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Abstract

We address the problem of cross-modal fine-grained ac-

tion retrieval between text and video. Cross-modal retrieval

is commonly achieved through learning a shared embed-

ding space, that can indifferently embed modalities. In

this paper, we propose to enrich the embedding by disen-

tangling parts-of-speech (PoS) in the accompanying cap-

tions. We build a separate multi-modal embedding space

for each PoS tag. The outputs of multiple PoS embed-

dings are then used as input to an integrated multi-modal

space, where we perform action retrieval. All embeddings

are trained jointly through a combination of PoS-aware and

PoS-agnostic losses. Our proposal enables learning spe-

cialised embedding spaces that offer multiple views of the

same embedded entities.

We report the first retrieval results on fine-grained ac-

tions for the large-scale EPIC dataset, in a generalised

zero-shot setting. Results show the advantage of our ap-

proach for both video-to-text and text-to-video action re-

trieval. We also demonstrate the benefit of disentangling

the PoS for the generic task of cross-modal video retrieval

on the MSR-VTT dataset.

1. Introduction

With the onset of the digital age, millions of hours of

video are being recorded and searching this data is becom-

ing a monumental task. It is even more tedious when search-

ing shifts from video-level labels, such as ‘dancing’ or ‘ski-

ing’, to short action segments like ‘cracking eggs’ or ‘tight-

ening a screw’. In this paper, we focus on the latter and

refer to them as fine-grained actions. We thus explore the

task of fine-grained action retrieval where both queries and

retrieved results can be either a video sequence, or a textual

caption describing the fine-grained action. Such free-form

action descriptions allow for a more subtle characterisation

of actions but require going beyond training a classifier on

a predefined set of action labels [20, 30].

As is common in cross-modal search tasks [26, 36], we

learn a shared embedding space onto which we project both

videos and captions. By nature, fine-grained actions can

Figure 1. We target fine-grained action retrieval. Action captions

are broken using part-of-speech (PoS) parsing. We create separate

embedding spaces for the relevant PoS (e.g. Noun or Verb) and

then combine these embeddings into a shared embedding space

for action retrieval (best viewed in colour).

be described by an actor, an act and the list of objects in-

volved in the interaction. We thus propose to learn a sep-

arate embedding for each part-of-speech (PoS), such as for

instance verbs, nouns or adjectives. This is illustrated in

Fig. 1 for two PoS (verbs and nouns). When embedding

verbs solely, relevant entities are those that share the same

verb/act regardless of the nouns/objects used. Conversely,

for a PoS embedding focusing on nouns, different actions

performed on the same object are considered relevant enti-

ties. This enables a PoS-aware embedding, specialised for

retrieving a variety of relevant entities, given that PoS. The

outputs from the multiple PoS embedding spaces are then

combined within an encoding module that produces the fi-

nal action embedding. We train our approach end-to-end,

jointly optimising the multiple PoS embeddings and the fi-

nal fine-grained action embedding.

This approach has a number of advantages over training

a single embedding space as is standardly done [7, 8, 15,

22, 24]. Firstly, this process builds different embeddings

that can be seen as different views of the data, which con-

tribute to the final goal in a collaborative manner. Secondly,

it allows to inject, in a principled way, additional informa-

tion but without requiring additional annotation, as parsing

a caption for PoS is done automatically. Finally, when con-

sidering a single PoS at a time, for instance verbs, the cor-
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responding PoS-embedding learns to generalise across the

variety of actions involving each verb (e.g. the many ways

‘open’ can be used). This generalisation is key to tackling

more actions including new ones not seen during training.

We present the first retrieval results for the recent large-

scale EPIC dataset [6] (Sec 4.1), utilising the released free-

form narrations, previously unexplored for this dataset, as

our supervision. Additionally, we show that our second con-

tribution, learning PoS-aware embeddings, is also valuable

for general video retrieval by reporting results on the MSR-

VTT dataset [39] (Sec. 4.2).

2. Related Work

Recently, neural networks trained with a ranking loss

considering image pairs [27], triplets [35], quadruplets [5]

or beyond [32], have been considered for metric learn-

ing [17, 35] and for a broad range of search tasks such

as face/person identification [29, 5, 16, 2] or instance re-

trieval [10, 27]. These learning-to-rank approaches have

been generalised to two or more modalities. Standard ex-

amples include building a joint embedding for images and

text [11, 36], videos and audio [33] and, more related to

our work, for videos and action labels [15], videos and

text [8, 14, 40] or some of those combined [25, 24, 22].

