
ACE: Adapting to Changing Environments for Semantic Segmentation

Zuxuan Wu1, Xin Wang2, Joseph E. Gonzalez2, Tom Goldstein1, Larry S. Davis1

1University of Maryland, 2UC Berkeley

Abstract

Deep neural networks exhibit exceptional accuracy when

they are trained and tested on the same data distributions.

However, neural classifiers are often extremely brittle when

confronted with domain shift—changes in the input distri-

bution that occur over time. We present ACE, a frame-

work for semantic segmentation that dynamically adapts

to changing environments over time. By aligning the dis-

tribution of labeled training data from the original source

domain with the distribution of incoming data in a shifted

domain, ACE synthesizes labeled training data for envi-

ronments as it sees them. This stylized data is then used

to update a segmentation model so that it performs well

in new environments. To avoid forgetting knowledge from

past environments, we introduce a memory that stores fea-

ture statistics from previously seen domains. These statis-

tics can be used to replay images in any of the previously

observed domains, thus preventing catastrophic forgetting.

In addition to standard batch training using stochastic gra-

dient decent (SGD), we also experiment with fast adapta-

tion methods based on adaptive meta-learning. Extensive

experiments are conducted on two datasets from SYNTHIA,

the results demonstrate the effectiveness of the proposed ap-

proach when adapting to a number of tasks.

1. Introduction

When computer vision systems are deployed in the real

world, they are exposed to changing environments and non-

stationary input distributions that pose major challenges.

For example, a deep network optimized using images col-

lected on sunny days with clear skies may fail drastically

at night under different lighting conditions. In fact, it has

been recently observed that deep networks demonstrate se-

vere instability even under small changes to the input dis-

tribution [12], let alone when confronted with dynamically

changing streams of information.

The problem of domain shift can be avoided by collect-

ing sufficient training data to cover all possible input dis-

tributions that occur at test time. However, the expense of

 Task

Memory

Source

 task

Task: Task:

Figure 1: A conceptual overview of the framework. ACE

adapts a model trained on a source task to a sequence of tar-

get tasks. This is done by aligning the feature statistics of

labeled images from a source task with incoming images of

the target task. This alignment produces labeled images in

the target domain that can be used to update the segmenta-

tion model. A memory unit also facilitates replay of images

from domains seen in the past to prevent forgetting.

collecting and manually annotating data makes this infea-

sible in many applications. This is particularly true for de-

tailed visual understanding tasks like object detection and

semantic segmentation where image annotation is labor-

intensive. It is worth noting that humans are capable of

“lifelong learning,” in which new tasks and environments

are analyzed using accumulated knowledge from the past.

However, achieving the same goal in deep neural networks

is non-trivial as (i) new data domains come in at real time

without labels, and (ii) deep networks suffer from catas-

trophic forgetting [33], in which performance drops on pre-

viously learned tasks when optimizing for new tasks.

We consider the lifelong learning problem of adapting a

pre-trained model to dynamically changing environments,

whose distributions reflect disparate lighting and weather

conditions. In particular, we assume access to image-label

pairs from an original source environment, and only unla-

beled images from new target environments that are not ob-

served in the training data. Furthermore, we consider the

difficulties posed by learning over time, in which target en-

vironments appear sequentially.

We focus on the specific task of semantic segmenta-

12121

tion due to its practical applications in autonomous driv-

ing, where a visual recognition system is expected to deal

with changing weather and illumination conditions. This

application enables us to leverage the convenience of col-

lecting data from different distributions using graphic ren-

dering tools [43, 42].

To this end, we introduce ACE, a framework which

adapts a pre-trained segmentation model to a stream of new

tasks that arrive in a sequential manner, while storing his-

torical style information in a compact memory to avoid for-

getting (see Figure 2 for an overview). In particular, given a

new task, we use an image generator to align the distribution

of (labeled) source data with the distribution of (unlabeled)

incoming target data at the pixel-level. This produces la-

beled images with color and texture properties that closely

reflect the target domain, which are then directly used for

training the segmentation network on the new target do-

main. Style transfer is achieved by renormalizing feature

maps of source images so they have first- and second-order

feature statistics that match target images [19, 60]. These

renormalized feature maps are then fed into a generator net-

work that produces stylized images.

What makes ACE unique is its ability to learn over a

lifetime. To prevent forgetting, ACE contains a compact

and light-weight memory that stores the feature statistics of

different styles. These statistics are sufficient to regenerate

images in any of the historical styles without the burden of

storing a library of historical images. Using the memory,

historical images can be re-generated and used for train-

ing throughout time, thus stopping the deleterious effects

of catastrophic forgetting. The entire generation and seg-

mentation framework can be trained in a joint end-to-end

manner with SGD. Finally, we consider the topic of using

adaptive meta-learning to facilitate faster adaptation to new

environments when they are encountered.

Our main contributions are summarized below: (1) we

present a lightweight framework for semantic segmentation,

which is able to adapt to a stream of incoming distributions

using simple and fast optimization; (2) we introduce a mem-

ory that stores feature statistics for efficient style replay,

which facilitates generalization on new tasks without for-

getting learned knowledge; (3) we consider meta-learning

strategies to speed up the rate of adaptation to new problem

domains; (4) we conduct extensive experiments on two sub-

sets of SYNTHIA [44] and the experiments demonstrate the

effectiveness of our method when adapting to a sequence of

tasks with different weather and lighting conditions.

