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Abstract

Recent developed deep unsupervised methods allow us

to jointly learn representation and cluster unlabelled data.

These deep clustering methods mainly focus on the corre-

lation among samples, e.g., selecting high precision pairs

to gradually tune the feature representation, which neglects

other useful correlations. In this paper, we propose a novel

clustering framework, named deep comprehensive correla-

tion mining (DCCM), for exploring and taking full advan-

tage of various kinds of correlations behind the unlabeled

data from three aspects: 1) Instead of only using pair-

wise information, pseudo-label supervision is proposed to

investigate category information and learn discriminative

features. 2) The features’ robustness to image transforma-

tion of input space is fully explored, which benefits the net-

work learning and significantly improves the performance.

3) The triplet mutual information among features is pre-

sented for clustering problem to lift the recently discovered

instance-level deep mutual information to a triplet-level

formation, which further helps to learn more discrimina-

tive features. Extensive experiments on several challenging

datasets show that our method achieves good performance,

e.g., attaining 62.3% clustering accuracy on CIFAR-10,

which is 10.1% higher than the state-of-the-art results1.

1. Introduction

Clustering is one of the fundamental tasks in computer

vision and machine learning. Especially with the develop-

ment of the Internet, we can easily collect thousands of im-

ages and videos every day, most of which are unlabeled. It is

very expensive and time-consuming to manually label these

data. In order to make use of these unlabeled data and in-

vestigate their correlations, unsupervised clustering draws

much attention recently, which aims to categorize similar

data into one cluster based on some similarity measures.

∗Equal contribution and the work was done during interns at SenseTime Research
1Project address: https://github.com/Cory-M/DCCM
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Figure 1. Comprehensive correlations mining. (a) Various corre-

lations; (b) Connect pair-wise items in higher semantic level pro-

gressively; (c) Better results of DCCM than the state-of-the-art

DAC [8] on CIFAR-10 [27]. Best viewed in color!

Image clustering is a challenging task due to the im-

age variance of shape and appearance in the wild. Tra-

ditional clustering methods [55, 19, 6], such as K-means,

spectral clustering [35, 48], and subspace clustering [31, 16]

may fail for two main issues: first, hand-crafted features

have limited capacity and cannot dynamically adjust to cap-

ture the prior distribution, especially when dealing with

large-scale real-world images; second, the separation of

feature extraction and clustering will make the solution

sub-optimal. Recently, with the booming of deep learn-

ing [28, 21, 46, 30, 51], many researchers shift their at-

tention to deep unsupervised feature learning and cluster-

ing [42, 23, 8], which can well solve the aforementioned

limitations. Typically, to learn a better representation,

[3, 50, 52] adopt the auto-encoder and [22] maximizes the

mutual information between features. DAC [8] constructs
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positive and negative pairs to guide network training.

However, for these methods, several points are still miss-

ing. Firstly, feature representations that only consider

reconstruction or mutual information lack discriminative

power. Secondly, traditional cluster method like K-means

effectively use category assumption on data. Contrast to

that, DAC only focuses on pair-wise correlation and ne-

glects the category information, which limits its perfor-

mance. Thirdly, there are also other correlations that are

helpful for deep image feature learning, for example, [29]

shows that measuring feature equivariance can benefit im-

age representation understanding.

To tackle above issues, as shown in Figure 1(a), we pro-

pose a novel method, namely deep comprehensive corre-

lation mining (DCCM), which comprehensively explores

correlations among different samples (red line), local ro-

bustness to geometry transformation (yellow line), between

different layer features of the same sample (blue line), and

their inter-correlations (green lines) to learn discriminative

representations and train the network in a progressive man-

ner. First of all, for the correlation among different samples,

we adopt the deep convolutional neural network (CNN)

to generate prediction feature for the input image. With

proper constraints, the learned prediction feature will tend

to be one-hot. Then we can compute the cosine similarity

and construct the similarity graph. Based on the similar-

ity graph and prediction feature, we assign a large thresh-

old to get highly-confident pseudo-graph and pseudo-label

to guide the feature learning. Secondly, for the local ro-

bustness to small perturbations, we add small perturbation

or transformation on the original input image to generate a

transformed image. Under the local robustness assumption,

the prediction of the transformed image should be consis-

tent with that of the original image. So we can use the pre-

diction of the original image to guide the feature learning

of the transformed image. Thirdly, feature representation of

deep layer should preserve distinct information of the input.

So we maximize the mutual information between the deep

layer feature and shallow layer feature of the same sam-

ple. To make the representation more discriminative, we

further extend it to a triplet form by incorporating the graph

information above. Finally, we combine the loss function

of these three different aspects and jointly investigate these

correlations in an end-to-end way. Results in Figure 1(c)

show the superiority of our method (purple curve) over the

state-of-the-art method DAC [8] (red curve).