Representing text. Early works in image-to-text cross-

modal retrieval [9, 11, 36] used TF-IDF as a weighted bag-

of-words model for text representations (either from a word

embedding model or one-hot vectors) in order to aggre-

gate variable length text captions into a single fixed sized

representation. With the advent of neural networks, works

shifted to use RNNs, Gated Recurrent Units (GRU) or Long

Short-Term Memory (LSTM) units to extract textual fea-

tures [8] or to use these models within the embedding net-

work [15, 18, 24, 25, 34] for both modalities.

Action embedding and retrieval. Joint embedding spaces

are a standard tool to perform action retrieval. Zhang et

al. [42] use a Semantic Similarity Embedding (SSE) in or-

der to perform action recognition. Their method, inspired

by sparse coding, splits train and test data into a mixture of

proportions of already seen classes which then generalises

to unseen classes at test time. Mithun et al. [24] create two

embedding spaces: An activity space using flow and au-

dio along with an object space from RGB. Their method

encodes the captions with GRUs and the output vectors

from the activity and object spaces are concatenated to rank

videos. We instead create Part of Speech embedding spaces

which we learn jointly, allowing our method to capture re-

lationships between e.g. verbs and nouns.

Hahn et al. [15] use two LSTMs to directly project

videos into the Word2Vec embedding space. This method

is evaluated on higher-level activities, showing that such

a visual embedding aligns well with the learned space

of Word2Vec to perform zero-shot recognition of these

coarser-grained classes. Miech et al. [21] found that us-

ing NetVLAD [3] results in an increase in accuracy over

GRUs or LSTMs for aggregation of both visual and text

features. A follow up on this work [22] learns a mixture

of experts embedding from multiple modalities such as ap-

pearance, motion, audio or face features. It learns a sin-

gle output embedding which is the weighted similarity be-

tween the different implicit visual-text embeddings. Re-

cently, Miech et al. [23] propose the HowTo100M dataset:

A large dataset collected automatically using generated cap-

tions from youtube of ‘how to tasks’. They find that fine-

tuning on these weakly-paired video clips allows for state-

of-the-art performance on a number of different datasets.

Fine-grained action recognition. Recently, several large-

scale datasets have been published for the task of fine-

grained action recognition [6, 12, 13, 31, 28]. These gener-

ally focus on a closed vocabulary of class labels describing

short and/or specific actions.

Rohrbach et al. [28] investigate hand and pose estimation

techniques for fine-grained activity recognition. By com-

positing separate actions, and treating them as attributes,

they can predict unseen activities via novel combinations of

seen actions. Mahdisoltani et al. [20] train for four different

tasks, including both coarse and fine grain action recogni-

tion. They conclude that training on fine-grain labels allows

for better learning of features for coarse-grain tasks.

In our previous work [38], we explored action retrieval

and recognition using multiple verb-only representations,

collected via crowd-sourcing. We found that a soft-assigned

representation was beneficial for retrieval tasks over using

the full verb-noun caption. While the approach enables

scaling to a broader vocabulary of action labels, such multi-

verb labels are expensive to collect for large datasets.

While focusing on fine-grained actions, we diverge from

these works using open vocabulary captions for supervision.

As recognition is not suitable, we instead formulate this as

a retrieval problem. Up to our knowledge, no prior work at-

tempted cross-modal retrieval on fine-grained actions. Our

endeavour has been facilitated by the recent release of open

vocabulary narrations on the EPIC dataset [6] which we

note is the only fine-grained dataset to do so. While our

work is related to both fine-grained action recognition and

general action retrieval, we emphasise that it is neither. We

next describe our proposed model.

3. Method

Our aim is to learn representations suitable for cross-

modal search where the query modality is different from the

target modality. Specifically, we use video sequences with

textual captions/descriptions and perform video-to-text (vt)

or text-to-video (tv) retrieval tasks. Additionally, we would

like to make sure that classical search (where the query and
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Figure 2. Overview of the JPoSE model. We first disentangle a caption into its parts of speech (PoS) and learn a Multi-Modal Embedding

Network (MMEN, Sec. 3.1) for each PoS (Sec. 3.2). The output of these PoS-MMENs are then encoded (ev , et) to get new representations

v̂i and t̂i on top of which the final embeddings f̂ and ĝ are learnt. JPoSE learns all of those jointly (Sec. 3.3), using a combination of

PoS-aware L1, L2, defined in Eq. (5) and PoS-agnostic L̂ losses, defined in Eq. (6). Non-trained modules are shown in grey.

the retrieved results have the same modalities) could still

be performed in that representation space. The latter are

referred to as video-to-video (vv) and text-to-text (tt) search

tasks. As discussed in the previous section, several possibil-

ities exist, the most common being embedding both modal-

ities in a shared space such that, regardless of the modality,

the representation of two relevant entities in that space are

close to each other, while the representation of two non-

relevant entities are far apart.