2. Related Work

Unsupervised Domain Adaptation. Our work relates to

unsupervised domain adaptation, which aims to improve the

generalization of a pre-trained model when testing on novel

distributions without accessing labels. Existing methods

along this line of research aim to reduce domain differences

at either the feature or pixel level. In particular, feature-

level adaptation focuses on aligning features used for the

target task (e.g., classification or segmentation) by minimiz-

ing a notion of distance between source and target domains.

Such notion of distance can be explicit metrics in the forms

of Maximum Mean Discrepancies (MMD) [31, 4], covari-

ances [54], etc.; or implicitly estimated to make features

domain-invariant using adversarial loss functions such as

reversed gradient [8, 9], domain confusion [57], or Gen-

erative Adversarial Network [58, 16, 17, 45, 18], etc.

On the other hand, pixel-level adaptation transforms im-

ages from different domains to look as if they were drawn

from the same distribution by using a mapping that reduces

inconsistencies in texture and lighting [3, 52, 55, 29]. There

are also recent methods seeking to align both pixel-level and

feature-level representations simultaneously [15, 62, 69]. In

addition, Zhang et al. present a curriculum strategy that uses

global label distributions and local super-pixel distributions

for adaptation [68]. Saleh et al. handle foreground classes

using detection methods when addressing domain shift [46].

Our framework differs from previous work as we are adapt-

ing to a stream of testing domains that arrive sequentially

rather than a single fixed one, which is challenging as it re-

quires the network to perform well on both current and all

previous domains. Note that although we mainly focus on

pixel-level alignment, our method can further benefit from

feature-level alignment in the segmentation network, but at

the cost of saving raw images as opposed to only feature

statistics. Further, our approach is also related to [63, 2, 14]

that perform sequential adaptation for classification tasks

by aligning at feature-level, while ours focuses on semantic

segmentation with alignment at pixel-level.

Image Synthesis and Stylization. There is a growing inter-

est in synthesizing images with Generative Adversarial Net-

works (GANs) [65, 38, 29], which is formulated as a min-

imax game between a generator and a discriminator [11].

To control the generation process, a multitude of additional

information has been incorporated including labels [36],

text [41], attributes [49], and images [21, 25]. GANs have

also been used in the context of image-to-image translation,

which transfers the style of an image to that of a reference

image using either cycle-consistency [71] or mapping into a

shared feature space [28, 20]. Without knowing joint distri-

butions of domains, these approaches attempt to learn con-

ditional distributions with marginal distributions from each

domain. However, generating high resolution images with

GANs still remains a difficult problem and is computation-

ally intensive [23]. In contrast, methods for neural style

transfer [10, 19, 59, 37, 22] usually avoid the difficulties of

generative modeling, and simply match the feature statistics

of Gram matrices [10, 22] or perform channel-wise align-

ment of mean and variance [27, 19]. In our work, we build

2122

Segmentation Network

 Image from

the source task

Synthesized

 image

 Image from

the current task

...

Source

 image
...

Memory

Predictions

Predictions

Current task: Task: Task:

...

Image Generator

 Task

 Pool

KL DivergenceAdaIN

Fixed weights

 from VGG

Cross

Entropy

Cross

Entropy

Figure 2: An overview of the proposed framework. Given an incoming task, ACE synthesizes new images that preserve the

contents of images from the source task but in the style of a target task. This is done either by transferring style information

from incoming images onto the source images, or by sampling style information from the memory unit. With these synthe-

sized images in different styles, the segmentation network is trained to generalize to new tasks without forgetting knowledge

learned in the past.

upon style transfer to synthesize new images in the style of

images from the current task while preserving the contents

of the source image.

Lifelong Learning. Our work is also related to life-

long learning, or continual learning, which learns progres-

sively and adapts to new tasks using knowledge accumu-

lated throughout the past. Most existing work focuses

on mitigating catastrophic forgetting when learning new

tasks [24, 67, 40, 50, 51, 32, 5]. Several recent approaches

propose to dynamically increase model capacities when

new tasks arrive [66, 64]. Our work focuses on how to adapt

a learned segmentation model in an unsupervised manner to

a stream of new tasks, each with image distributions differ-

ent from those originally used for training. In addition, to

avoid forgetting knowledge learned in the past, styles are

represented and cataloged using their feature statistics. Be-

cause this representation is much smaller than raw images,

the framework is scalable.

Meta-Learning. Meta-learning [48, 56], also known as

learning to learn, is a setting where an agent ingests a set

of tasks, each a learning problem on its own, and then es-

tablishes a model that can be quickly adapted to unseen

tasks from the same distribution. There are three categories

of meta-learners: (i) model-based with an external mem-

ory [47, 34]; (ii) metric-based [61]; and (iii) optimization-

based [7, 35]. Existing approaches mainly focus on few

shot classification, regression, and reinforcement learning

problems, while our approach focuses on how to adapt seg-

mentation models efficiently.

