valid

area are then normalized to zero-mean and unit variance.

To prevent the encoder-decoder network from learning only

the valid regions in each channel, the order of feature maps

to the concatenating stage is randomly permuted (e.g., 1-

2-3-4, 2-3-4-1, 3-4-1-2, or 4-1-2-3). Further, we randomly

rotate the rig coordinate system (and the GT depth map ac-

cordingly) with a small angle, so that the network is not

tightly coupled to specific layouts. In all our experiments,

the output and GT depth maps are cropped to H = 160
(−π/4 ≤ φ ≤ π/4) and W = 640 since the regions near

the poles are highly distorted and less useful. The number of

sweep spheres is set to N = 192. We train our network for

30 epochs on the OmniThings dataset from scratch, using

4096 training scenes. The learning rate λ is set to 0.003 for

the first 20 epochs and 0.0003 for the remaining 10 epochs.

We also test the network fine-tuned on the Sunny and Omni-

8991