We first describe how to build such a joint embedding

between two modalities, enforcing both cross-modal and

within-modal constraints (Sec. 3.1). Then, based on the

knowledge that different parts of the caption encode differ-

ent aspects of an action, we describe how to leverage this in-

formation and build several disentangled Part of Speech em-

beddings (Sec. 3.2). Finally, we propose a unified represen-

tation well-suited for fine-grained action retrieval (Sec. 3.3).

3.1. Multi­Modal Embedding Network (MMEN)

This section describes a Multi-Modal Embedding Net-

work (MMEN) that encodes the video sequence and the text

caption into a common descriptor space.

Let {(vi, ti)|vi ∈ V, ti ∈ T} be a set of videos with

vi being the visual representation of the ith video sequence

and ti the corresponding textual caption. Our aim is to learn

two embedding functions f : V → Ω and g : T → Ω,

such that f(vi) and g(ti) are close in the embedded space Ω.

Note that f and g can be linear projection matrices or more

complex functions e.g. deep neural networks. We denote

the parameters of the embedding functions f and g by

θf and θg respectively, and we learn them jointly with a

weighted combination of two cross-modal (Lv,t, Lt,v) and

two within-modal (Lv,v, Lt,t) triplet losses. Note that other

point-wise, pairwise or list-wise losses can also be consid-

ered as alternatives to the triplet loss.

The cross-modal losses are crucial to the task and en-

sure that the representations of a query and a relevant item

for that query from a different modality are closer than the

representations of this query and a non-relevant item. We

use cross-modal triplet losses [19, 36]:

Lv,t(θ) =
∑

(i,j,k)∈Tv,t

max
(

γ + d(fvi , gtj )− d(fvi
, gtk), 0

)

Tv,t = {(i, j, k) | vi ∈ V, tj ∈ Ti+, tk ∈ Ti−}

(1)

Lt,v(θ) =
∑

(i,j,k)∈Tt,v

max
(

γ + d(gti , fvj )− d(gti , fvk
), 0

)

Tt,v = {(i, j, k) | ti ∈ T, vj ∈ Vi+, vk ∈ Vi−}

(2)

where γ is a constant margin, θ = [θf , θg], and d(.) is the

distance function in the embedded space Ω. Ti+, Ti− re-

spectively define sets of relevant and non relevant captions

and Vi+, Vi− the sets of relevant and non relevant videos se-

quences for the multi-modal object (vi, ti). To simplify the

notation, fvi
denotes f(vi) ∈ Ω and gtj denotes g(tj) ∈ Ω.

Additionally, within-modal losses, also called structure

preserving losses [19, 36], ensure that the neighbourhood

structure within each modality is preserved in the newly

built joint embedding space. Formally,

Lv,v(θ) =
∑

(i,j,k)∈Tv,v

max
(

γ + d(fvi
, fvj )− d(fvi , fvk), 0

)

Tv,v = {(i, j, k) | vi ∈ V, vj ∈ Vi+, vk ∈ Vi−}

(3)

Lt,t(θ) =
∑

(i,j,k)∈Tt,t

max
(

γ + d(gti , gtj )− d(gti , gtk), 0
)

Tt,t = {(i, j, k) | ti ∈ T, tj ∈ Ti+, tk ∈ Ti−}

(4)
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using the same notation as before. The final loss used for

the MMEN network is a weighted combination of these four

losses, summed over all triplets in T defined as follows:

L(θ) = λv,vLv,v + λv,tLv,t + λt,vLt,v + λt,tLt,t (5)

where λ is a weighting for each loss term.