3. Approach

The goal of ACE is to adapt a segmentation model from

a source task to a number of sequentially presented target

tasks with disparate image distributions. The method trans-

fers labeled source images into target domains to create syn-

thetic training data for the segmentation model, while mem-

orizing style information to be used for style replay to pre-

vent forgetting.

More formally, let T0 denote the source task and {Ti}
T
i=0

represent T target tasks that arrive sequentially. We fur-

ther use X0 = {(x0
1,y

0
1), · · · , (x

0
N ,y0

N)} 1 to represent

the N images and their corresponding labels used for the

source task. The label y0
i contains a one-hot label vector

for each pixel in the image x0
i ; we denote the i-th image

sample as x0
i ∈ R

3×H×W , and y0
i ∈ {0, 1}C×H×W rep-

resents the corresponding label maps, with H and W being

the height and width respectively and C denoting the num-

ber of classes.

For each subsequent target task, we assume access to

only images rather than image-label pairs as in the source

task. We further denote the number of target tasks as T and

use Xt = {xt
1, · · · ,x

t
Nt} for t ∈ [1 · · ·T] to represent the

image set for the t-th incoming task, which has N t images

of the same resolution as the source data.

ACE contains four key components: an encoder, a gen-

erator, a memory, and a segmentation network. The encoder

network converts a source image x0
i into a feature represen-

tation z0
i (in our case, a stack of 512 output feature maps).

1We omit T here for the ease of notation.

2123

The generator network converts feature representations z

into images. The style of the resulting image can be con-

trolled/manipulated by modifying the statistics (mean and

standard deviation of each feature map) of z before it is

handed to the generator. The memory unit remembers the

feature statistics (1024 scalar values per style, correspond-

ing to the mean and standard deviation of each of the 512

feature maps) for each image style/domain. A source image

can be stylized into any previously seen domain by retriev-

ing the relevant style statistics from the memory unit, renor-

malizing the feature maps of the source image to have the

corresponding statistics, and then handing the renormalized

features to the generator to create an image.

Stylization via the encoder and generator. When a new

task is presented, labeled images are created in the new task

domain by transferring source images (and their accompa-

nying labels) to the target domain. To do this, we jointly

train a generator network for producing target-stylized im-

ages, and a segmentation network for processing images in

the target domain.

The image generation pipeline begins with an encoder

that extracts feature maps from images. We use a pre-

trained VGG19 network [53] as the encoder, taking the out-

put from relu4 to define fenc. Following [26, 19], the

weights of the encoder are frozen during training to extract

fixed representations fenc(x
0
i) = z0

i and fenc(x
t
j) = zt

j

from images x0
i and xt

j , respectively.

The image generator fgen, parameterized by weights

ψgen, de-convolves feature maps into images. The style

of the output image can be borrowed from a target im-

age with AdaIN [19], which re-normalizes the feature maps

(i.e., channels) z0
i of source images to have the same mean

and standard deviation as the maps of a selected target im-

age zt
i :

ẑ0
i = AdaIN(z0

i , z
t
j) = σ(zt

j)
z0
i − µ(z0

i)

σ(z0
i)

+ µ(zt
j). (1)

Here, σ(z) and µ(z) compute the mean and variance of

each channel of z, respectively. The normalized feature

maps ẑ0
i can be stuffed into the generator to synthesize a

new image x̂0
i = fgen(ẑ

0
i ;ψgen). If the parameters ψgen

are properly tuned, the resulting image will have the con-

tents of x0
i but in the style of xt

j .

We train the generator so that it acts as an inverse for the

encoder; the encoder should map the decoded image (ap-

proximately) onto the features that produced it. We enforce

this by minimize the following loss function:

ℓgen(ψgen) =‖z̃ − ẑ0
i ‖2 + ‖µ(z̃)− µ(zt

j)‖2

+ ‖σ(z̃)− σ(zt
j)‖2,

where z̃ = fenc(fdec(ẑ
0
i ;ψgen)).

(2)

Here, the first term (the content loss) measures the dif-

ferences between features of the generated image and the

aligned features of the source image with an aim to preserve

the contents the source images. The remaining two terms

force the generated image into the style of xt
j by matching

the mean and variance of feature maps per-channel. Note

that some authors match Gram matrices [10, 62] to make

styles consistent. We match mean and variances of fea-

ture maps as in [27, 59] since these statistics are simple

to optimize and contain enough information to get a good

stylization. In contrast to using several layers for align-

ment [27, 19], we simply match one layer of feature maps

from the VGG encoder, which is faster yet sufficient. More

importantly, this facilitates lightweight style replay as will

be described below.