Our main contributions are summarized as follows:

1) We propose a novel end-to-end deep clustering frame-

work to comprehensively mine various kinds of cor-

relations, and select highly-confident information to

train the network in a progressive way;

2) We first derive the rationality of pseudo-label and in-

troduce the highly-confident pseudo-label loss to di-

rectly investigate the category information and guide

the unsupervised training of deep network;

3) We make use of the local robustness assumption and

utilize above pseudo-graph and pseudo-label to learn

better representation;

4) We extend the instance-level mutual information to

triplet-level, and come up with triplet mutual informa-

tion loss to learn more discriminative features.

2. Related Work

2.1. Deep Clustering

Existing deep clustering methods [53, 50, 8] mainly

aim to combine the deep feature learning [3, 45, 54]

with traditional clustering methods [55, 19, 6]. Auto-

encoder (AE) [3] is a very popular feature learning method

for deep clustering, and many methods are proposed to min-

imize the loss of traditional clustering methods to regularize

the learning of latent representation of auto-encoder. For

example, [50, 20] proposes the deep embedding clustering

to utilize the KL-divergence loss. [17] also uses the KL-

divergence loss, but adds a noisy encoder to learn more

robust representation. [52] adopts the K-means loss, and

[23, 42, 41] incorporate the self-representation based sub-

space clustering loss.

Besides the auto-encoder, some methods directly design

specific loss function based on the last layer output. [53]

introduces a recurrent-agglomerative framework to merge

clusters that are close to each other. [8] explores the corre-

lation among different samples based on the label features,

and uses such similarity as supervision. [44] extends the

spectral clustering into deep formulation.

2.2. Deep Unsupervised Feature Learning

Instead of clustering, several approaches [3, 25, 34, 13,

39, 2, 47, 49] mainly focus on deep unsupervised learning

of representations. Based on Generative Adversarial Net-

works (GAN), [12] proposes to add an encoder to extract

visual features. [4] directly uses the fixed targets which are

uniformly sampled from a unit sphere to constrain the deep

features assignment. [7] utilizes the pseudo-label computed

by the K-means on output features as supervision to train

the deep neural networks. [22] proposes the deep infomax

to maximize the mutual information between the input and

output of a deep neural network encoder.

2.3. Selfsupervised Learning

Self-supervised learning [24, 26] generally needs to de-

sign a pretext task, where a target objective can be com-

puted without supervision. They assume that the learned

representations of the pretext task contain high-level seman-

tic information that is useful for solving downstream tasks

of interest, such as image classification. For example, [11]
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tries to predict the relative location of image patches, and

[36, 37] predict the permutation of a jigsaw puzzle created

from the full image. [14] regards each image as an indi-

vidual class and generates multiple images of it by data

augmentation to train the network. [18] rotates an image

randomly by one of four different angles and lets the deep

model predict the rotation.

3. Deep Comprehensive Correlation Mining

Without labels, correlation stands in the most important

place in deep clustering. In this section, we first construct

pseudo-graph to explore binary correlation between sam-

ples to start the network training. Then we propose the

pseudo-label loss to make full use of category information

behind the data. Next, we mine the local robustness of pre-

dictions before and after adding transform on input image.

We also lift the instance level mutual information to triplet

level to make it more discriminative. Finally, we combine

them together to get our proposed method.

3.1. Preliminary: Pseudograph Supervision

We first compute the similarity among samples and se-

lect highly-confident pair-wise information to guide the net-

work training by constructing pseudo-graph. Let X =
{xi}

N
i=1 be the unlabeled dataset, where xi is the i-th im-

age and N is the total number of images. Denote K as the

total number of classes. We aim to learn a deep CNN based

mapping function f which is parameterized by θ. Then we

can use zi = fθ(xi) ∈ RK to represent the prediction fea-

ture of image xi after the softmax layer of CNN. It has the

following properties:
K∑

t=1

zit=1, ∀i=1, · · · , N, and zit≥0, ∀t=1, · · · ,K. (1)

Based on the label feature z, the cosine similarity between

the i-th and the j-th samples can be computed by Sij =
zi·zj

‖zi‖2‖zj‖2

, where · is the dot production of two vectors.