3.2. Disentangled Part of Speech Embeddings

The previous section described the generic Multi-Modal

Embedding Network (MMEN). In this section, we pro-

pose to disentangle different caption components so each

component is encoded independently in its own embedding

space. To do this, we first break down the text caption

into different PoS tags. For example, the caption “I di-

vided the onion into pieces using wooden spoon” can be

divided into verbs, [divide, using], pronouns, [I], nouns,

[onion, pieces, spoon] and adjectives, [wooden]. In our

experiments, we focus on the most relevant ones for fine-

grained action recognition: verbs and nouns, but we explore

other types for general video retrieval. We extract all words

from a caption for a given PoS tag and train one MMEN to

only embed these words and the video representation in the

same space. We refer to it as a PoS-MMEN.

To train a PoS-MMEN, we propose to adapt the notion of

relevance specifically to the PoS. This has a direct impact on

the sets Vi+, Vi−, Ti+, Ti− defined in Equations (1)-(4). For

example, the caption ‘cut tomato’ is disentangled into the

verb ‘cut’ and the noun ‘tomato’. Consider a PoS-MMEN

focusing on verb tags solely. The caption ‘cut carrots’ is a

relevant caption as the pair share the same verb ‘cut’. In an-

other PoS-MMEN focusing on noun tags solely, the two re-

main irrelevant. As the relevant/irrelevant sets differ within

each PoS-MMEN, these embeddings specialise to that PoS.

It is important to note that, although the same visual fea-

tures are used as input for all PoS-MMEN, the fact that we

build one embedding space per PoS trains multiple visual

embedding functions fk that can be seen as multiple views

of the video sequence.

3.3. PoS­Aware Unified Action Embedding

The previous section describes how to extract different

PoS from captions and how to build PoS-specific MMENs.

These PoS-MMENs can already be used alone for PoS-

specific retrieval tasks, for instance a verb-retrieval task

(e.g. retrieve all videos where “cut” is relevant) or a noun-

retrieval task.1 More importantly, the output of different

PoS-MMENs can be combined to perform more complex

tasks, including the one we are interested in, namely fine-

grained action retrieval.

1Our experiments focus on action retrieval but we report on these other

tasks in the supplementary material.

Let us denote the kth PoS-MMEN visual and textual em-

bedding functions by fk : V → Ωk and gk : T → Ωk. We

define:

v̂i = ev(f
1
vi
, f2

vi
, . . . , fK

vi
)

t̂i = et(g
1
t1
i
, g2t2

i
, . . . , gK

tK
i
)

(6)

where ev and et are encoding functions that combine the

outputs of the PoS-MMENs. We explore multiple pooling

functions for ev and et: concatenation, max, average - the

latter two assume all Ωk share the same dimensionality.

When v̂i, t̂i have the same dimension, we can perform

action retrieval by directly computing the distance between

these representations. We instead propose to train a final

PoS-agnostic MMEN that unifies the representation, lead-

ing to our final JPoSE model.

Joint Part of Speech Embedding (JPoSE). Consider-

ing the PoS-aware representations v̂i and t̂i as input and,

still following our learning to rank approach, we learn

the parameters θ̂
f̂

and θ̂ĝ of the two embedding functions

f̂ : V̂ → Γ and ĝ : T̂ → Γ which project in our final em-

bedding space Γ. We again consider this as the task of build-

ing a single MMEN with the inputs v̂i and t̂i, and follow

the process described in Sec. 3.1. In other words, we train

using the loss defined in Equation (5), which we denote

L̂ here, which combines two cross-modal and two within-

modal losses using the triplets Tv,t, Tt,v, Tv,v, Tt,t formed

using relevance between videos and captions based on the

action retrieval task. As relevance here is not PoS-aware,

we refer to this loss as PoS-agnostic. This is illustrated in

Fig. 2.

We learn the multiple PoS-MMENs and the final MMEN

jointly with the following combined loss:

L(θ̂, θ1, . . . θK) = L̂(θ̂) +

K
∑

k=1

αkLk(θk) (7)

where αk are weighting factors, L̂ is the PoS-agnostic loss

described above and Lk are the PoS-aware losses corre-

sponding to the K PoS-MMENs.

4. Experiments

We first tackle fine-grained action retrieval on the EPIC

dataset [6] (Sec. 4.1) and then the general video retrieval

task on the MSR-VTT dataset [39] (Sec. 4.2). This allows

us to explore two different tasks using the proposed multi-

modal embeddings.