The segmentation network. The newly synthesized image

x̂0
i = fdec(z̃;ψgen) is handed to the segmentation network

fseg , parameterized by weights ψseg . This network pro-

duces a map of label vectors p̂0
i = fseg(x̂

0
i ;ψseg), and

is trained by minimizing a multi-class cross-entropy loss

summed over pixels. In addition, since the synthesized im-

age might lose certain details of the original images that

could degrade the performance of the segmentation net-

work, we further constrain outputs of the synthetic image

x̂0
i from the segmentation network p̂0

i to be close to the pre-

dictions p0
i of the original image x0

i before stylization. This

is achieved by measuring the KL-divergence between these

two outputs, which is similar in spirit to knowledge distil-

lation [13] with the outputs from the original image serving

as the teacher. The segmentation loss takes the following

form:

ℓseg(ψseg) =−

H×W∑

m=1

KL
(
p̂0
i,m

∥∥ p0
i,m

)

+

C∑

c=1

y0
i,mclog(p̂

0
i,mc).

(3)

Finally, combining Eqn. 2 and Eqn. 3, we have the fol-

lowing objective function:

L(ψ) = E
(x0,y0)∼X0

xt
∼Xt

ℓgen(x
0,xt) + ℓseg(x

0,y0,xt), (4)

where ψ = {ψseg,ψgen} denotes the parameters of the

network. Note that the segmentation loss implicitly depends

on the generator parameters because segmentation is per-

formed on the output of the generator.

Memory unit and style replay. Optimizing Eqn 4 reduces

the discrepancies between the source task and the target

task, yet it is unclear how to continually adapt the model to a

sequence of incoming tasks containing potentially different

image distributions without forgetting knowledge learned in

2124

the past. A simple way is to store a library of historical im-

ages from previous tasks, and then randomly sample images

from the library for replay when learning new tasks. How-

ever, this requires large working memory which might not

be viable, particularly for segmentation tasks, where images

are usually of high resolutions (e.g., 1024×2048 for images

in Cityscapes [42]).

Fortunately, the proposed alignment process in Eqn. 1

synthesizes images from the target distribution using only

a source image, and the mean and variance of each chan-

nel in the feature maps zt
j from a target image. Therefore,

we only need to save the feature statistics (512-D for both

mean and variance) in the memory M for efficient replay.

When learning the t-th task Tt, we select a sample of test

images and store their 1024-D feature statistics in the mem-

ory. When adapting to the next task Tt+1, in addition to

sampling from Xt+1, we also randomly access the memory

M, which contains style information from previous tasks,

to synthesize images that resemble seen tasks on-the-fly for

replay.

Faster adaptation via adaptive meta-learning. Recent

methods in meta-learning [7, 35, 39] produce flexible mod-

els having meta-parameters with the property that they can

be quickly adapted to a new task using just a few SGD up-

dates. While standard SGD offers good performance when

optimizing Eqn. 4 for a sufficient number of epochs, we now

explore whether adaptive meta-learning can produce mod-

els that speed up adaptation.

For this purpose, we use Reptile [35], which is an inex-

pensive approximation of the MAML [7] method. Reptile

updates parameters of a meta-model by first selecting a task

at random, and performing multiple steps of SGD to fine-

tune the model for that task. Then a “meta-gradient” step

is taken in the direction of the fine-tuned parameters. The

next iteration proceeds with a different task, and so on, to

generate a meta-model with parameters that are only a small

perturbation away from the optimal parameters for a wide

range of tasks.

To be precise, the Reptile meta gradient gt(ψ) is defined

as:

gt(ψ) = ψt − ψ̃, where ψ̃ = Uk(ψt). (5)

Here Uk(ψt) denotes k steps of standard SGD for a ran-

domly selected task. To achieve fast adaptation, we sam-

ple from the current task as well as the memory to perform

meta-updates using meta-gradients from the whole history

of tasks. The meta-gradients are then fine-tuned on the cur-

rent task to evaluate performance. The algorithm is summa-

rized in Alg. 1.

4. Experiments

In this section, we first introduce the experimental setup

and then we report results of ACE and provide discussions.

Algorithm 1 Fast Adaptation with Adaptive Meta-Learning

1: Input: X0 = {(x0
1
,y0

1
), · · · , (x0

N
,y0

N
)}

2: A pre-trained segmentation model, whose parameters are ψ

3: The memory is initialized as emptyM← []
4: for t = 1, . . . T do

5: initialize Dt = ∅
6: while |Dt| < Nt do

7: for iterations = 1, . . . , I do

8: Append batch of n image samples xt to Dt

9: Sample batches of (xs,ys) from the source task

10: Sample batches of xt from the t-th task

11: Compute zt with the VGG encoder using sampled xt

12: Sample seen tasks zl(l < t) from the memoryM

13: ψt ← ψt − η gt(ψ), gt(ψ) are computed with Eqn. 5

14: UpdateM by storing some randomly selected zt

15: end for

16: ψ̃t ← ψt − α∇L(ψt;Dt) ⊲ For testing the t-th task

17: end while

18: ψt+1 ← ψt

19: end for

4.1. Experimental Setup

Datasets and evaluation metrics. Since our approach

is designed to process different input distributions shar-

ing the same label space for segmentation tasks, we use

data with various weather and lighting conditions from

SYNTHIA [44], a large-scale synthetic dataset generated

with rendering engines for semantic segmentation of ur-

ban scenes. We use SYNTHIA-SEQS, a subset of SYNTHIA

showing the viewpoint of a virtual car captured across dif-

ferent seasons. This dataset can be broken down into var-

ious weather and illumination conditions including “sum-

mer”, “winter”, “rain”, “winter-night”, etc. (See Table 1).