Similar to DAC [8], we can construct the pseudo-graph W

by setting a large threshold thres1:

Wij =

{
1, if sij ≥ thres1,

0, otherwise.
(2)

If the similarity between two samples is larger than the

threshold, then we judge that these two samples belong to

the same class (Wij = 1), and the similarity of these sam-

ples should be maximized. Otherwise (Wij = 0), the sim-

ilarity of these samples should be minimized. The pseudo-

graph supervision can be defined by:2

min
θ

LPG(θ) =
∑

xi,xj∈X

ℓg(fθ(xi), fθ(xj);Wij). (3)

2For the loss function ℓg , there are many choices, such as the con-

trastive Siamese net loss [5, 32] regularizing the distance between two

samples, and the binary cross-entropy loss [8] regularizing the similarity.

Please note that there are two differences between our

pseudo-graph and that in DAC [8]: 1) Unlike the strong

ℓ2-norm constrain in DAC, we relax this assumption which

only needs to take the output after softmax layer. This re-

laxation increases the capacity of labeling feature and fi-

nally induces a better result in our experiment. 2) Instead

of dynamically decreasing threshold in DAC, we only need

a fixed threshold of thres1. This prevents the training from

the disadvantage caused by noisy false positive pairs.

3.2. Pseudolabel Supervision

The correlation explored in pseudo-graph is not transi-

tive and limited to pair-wise samples. Towards this issue,

in this subsection, we propose the novel pseudo-label loss

and prove its rationality. We first prove the existence of

K-partition of the pseudo-graph, which could be naturally

regarded as pseudo-label. And then we state that this parti-

tion would make the optimal solution θ∗ in Eq. (3) lead to

one-hot prediction, which formulates the pseudo-label. Fi-

nally, the pseudo-label loss will be introduced to optimize

convolutional neural networks.

Existence of K-partition. The binary relation Wij be-

tween samples xi and xj defined in Eq. (3) is not transi-

tive: Wij is not deterministic given Wik and Wjk, and this

may lead to unstability in training. Therefore, we introduce

Lemma (1) to extend it to a stronger relation.

Lemma 1. For any weighted complete graph G = (V,E)
with weight ω(e) for edge e, if ω(ei) 6= ω(ej) for ∀i 6= j,

then there exists a threshold t that Gt = (V,Et) has exactly

K partitions, where

Et = {ei|ω(e) > t, ei ∈ E}. (4)

If we take the assumption that Sij is distinctive to each other

in similarity graph S, it can be seen as a weighted com-

plete graph under the assumption of Lemma (1). Then there

exists a threshold t dividing X into exactly K partitions

{P 1, P 2, · · · , PK}.

Formulation of the Pseudo-label. Let xk denote the sam-

ple belongs to partition P k, and we can define a transitive

relation δ as:

δ(xl
i,x

k
j ) =

{
1, if l = k,

0, otherwise,
(5)

which indicates that pairs with high cosine similarity are

guaranteed to be in the same partition. This is to say, as the

quality of similarity matrix S increases during training, this

partition gets closer to the ground truth partition, therefore

can be regarded as a target to guide and speed up training.

Hence, we set the partition k of each x as its pseudo label.

The following claim reveals the relationship between the

assigned pseudo-label and the prediction after softmax:
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Figure 2. The pipeline of the proposed DCCM method. Based on the ideally one-hot prediction feature, we compute the highly-confident

pseudo-graph and pseudo-label to guide the feature learning of both original and transformed samples, investigating both correlations

among different samples and local robustness after small perturbation. Meanwhile, to investigate discriminative feature correspondence,

the pseudo-graph is utilized to select highly-confident positive and negative pairs for triplet mutual information optimization.

Claim 1. 3 Let θ∗ denote the optimal solution to Eq. (3). If

W has K partitions, then the prediction would be one-hot:

fθ∗(x) = (0, · · · , 0, 1, 0, · · · , 0), for ∀x. (6)

Hence we can formulate our pseudo-label as:

yi = argmax
k

[fθ(xi)]k, (7)

where [·]k denotes the k-th component of the prediction vec-

tor. Its corresponding probability of the predicted pseudo-

label can be computed by pi = max [fθ(xi)]k. In practice,

fθ(xi) does not strictly follow the one-hot property, since

it is difficult to attain the optimal solution for the problem

in Eq. (3) due to the non-convex property. So we also set

a large threshold thres2 for probability pi to select highly-

confident pseudo-label for supervision:

Vi =

{
1, if pi ≥ thres2,

0, otherwise.
(8)

Vi = 1 indicates the predicted pseudo-label is highly-

confident, and only under this situation, will the pseudo-

label yi of the i-th samples join the network training.