The large English spaCy parser [1] was used to find

the Part Of Speech (PoS) tags and disentangle them in the

captions of both datasets. Statistics on the most frequent

PoS tags are shown in Table 1. As these statistics show,

EPIC contains mainly nouns and verbs, while MSR-VTT
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has longer captions and more nouns. This will have an im-

pact of the PoS chosen for each dataset when building the

JPoSE model.

4.1. Fine­Grained Action Retrieval on EPIC

Dataset. The EPIC dataset [6] is an egocentric dataset with

32 participants cooking in their own kitchens who then nar-

rated the actions in their native language. The narrations

were translated to English but maintain the open vocabu-

lary selected by the participants. We employ the released

free-form narrations to use this dataset for fine-grained ac-

tion retrieval. We follow the provided train/test splits. Note

that by construction there are two test sets: Seen and Un-

seen, referring to whether the kitchen has been seen in the

training set. We follow the terminology from [6], and note

that this terminology should not be confused with the zero-

shot literature which distinguishes seen/unseen classes. The

actual sequences are strictly disjoint between all sets.

Additionally, we train only on the many-shot examples

from EPIC excluding all examples of the few shot classes

from the training set. This ensures each action has more

than 100 relevant videos during training and increases the

number of zero-shot examples in both test sets.

Building relevance sets for retrieval. The EPIC dataset

offers an opportunity for fine-grained action retrieval, as

the open vocabulary has been grouped into semantically

relevant verb and noun classes for the action recognition

challenge. For example, ‘put’, ‘place’ and ‘put-down’ are

grouped into one class. As far as we are aware, this paper

presents the first attempt to use the open vocabulary narra-

tions released to the community.

We determine retrieval relevance scores from these se-

mantically grouped verb and noun classes2, defined in [6].

These indicate which videos and captions should be con-

sidered related to each other. Following these semantic

groups, a query ‘put mug’ and a video with ‘place cup’

in its caption are considered relevant as ‘place’ and ‘put’

share the same verb class and ‘mug’ and ‘cup’ share the

same noun class. Subsequently, we define the triplets

Tv,t, Tt,v, Tv,v, Tt,t used to train the MMEN models and to

compute the loss L̂ in JPoSE.

When training a PoS-MMEN, two videos are considered

relevant only within that PoS. Accordingly, ‘put onion’ and

‘put mug’ are relevant for verb retrieval, whereas, ‘put cup’

and ‘take mug’ are for noun retrieval. The corresponding

PoS-based relevances define the triplets T k for Lk.

4.1.1 Experimental Details

Video features. We extract flow and appearance features

using the TSN BNInception model [37] pre-trained on Ki-

2We use the verb and noun classes purely to establish relevance scores,

the training is done with the original open vocabulary captions.

EPIC MSR-VTT

Parts of Speech count avg/caption count avg/caption

Noun 34,546 1.21 418,557 3.33

Verb 30,279 1.06 245,177 1.95

Determiner 6,149 0.22 213,065 1.69

Adposition 5,048 0.18 151,310 1.20

Adjective 2,271 0.08 79,417 0.63

Table 1. Statistics of the 5 most common PoS tags in the training

sets of both datasets: total counts and average counts per caption.

netics and fine-tuned on our training set. TSN averages

the features from 25 uniformly sampled snippets within the

video. We then concatenate appearance and flow features to

create a 2048 dimensional vector (vi) per action segment.

Text features. We map each lemmatised word to its feature

vector using a 100-dimension Word2Vec model, trained on

the Wikipedia corpus. Multiple word vectors with the same

part of speech were aggregated by averaging. We also

experimented with the pre-trained 300-dimension Glove

model, and found the results to be similar.

Architecture details. We implement fk and gk in each

MMEN as a 2 layer perceptron (fully connected layers) with

ReLU. Additionally, the input vectors and output vectors

are L2 normalised. In all cases, we set the dimension of

the embedding space to 256, a dimension we found to be

suitable across all settings. We use a single layer perceptron

with shared weights for f̂ and ĝ that we initialise with PCA.

Training details. The triplet weighting parameters are set

to λv,v = λt,t = 0.1 and λv,t = λt,v = 1.0 and the

loss weightings αk are set to 1. The embedding models

were implemented in Python using the Tensorflow library.

We trained the models with an Adam solver and a learn-

ing rate of 1e−5, considering batch sizes of 256, where for

each query we sample 100 random triplets from the corre-

sponding Tv,t, Tt,v, Tv,v, Tt,t sets. The training in general

converges after a few thousand iterations, we report all re-

sults after 4000 iterations.