We consider two places from SYNTHIA-SEQS for evalua-

tion, HIGHWAY and NYC-LIKE CITY, which contain 9 and

10 video sequences with different lighting conditions, re-

spectively. We treat each sequence as a task, with around

1, 000 images on average, and each task is further split

evenly into a training set and a validation set.

We first train a segmentation model using labeled im-

ages in the “dawn” scenario, and then adapt the learned

model to the remaining tasks in each of the sequences in

an unsupervised setting 2. During the adaptation process,

following [68, 16], we only access labeled images from the

first task (i.e., “dawn”), and unlabeled images from the cur-

rent task. To evaluate the performance of the segmentation

model, we report mean intersection-over-union (mIoU) on

the validation set of each task as well as the mean mIoU

across all tasks.

Network architectures. We use a pretrained VGG19

network as the encoder, and the architecture of the de-

coder is detailed in the supplemental material. We evalu-

ate the performance of our framework with three different

2We use “dawn” as the source domain since it comes first alphabetically

in all domains.

2125

HIGHWAY NYC-LIKE CITY

Method A
rc

h
.

D
aw

n

F
al

l

F
o
g

N
ig

h
t

S
p
ri

n
g

S
u
m

m
er

S
u
n
se

t

W
in

te
r

W
in

te
rN

ig
h
t

m
ea

n
m

IO
U

g
ai

n

D
aw

n

F
al

l

F
o
g

N
ig

h
t

R
ai

n
N

ig
h
t

S
o
ft

R
ai

n

S
p
ri

n
g

S
u
m

m
er

S
u
n
se

t

W
in

te
r

m
ea

n
m

IO
U

g
ai

n

Source A 65.4 61.4 62.3 59.4 62.3 62.1 64.9 50.0 54.5 60.2 - 46.4 42.0 41.0 37.9 30.2 32.0 42.5 40.9 41.0 38.6 39.3 -

ACE A 67.8 65.0 65.4 62.8 65.4 64.8 66.8 55.5 58.5 63.6 3.4 53.9 50.7 52.3 50.2 40.4 42.4 50.6 51.5 52.1 44.5 48.9 9.6

Source B 68.9 53.4 50.5 39.2 59.2 59.3 62.5 39.5 32.6 51.7 - 57.7 24.0 25.9 20.8 13.9 15.1 39.1 34.5 36.2 21.6 28.9 -

ACE B 69.6 65.3 66.2 63.9 66.5 66.7 69.2 53.7 59.0 64.5 12.8 55.8 51.6 51.7 49.8 43.5 48.6 52.7 51.1 52.8 46.0 50.4 21.5

Source C 68.3 66.1 66.0 58.2 66.4 65.8 68.3 53.4 53.2 62.8 - 57.3 50.6 51.4 47.2 36.4 39.0 53.2 52.2 53.1 43.6 48.4 -

ACE C 70.7 69.5 69.8 67.9 69.1 68.5 70.9 59.4 63.7 67.7 4.93 58.5 56.1 55.9 54.2 42.6 46.1 55.6 56.4 56.6 50.8 53.3 4.9

Table 1: Results of different backbone networks used for adapting to changing environments. Here, “Source” denotes

directly applying the segmentation model to target tasks without adaptation. A, B, C represent FCN-8s-ResNet101, DeepLab

V3+ [6], and ResNet50-PSPNet [70], respectively.

segmentation architectures, FCN-8s-ResNet101, DeepLab

V3+ [6], and ResNet50-PSPNet [70], which have demon-

strated great success on standard benchmarks. FCN-8s-

ResNet101 is an extension of FCN-8s-VGG network [30]

that uses ResNet101 with dilations as the backbone, rather

than VGG19. ResNet50-PSPNet contains a pyramid pool-

ing module to derive representations at different levels that

encompass sufficient context information [70]. DeepLab

V3+ [6] introduces a decoder to refine the segmentation

results along object boundaries.

Implementation details. We use PyTorch for implementa-

tion and use SGD as the optimizer with a weight decay of

5 × 10−5 and a momentum of 0.99. We set the learning

rate to 10−3 and optimize for 10000 iterations using stan-

dard SGD for training both source and target tasks. For

fast adaptation with meta-gradients, we perform 50 steps of

meta updates. We sample three source images in a mini-

batch for training, and for each of these images from the

source task we randomly sample two reference images, one

from the current target task and one from the memory, as

style references for generating new images. For style re-

play, the memory caches 100 feature vectors per task repre-

senting style information from 100 target images.