Pseudo-label Loss. The pseudo-label supervision loss is

formulated as:

LPL(θ) =
∑

xi∈X

Vi · ℓl (fθ(xi), yi) . (9)

The loss function ℓl is often defined by the cross-entropy

loss. By combining the supervision of highly-confident

pseudo-graph and pseudo-label, we explore the correlation

among different samples by minimizing:

LCDS = LPG(θ) + αLPL(θ), (10)

where α is a balance parameter. Those selected highly-

confident information can supervise the training of deep

network in a progressive manner.

3The proof is presented in supplementary materials.

3.3. The Local Robustness

An ideal image representation should be invariant to the

geometry transformation, which can be regarded as the lo-

cal robustness assumption. Mathematically, given an im-

age sample x and a geometry transformation G, we denote

x
′ = G · x as the transformed sample, then a good feature

extractor fθ should satisfy that these two samples have the

same label and fθ(x) ≈ fθ(x
′). Thus we can incorporate

the distance between fθ(x) and fθ(x
′) as a feature invariant

loss as:

min
θ

N∑

i=1

ℓr (fθ(xi), fθ(x
′
i)) , (11)

where ℓr is the ℓ2-norm to measure the distance between

predictions of original and transformed samples. x and G ·
x generated by the transformation can be regarded as the

’easy’ positive pair, which can well stabilize the training

and boost the performance.

Moreover, please recall that for the original samples, we

compute the pseudo-graph and pseudo-label as supervision.

Instead of simply minimizing the distance of predictions,

we hope the graph and label information computed based

on transformed samples should be consistent with those

of original samples. On the one hand, given an image xi

with highly-confident pseudo-label yi, we also force x
′
i has

same pseudo-label. On the other hand, we also investigate

the correlation among the transformed samples x′ with the

highly-confident pseudo-graph W computed on the origi-

nal samples xi, which is beneficial to increase the network

robustness. The loss function to achieve above targets can

be formulated as:

LLR=
∑

x
′

i
,x′

j
∈X ′

ℓg(fθ(x
′
i), fθ(x

′
j);Wij)+α

∑

x
′

i
∈X ′

Vi ·ℓl (fθ(x
′
i), yi)

= L′
PG(θ) + αL′

PL(θ), (12)

where X ′ = {x′
i}

N
i=1 is the transformed data set, W and V
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are same to those of original set in Eqs. (2) and (8).

The deep unsupervised learning can benefit a lot from the

above strategy. As we set high confidence for the construc-

tion of pseudo-graph and pseudo-label, it can be regarded as

the easy sample, which will contribute little to the parameter

learning [15]. By adding small perturbation, the prediction

of transformed sample will not be easy as that of original

sample, which will contribute a lot in return.

3.4. Triplet Mutual Information

In this section, we explore the correlation between deep

and shallow layer representations of each instance and pro-

pose a novel loss, named triplet mutual information loss,

to make full use of the feature correspondence information.

Firstly, we introduce the mutual information loss which is

proposed in [38, 22] and analyze its limitation. Next, the

concept of triplet correlations is described. Finally, we pro-

pose the triplet mutual information loss that enables convo-

lutional neural networks to learn discriminative features.

The mutual information (MI) between deep and shallow

layer features of the same sample should be maximized,

which guarantees the consistency of representation. Similar

to [38], we also convert the MI of two random variables (D

and S) to the Jensen-Shannon divergence (JSD) between

samples coming from the joint distribution J and their prod-

uct of marginals M. Correspondingly, features of different

layers should follow the joint distribution only when they

are features of the same sample, otherwise, they follow the

marginal product distribution. So JSD version MI is defined

as:

MI(JSD)(D,S) = EJ[−sp(−T (d, s))]−EM[sp(T (d, s))],
(13)

where d corresponds to the deep layer features, s corre-

sponds to the shallow layer features, T is a discriminator

trained to distinguish whether d and s are sampled from the

joint distribution or not, and sp(z) = log(1 + ez) is the

softplus function. For discriminator implementation, [22]

shows that incorporating knowledge about locality in the

input can improve the representations’ quality.

Please note that currently, we do not incorporate any

class information. For two different samples x1 and x2, the

mutual information between x1’s shallow-layer representa-

tion and x2’s deep-layer representation will be minimized

even if they belong to the same class, which is not reason-

able. So we consider fixing this issue by introducing the

mutual information loss of positive pairs. As shown in the

bottom right of Figure 2, with the generated pseudo-graph

W described in Section 3.1, we select positive pairs and

negative pairs with the same anchor to construct triplet cor-

relations. Analogous to supervised learning, this approach

lifts the instance-level mutual information supervision to

triplet-level supervision.

Algorithm 1 Deep Comprehensive Correlation Mining

Input: Unlabeled dataset X = {xi}
N
i=1, thres1, thres2.