Evaluation metrics. We report mean average preci-

sion (mAP), i.e. for each query we consider the average pre-

cision over all relevant elements and take the mean over all

queries. We consider each element in the test set as a query

in turns. When reporting within-modal retrieval mAP, the

corresponding item (video or caption) is removed from the

test set for that query.

4.1.2 Results

First, we consider cross-modal and within-modal fine-

grained action retrieval. Then, we present an ablation study

as well as qualitative results to get more insights. Finally we

show that our approach is well-suited for zero-shot settings.

Compared approaches. Across a wide of range of exper-
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EPIC SEEN UNSEEN

vt tv vt tv

Random Baseline 0.6 0.6 0.9 0.9

CCA Baseline 20.6 7.3 14.3 3.7

MMEN (Verb) 3.6 4.0 3.9 4.2

MMEN (Noun) 9.9 9.2 7.9 6.1

MMEN (Caption) 14.0 11.2 10.1 7.7

MMEN ([Verb, Noun]) 18.7 13.6 13.3 9.5

JPoSE (Verb, Noun) 23.2 15.8 14.6 10.2

Table 2. Cross-modal action retrieval on EPIC.

EPIC SEEN UNSEEN

vv tt vv tt

Random Baseline 0.6 0.6 0.9 0.9

CCA Baseline 13.8 62.2 18.9 68.5

Features (Word2Vec) – 62.5 – 71.3

Features (Video) 13.6 – 21.0 –

MMEN (Verb) 15.2 11.7 20.1 15.8

MMEN (Noun) 16.8 30.1 21.2 34.1

MMEN (Caption) 17.2 63.8 20.7 69.6

MMEN ([Verb, Noun]) 17.6 83.5 22.5 84.7

JPoSE (Verb, Noun) 18.8 87.7 23.2 87.7

Table 3. Within-modal action retrieval on EPIC.

iments, we compare the proposed JPoSE (Sec. 3.3) with

some simpler variants based on MMEN (Sec. 3.1).

For the captions, we use 1) all the words together without

distinction, denoted as ‘Caption’, 2) only one PoS such as

‘Verb’ or ‘Noun’, 3) the concatenation of their respective

representations, denoted as ‘[Verb, Noun]’.

These models are also compared to standard baselines.

The Random Baseline randomly ranks all the database

items, providing a lower bound on the mAP scores. The

CCA-baseline applies Canonical Correlation Analysis to

both modalities vi and ti to find a joint embedding space for

cross-modal retrieval [9]. Finally, Features (Word2Vec)

and Features (Video), which are only defined for within-

modal retrieval (i.e. vv and tt), show the performance when

we directly use the video representation vi or the averaged

Word2Vec caption representation ti.

Cross-modal retrieval. Table 2 presents cross-modal re-

sults for fine-grained action retrieval. The main observation

is that the proposed JPoSE outperforms all the MMEN vari-

ants and the baselines for both video-to-text (vt) and text-

to-video retrieval (tv), on both test sets. We also note that

MMEN ([Verb, Noun]) outperforms other MMEN variants,

showing the benefit of learning specialised embeddings. Yet

the full JPoSE is crucial to get the best results.

Within-modal retrieval. Table 3 shows the within-modal

retrieval results for both text-to-text (tt) and video-to-

video (vv) retrieval. Again, JPoSE outperforms all the

flavours of MMEN on both test sets. This shows that by

EPIC SEEN

Learn L̂ (ev ,et) (f̂ , ĝ) vv vt tv tt

indep × Sum × 17.4 20.7 13.3 86.5

indep × Max × 17.5 21.2 13.3 86.5

indep × Conc. × 18.3 21.5 14.6 87.1

joint X Sum (Id, Id) 18.1 21.0 14.3 87.3

joint X Max (Id, Id) 18.1 22.4 14.8 87.5

joint X Conc. (Id, Id) 18.3 22.7 15.4 87.6

joint X Conc. (θ̂
f̂
, θ̂ĝ) 18.8 23.2 15.8 87.7

Table 4. Ablation study for JPoSE showing the effects of different

encodings, training PoS-MMENs, independently or jointly with f̂

and ĝ being the identity function Id or being learnt.

learning a cross-modal embedding we inject information

from the other modality that helps to better disambiguate

and hence to improve the search.