4.2. Results and Discussion

Effectiveness of adapting to new tasks. Table 1 presents

the results of ACE and comparisons with source only meth-

ods, which directly apply the model trained on the source

task to target tasks without any adaptation. We can ob-

serve that the performance of the source model degrades

drastically when the distributions of the target task are sig-

nificantly different from the source task (i.e., 15.4% drop

from “dawn” to “’winter” and 10.9% drop from “dawn”

to “winter night” with FCN-8s-ResNet101). On the other

hand, ACE can effectively align feature distributions be-

tween the source task and target tasks, outperforming source

only methods by clear margins. For example, ACE achieves

a 3.4 and 9.6 (absolute percentage points) gain with FCN-

8s-ResNet101 on HIGHWAY and NYC-LIKE CITY, respec-

tively. In addition, we can see similar trends using both

ResNet50-PSPNet and DeepLab V3+, confirming the fact

that the framework is applicable to different top-performing

networks for segmentation. Comparing across different net-

works, ResNet50-PSPNet offers the best mean mIoUs on

both datasets after adaptation. Although DeepLab V3+
achieves the best results on the source task, its generaliza-

tion ability is limited with more than 36.3% performance

drop when applying to the “winter night” task. However,

ACE can successfully bring back the performance with

adaptation. Furthermore, we also observe that the per-

formance on HIGHWAY is higher than that on NYC-LIKE

CITY using different networks, which results from the fact

the scenes are more cluttered with small objects like “traffic

signs” in a city in contrast to highways. Figure 4 further vi-

sualizes the prediction maps generated by ACE and source

only methods using ResNet50-PSPNet on HIGHWAY.

Method Styles per task HIGHWAY NYC-LIKE CITY

Source – 60.2 39.3

ACE 0 61.2 46.2

ACE 200 64.0 49.2

ACE 100 63.6 48.9

Table 2: The performance of ACE depends on the num-

ber of exemplar style features stored in the memory unit.

The default number of features per task is 100, although we

find that slight improvements can be made by increasing the

number of stored vectors.

2126

Effectiveness of style replay. We now investigate the per-

formance of style replay using different numbers of feature

vectors per task in the memory. Table 2 presents the results.

The accuracy of ACE degrades by 2.4% and 2.9% on HIGH-

WAY and NYC-LIKE CITY respectively when no samples

are used for replay, which confirms that style replay can

indeed help revisiting previously learned knowledge to pre-

vent forgetting. ACE without reply is still better than source

only methods due to the fact the segmentation network is

still being updated with inputs in different styles. When

storing more exemplar feature vectors (i.e., 200 per task)

into the memory, ACE can be slightly improved by 0.4%
and 0.3% on HIGHWAY and NYC-LIKE CITY, respectively.

Here we simply use a random sampling approach to regen-

erate images in any of the historical styles, and we believe

the sampling approach could be further improved with more

advanced strategies [5].

Comparisons with prior art. We now compare with

several recently proposed approaches based on FCN-8s-

ResNet101: (1) SOURCE-REVERSE transfers testing im-

ages to the style of source images and then directly applies

the segmentation model; (2) IADA aligns the feature dis-

tributions of the current task to those of a source task [63]

in a sequential manner using adversarial loss functions [58]

such that the feature distributions can no longer be differen-

tiated by a trained critic; (3) ADDA-REPLAY stores previ-

ous samples and prediction scores and uses a matching loss

to constrain the segmentation outputs from previous tasks

to remain constant as adaptation progresses. The results

are summarized in Table 3. We can see that ACE achieves

the best results, outperforming other methods by clear mar-

gins, particularly on NYC-LIKE CITY where a 6.9% gain

is achieved.

Method HIGHWAY NYC-LIKE CITY

Source 60.2 39.3
SOURCE-REVERSE 59.4 33.1

IADA [63] 60.7 40.4
ADDA-REPLAY [2] 61.9 42.0

ACE 63.6 48.9
ACE-ADDA 64.3 49.4

Table 3: Comparisons with prior art. We compare to two

baseline methods, in addition to IADA [63] and ADDA-

REPLAY [2].

Although SOURCE-REVERSE is a straightforward way

to align feature distributions, the performance is worse than

directly applying the source model. We suspect that this

performance drop occurs because of small but systematic

differences between the original source data on which the

segmentation engine was trained, and the style transferred

data on which no training ever occurs. In contrast, ACE

trains the segmentation network on synthesized images, and

Figure 3: Results of fast adaptations using ACE-Meta.

ACE-Slow: full batch training with SGD for 10K iterations.

ACE-Fast: batch training with SGD using 600 iterations

(the same number as ACE-Meta). Task indices correspond

to task names in Table 1.

constrains the segmentation output on generated images to

be compatible with output on the original source image. In

addition, IADA improves the source only model slightly by

aligning feature distributions in a sequential manner, how-

ever, it relies on an adversarial loss function that is hard

to optimize [1]. More importantly, while IADA proves

to be successful for classification tasks, for tasks like seg-

mentation where multiple classifiers are used for deep su-

pervision [70, 30] at different distance scales, it is hard to

know which feature maps to align to achieve the best per-

formance. Further, we can also see that ADDA-REPLAY

offers better results compared to IADA by using a mem-

ory to replay, however this requires storing all samples from

previous tasks.

Note that ADDA [58] focuses on aligning distributions at

the feature-level rather than the pixel-level, and this reduces

low-level discrepancies in our approach. Yet, our approach

is complimentary to approaches that explore feature-level

alignment in the segmentation network at the cost of storing

image samples for replay. When combining ADDA with

ACE, 0.7% and 0.6% further improvements are achieved

on both HIGHWAY and NYC-LIKE CITY.