Ablation study. We evaluate the role of the components

of the proposed JPoSE model, for both cross-modal and

within-modal retrieval. Table 4 reports results comparing

different options for the encoding functions ev and et in ad-

dition to learning the model jointly both with and without

learned functions f̂ and ĝ. This confirms that the proposed

approach is the best option. In the supplementary material,

we also compare the performance when using the closed vo-

cabulary classes from EPIC to learn the embedding. Results

demonstrate the benefit of utilising the open vocabulary at

training time.

Zero-shot experiments. The use of the open vocabulary

in EPIC lends itself well to zero-shot settings. These are

the cases for which the open vocabulary verb or noun in

the test set is not present in the training set. Accordingly,

all previous results can be seen as a Generalised Zero-Shot

Learning (GZSL) [4] set-up: there exists both actions in

the test sets that have been seen in training and actions that

have not. Table 5 shows the zero-shot (ZS) counts in both

test sets. In total 12% of the videos in both test sets are

zero-shot instances. We separate cases where the noun is

present in the training set but the verb is not, denoted by

ZSV (zero-shot verb), from ZSN (zero-shot noun) where the

verb is present but not the noun. Cross-modal ZS retrieval

results for this interesting setting are shown in Table 6. We

compare JPoSE to MMEN (Caption) and baselines.

Results show that the proposed JPoSE model clearly im-

proves over these zero-shot settings, thanks to the differ-

ent views captured by the multiple PoS embeddings, spe-

cialised to acts and objects.

Qualitative results. Fig. 3 illustrates both video-to-text and

text-to-video retrieval. For several queries, it shows the rel-

evance of the top-50 retrieved items (relevant in green, non-

relevant in grey).

Fig. 4 illustrates our motivation that disentangling PoS
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Figure 3. Qualitative results for video-to-text (top) and text-to-video (bottom) action retrieval on EPIC. For several query videos (top) or

query captions (bottom), we show the quality of the top 50 captions (resp. videos) retrieved with green/grey representing relevant/irrelevant

retrievals. The number in front of the colour-coded bar shows the rank of the first relevant retrieval (lower rank is better).

Figure 4. Maximum activation examples for visual embedding in the noun (left) and the verb (right) PoS-MMEN. Examples of similar

objects over different actions are shown in the noun embedding (left) [chopping board vs cutlery] while the same action is shown over

different objects in the verb embedding (right) [open/close vs put/take].

EPIC All ZSV ZSN

Videos Verbs Nouns Videos Verbs Videos Nouns

Train 26,710 192 1005 – – – –

Seen Test 8,047 232 530 452 119 367 80

Unseen Test 2,929 136 243 257 63 275 127

Table 5. Number of videos, and number of open-vocabulary verbs

and nouns in the captions, for the three splits of EPIC. For both test

sets we also report zero-shot (ZS) instances, showing the number

of verbs and nouns that were not seen in the training set, as well as

the corresponding number of videos.

EPIC ZSV ZSN

vt tv vt tv

Random Baseline 1.57 1.57 1.64 1.64

CCA Baseline 2.92 2.96 4.36 3.25

MMEN (Caption) 5.77 5.51 4.17 3.32

JPoSE 7.50 6.47 7.68 6.17

Table 6. Zero shot experiments on EPIC.

embeddings would learn different visual functions. It

presents maximum activation examples on chosen neurons

within fi for both verb and noun embeddings. Each clus-

ter represents the 9 videos that respond maximally to one of

these neurons (video in supplementary). We can remark that

noun activations indeed correspond to objects of shared ap-

pearance occurring in different actions (in the figure, chop-

ping boards in one and cutlery in the second), while verb

embedding neuron activations reflect the same action ap-

plied to different objects (open/close vs. put/take).

4.2. General Video Retrieval on MSR­VTT

Dataset. We select MSR-VTT [39] as a public dataset

for general video retrieval. Originally used for video cap-

tioning, this large-scale video understanding dataset is in-

creasingly evaluated for video-to-text and text-to-video re-

trieval [8, 22, 24, 41, 23]. We follow the code and setup

of [22] using the same train/test split that includes 7,656

training videos each with 20 different captions describing

the scene and 1000 test videos with one caption per video.

We also follow the evaluation protocol in [22] and compute

recall@k (R@K) and median rank (MR).