Fast adaptation with meta-updates. ACE achieves good

results by batch training on each task using tens of thou-

sands of SGD updates. We are also interested in how

to adapt to the target task quickly by leveraging recent

advances of meta-learning. We propose the meta-update

method (ACE-Meta) which uses Reptile for learning meta-

parameters, which are then fine-tuned to a specific task us-

ing only 600 iterations of SGD. We compare to ACE-Fast,

which also uses 600 iterations per task, but without meta-

learning, and also ACE-Slow, which uses full batch training

with SGD for 10K iterations. The results are summarized

in Figure 3. ACE-Meta achieves better performance com-

pared to ACE-Fast, trained under the same settings, almost

for all the target tasks on both HIGHWAY and NYC-LIKE

2127

Test image Source only prediction ACE Ground truth labels

Figure 4: Visualizations of prediction maps by different methods. Prediction results from sampled images using

ResNet50-PSPNet and the corresponding source only model. The color black indicates a class to be ignored during training.

CITY, and we observe clear gains when applying the model

to “winter” and “winter night”. Moreover, the results of

ACE-Meta are on par with full batch training with SGD,

demonstrating that meta-updates are able to learn the struc-

tures among different tasks.

Image generation with GANs. We compare images gen-

erated by ACE to MUNIT [20] in Figure 5. MUNIT learns

to transfer the style of images from one domain to another

by learning a shared space regularized by cycle consistency,

and compared to CycleGAN [71], it is able synthesize a di-

verse set of results with a style encoder and a content en-

coder that disentangle the generation of style and content.

Note that MUNIT also relies on AdaIN to control the style,

but uses a GAN loss for generation. We can see that image

generated with our approach preserves more detailed con-

tent (e.g., facade of the building), and successfully trans-

fers the snow to the walkway, while there are artifacts (e.g.,

blurred regions) in the image generated with MUNIT.

5. Conclusion

We presented ACE, a framework that dynamically adapts

a pre-trained model to a sequential stream of unlabeled tasks

that suffer from domain shift. ACE leverages style replay to

generalize well on new tasks without forgetting knowledge

acquired in the past. In particular, given a new task, we

introduced an image generator to align distributions at the

pixel-level by synthesizing new images with the contents of

the source task but in the style of the target task such that la-

bel maps from source images can be directly used for train-

ing the segmentation network. These generated images are

used to optimize the segmentation network to adapt to new

target distributions. To prevent forgetting, we also intro-

Image from dawn Image from winter

MUNIT Ours

Figure 5: Comparisons with different image synthesis

methods. Images generated with our method and compar-

isons with MUNIT by transferring the image from “dawn”

to “winter”.

duce a memory unit that stores the image statistics needed

to produce different image styles, and replays these styles

over time to prevent forgetting. We also study how meta-

learning strategies can be used to accelerate the speed of

adaptation. Extensive experiments are conducted on SYN-

THIA and demonstrate that the proposed framework can ef-

fectively adapt to a sequence of tasks with shifting weather

and lighting conditions. Future directions for research in-

clude how to handle distribution changes that involve sig-

nificant geometry mismatch.

Acknowledgment Zuxuan Wu and Larry Davis are supported by Face-

book and the Office of Naval Research under Grant N000141612713. Tom

Goldstein is supported by DARPAs Lifelong Learning Machines and YFA

programs, the NSF (DMS1912866), the AFOSR MURI program, and the

Sloan Foundation.

2128

References

[1] Martin Arjovsky and Léon Bottou. Towards principled meth-

ods for training generative adversarial networks. In ICLR,

2017. 7

[2] Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Dar-

rell. Adapting to continuously shifting domains. In ICLR

Workshop, 2018. 2, 7

[3] Konstantinos Bousmalis, Nathan Silberman, David Dohan,

Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-

level domain adaptation with generative adversarial net-

works. In CVPR, 2017. 2

[4] Konstantinos Bousmalis, George Trigeorgis, Nathan Silber-

man, Dilip Krishnan, and Dumitru Erhan. Domain separa-

tion networks. In NIPS, 2016. 2

[5] Francisco M. Castro, Manuel J. Marin-Jimenez, Nicolas

Guil, Cordelia Schmid, and Karteek Alahari. End-to-end in-

cremental learning. In ECCV, 2018. 3, 7

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, 2018. 6

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, 2017. 3, 5

[8] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised do-

main adaptation by backpropagation. In ICML, 2015. 2

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. JMLR, 2016. 2

[10] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

CVPR, 2016. 2, 4

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

2

[12] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-

tions. In ILCR, 2019. 1

[13] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distill-

ing the knowledge in a neural network. CoRR, 2015. 4

[14] Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous

manifold based adaptation for evolving visual domains. In

CVPR, 2014. 2

[15] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor Dar-

rell. Cycada: Cycle-consistent adversarial domain adapta-

tion. In ICML, 2018. 2

[16] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation. CoRR, 2016. 2, 5

[17] Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong

Yuan. Conditional generative adversarial network for struc-

tured domain adaptation. In CVPR, 2018. 2

[18] Haoshuo Huang, Qixing Huang, and Philipp Krahenbuhl.