In contrast to the EPIC dataset, there is no semantic

groupings of the captions in MSR-VTT. Each caption is

considered relevant only for a single video, and two cap-

tions describing different videos are considered irrelevant

even if they share semantic similarities. Furthermore, dis-

entangling captions yields further semantic similarities. For

example, “A cooking tutorial” and “A person is cooking”,

for a verb-MMEN, will be considered irrelevant as they be-

long to different videos even though they share the same

single verb ‘cook’.

Consequently, we can not directly apply JPoSE as pro-

posed in Sec. 3.3. Instead, we adapt JPoSE to this prob-

lem as follows. We use the Mixture-of-Expert Embeddings

(MEE) model from [22], as our core MMEN network. In

fact, MEE is a form of multi-modal embedding network in
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Video-to-text Text-to-Video

MSR-VTT Retrieval R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Mixture of Experts [22]* – – – – 12.9 36.4 51.8 10.0

Random Baseline 0.3 0.7 1.1 502.0 0.3 0.7 1.1 502.0

CCA Baseline 2.8 5.6 8.2 283.0 7.0 14.4 18.7 100.0

MMEN (Verb) 0.7 4.0 8.3 70.0 2.9 7.9 13.9 63.0

MMEN (Caption\Noun) 5.7 18.7 28.2 31.1 5.3 17.0 26.1 33.3

MMEN (Noun) 10.8 31.3 42.7 14.0 10.8 30.7 44.5 13.0

MMEN ([Verb, Noun]) 15.6 39.4 55.1 9.0 13.6 36.8 51.7 10.0

MMEN (Caption) 15.8 40.2 53.6 9.0 13.8 36.7 50.7 10.3

JPoSE (Caption\Noun, Noun) 16.4 41.3 54.4 8.7 14.3 38.1 53.0 9.0

Table 7. MSR-VTT Video-Caption Retrieval results. *We include results from [22], only available for Text-to-Video retrieval.

Figure 5. Qualitative results of text-to-video action retrieval on MSR-VTT. A← B shows the rank B of the retrieved video from using the

full caption MMEN (caption) and the rank A when disentangling the caption JPoSE (Caption\Noun, Noun).

that it embeds videos and captions into the same space. We

instead focus on assessing whether disentangling PoS and

learning multiple PoS-aware embeddings produce better re-

sults. In this adapted JPoSE we encode the output of the dis-

entangled PoS-MMENs with ev and et (i.e. concatenated)

and use NetVLAD [3] to aggregate Word2Vec representa-

tions. Instead of the combined loss in Equation (7), we use

the pair loss, used also in [22]:

L(θ) =
1

B

B
∑

i

∑

j 6=i

max
(

γ + d(fvi
, gti)− d(fvi , gtj ), 0

)

+max
(

γ + d(fvi
, gti)− d(fvj

, gti), 0
)

(8)

This same loss is used when we train different MMENs.

Visual and text features. We use appearance, flow, audio

and facial pre-extracted visual features provided from [22].

For the captions, we extract the encodings ourselves3 using

the same Word2Vec model as for EPIC.

Results. We report on video-to-text and text-to-video re-

trieval on MSR-VTT in Table 7 for the standard baselines

and several MMEN variants. Comparing MMENs, we note

that nouns are much more informative than verbs for this

retrieval task. MMEN results with other PoS tags (shown in

the supplementary) are even lower, indicating that they are

not informative alone. Building on these findings, we report

3Note that this explains the difference between the results reported

in [22] (shown in the first row of the Table 7) and MMEN (Caption).

results of a JPoSE combining two MMENs, one for nouns,

and one for the remainder of the caption (Caption\Noun).

Our adapted JPoSE model consistently outperforms full-

caption single embedding for both video-to-text and text-

to-video retrieval. We report other PoS disentanglement re-

sults in supplementary material.

Qualitative results. Figure 5 shows qualitative results com-

paring using the full caption and JPoSE noting the disentan-

gled model’s ability to commonly rank videos closer to their

corresponding captions.

5. Conclusion

We have proposed a method for fine-grained action re-

trieval. By learning distinct embeddings for each PoS, our

model is able to combine these in a principal manner and

to create a space suitable for action retrieval, outperform-

ing approaches which learn such a space through captions

alone. We tested our method on a fine-grained action re-

trieval dataset, EPIC, using the open vocabulary labels. Our

results demonstrate the ability for the method to generalise

to zero-shot cases. Additionally, we show the applicability

of the notion of disentangling the caption for the general

video-retrieval task on MSR-VTT.
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