Domain transfer through deep activation matching. In

ECCV, 2018. 2

[19] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In ICCV,

2017. 2, 4

[20] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. In

ECCV, 2018. 2, 8

[21] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 2

[22] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 2

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. In ICLR, 2018. 2

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. PNAS, 2017. 3

[25] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, 2017. 2

[26] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,

and Ming-Hsuan Yang. Universal style transfer via feature

transforms. In NIPS, 2017. 4

[27] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. De-

mystifying neural style transfer. In IJCAI, 2018. 2, 4

[28] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised

image-to-image translation networks. In NIPS, 2017. 2

[29] Ming-Yu Liu Liu and Oncel Tuzel. Coupled generative ad-

versarial networks. In NIPS, 2016. 2

[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015. 6, 7

[31] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I.

Jordan. Learning transferable features with deep adaptation

networks. In ICML, 2015. 2

[32] David Lopez-Paz et al. Gradient episodic memory for con-

tinual learning. In NIPS, 2017. 3

[33] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation. 1989. 1

[34] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In

ICML, 2017. 3

[35] Alex Nichol, Joshua Achiam, and John Schulman. On first-

order meta-learning algorithms. CoRR, 2018. 3, 5

[36] Augustus Odena, Christopher Olah, and Jonathon Shlens.

Conditional image synthesis with auxiliary classifier gans.

In ICML, 2017. 2

[37] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and

Jose M Álvarez. Invertible conditional gans for image edit-

ing. In NIPS Workshop, 2016. 2

2129

[38] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. In ICLR, 2016. 2

[39] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. In ILCR, 2017. 5

[40] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classifier

and representation learning. In CVPR, 2017. 3

[41] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative ad-

versarial text to image synthesis. In ICML, 2016. 2

[42] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In ECCV, 2016. 2, 5

[43] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M. Lopez. The synthia dataset: A

large collection of synthetic images for semantic segmenta-

tion of urban scenes. In CVPR, 2016. 2

[44] Germán Ros, Simon Stent, Pablo F. Alcantarilla, and Tomoki

Watanabe. Training constrained deconvolutional networks

for road scene semantic segmentation. CoRR, 2016. 2, 5

[45] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In CVPR, 2018. 2

[46] Fatemeh Sadat Saleh, Mohammad Sadegh Aliakbarian,

Mathieu Salzmann, Lars Petersson, and Jose M Alvarez. Ef-

fective use of synthetic data for urban scene semantic seg-

mentation. In ECCV, 2018. 2

[47] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan

Wierstra, and Timothy Lillicrap. Meta-learning with

memory-augmented neural networks. In ICML, 2016. 3

[48] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shift-

ing inductive bias with success-story algorithm, adaptive

levin search, and incremental self-improvement. Machine

Learning, 1997. 3

[49] Wei Shen and Rujie Liu. Learning residual images for face

attribute manipulation. In CVPR, 2017. 2

[50] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In NIPS,

2017. 3

[51] Konstantin Shmelkov, Cordelia Schmid, and Karteek Ala-

hari. Incremental learning of object detectors without catas-

trophic forgetting. In ICCV, 2017. 3

[52] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua

Susskind, Wenda Wang, and Russell Webb. Learning

from simulated and unsupervised images through adversarial

training. In CVPR, 2017. 2

[53] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 4

[54] Baochen Sun and Kate Saenko. Deep CORAL - correlation

alignment for deep domain adaptation. In ECCV, 2016. 2

[55] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised

cross-domain image generation. In ICLR, 2017. 2

[56] Sebastian Thrun and Lorien Pratt. Learning to learn: Intro-

duction and overview. In Learning to learn. 1996. 3

[57] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko.

Simultaneous deep transfer across domains and tasks. In

ICCV, 2015. 2

[58] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In CVPR,

2017. 2, 7

[59] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-

tor S Lempitsky. Texture networks: Feed-forward synthesis

of textures and stylized images. In ICML, 2016. 2, 4

[60] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.

Instance normalization: The missing ingredient for fast styl-

ization. CoRR, 2016. 2

[61] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan

Wierstra, et al. Matching networks for one shot learning.

In NIPS, 2016. 3

[62] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa

Gokhan Uzunbas, Tom Goldstein, Ser Nam Lim, and Larry S

Davis. Dcan: Dual channel-wise alignment networks for un-

supervised scene adaptation. In ECCV, 2018. 2, 4

[63] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incre-

mental adversarial domain adaptation for continually chang-

ing environments. In ICRA, 2018. 2, 7

[64] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In

NIPS, 2018. 3

[65] Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S.

Paek, and In-So Kweon. Pixel-level domain transfer. In

ECCV, 2016. 2

[66] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. In ICLR, 2018. 3

[67] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In ICML, 2017.

3

[68] Yang Zhang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In ICCV, 2017. 2, 5

[69] Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao

Mei. Fully convolutional adaptation networks for semantic

segmentation. In CVPR, 2018. 2

[70] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, 2017. 6, 7

[71] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017. 2, 8

2130