1: Initialize the network parameter θ randomly;

2: for t in [1, num epoches] do

3: for each minibatch XB do

4: Compute the prediction feature f(xi) for each

sample xi in the minibatch set XB;

5: Compute the similarity sij , pseudo-graph W

and pseudo-label based on Eqs. (2), (7) and (8);

6: Select positive and negative pairs based on W;

7: Compute the DCCM loss by Eq. (15);

8: Update θ using optimizers;

9: end for

10: end for

Output: Compute the cluster label by Eq. (7).

Then we show how this approach is theoretically formu-

lated by extending Eq. (13). We set the samples of random

variable D and S to be sets, instead of instances. Denote the

deep layer feature of sample j belongs to class i as dij and

its shallow layer feature as sij , then Di = {di1, d
i
2, · · · , d

i
n}

and Si = {si1, s
i
2, · · · , s

i
n} are feature sets of class i. Vari-

ables D and S are defined by D = {D1, D2, · · · , DK} and

S = {S1, S2, · · · , SK}, respectively. Then we can get the

following extension of Eq. (13):

LMI =−MI
(JSD)
set (D,S)= −

(
E(D,S)=J[−sp(−T (d, s))]

−ED×S=M[sp(T (d, s))]) , (14)

where we investigate the mutual information based on class-

related feature sets. In this case, besides considering the

features of same sample, we also maximize the mutual in-

formation between different layers’ features for samples be-

longs to the same class. The overview of triplet mutual

information loss is shown in the bottom right of Figure 2.

Specifically, we compute the loss function in Eq. (14) by

pair-wise sampling. For each sample, we construct the pos-

itive pairs and negative pairs based on the pseudo-graph

W to compute the triplet mutual information loss, which

is very helpful to learn more discriminative representations.

3.5. The Unified Model and Optimization

By combining the investigations of these three aspects in

above subsections and jointly train the network, we come up

with our deep comprehensive correlation mining for unsu-

pervised learning and clustering. The final objective func-

tion of DCCM can be formulated as:

min
θ

LDCCM = L̂PG + αL̂PL + βLMI , (15)

where α and β are constants to balance the contributions

of different terms, L̂PG = LPG + L′
PG is the overall
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Table 1. Statistics of different datasets.

Dataset Train Images Test Images Clusters Image size

CIFAR-10 50, 000 10, 000 10 32× 32× 3

CIFAR-100 50, 000 10, 000 20/100 32× 32× 3

STL-10 13, 000 – 10 96× 96× 3

ImageNet-10 13, 000 – 10 96× 96× 3

ImageNet-dog-15 19, 500 – 15 96× 96× 3

Tiny-ImageNet 100, 000 – 200 64× 64× 3

pseudo-graph loss, and L̂PL = LPL + L′
PL is the overall

pseudo-label loss. The framework of DCCM is presented

in Figure 2. Based on the ideally one-hot prediction feature,

we compute the highly-confident pseudo-graph and pseudo-

label to guide the feature learning of both original and trans-

formed samples, investigating both correlations among dif-

ferent samples and local robustness for small perturbation.

In the meantime, to investigate feature correspondence for

discriminative feature learning, the pseudo-graph is also uti-

lized to select highly-confident positive and negative pairs

for triplet mutual information optimization.

Our proposed method can be trained in a minibatch

based end-to-end way, which can be optimized efficiently.

After the training, the predicted feature is ideally one-hot.

The predicted cluster label for sample xi is exactly same to

the pseudo-label yi, which is easily computed by Eq. (7).

We summarize the overall training process in Algorithm 1.

4. Experiments

We distribute our experiments into a few sections. We

first examine the effectiveness of DCCM by comparing it

against other state-of-the-art algorithms. After that, we con-

duct more ablation studies by controlling several influence

factors. Finally, we do a series of analysis experiments to

verify the effectiveness of the unified model training frame-

work. Next, we introduce the experimental setting.

Datasets. We select six challenging image datasets for deep

unsupervised learning and clustering, including the CIFAR-

10 [27], CIFAR-100 [27], STL-10 [9], Imagenet-10, and

ImageNet-dog-15, and Tiny-ImageNet [10] datasets. We

summarize the statistics of these datasets in Table 1.

For the clustering task, we adopt the same setting as

that in [8], where the training and validation images of

each dataset are jointly utilized, and the 20 superclasses

are considered for the CIFAR-100 dataset in experiments.

ImageNet-10 and ImageNet-dog-15 used in our experi-

ments are same as [8], where they randomly choose 10
subjects and 15 kinds of dog images from the ImageNet

dataset, and resize these images to 96 × 96 × 3. As for the

Tiny-ImageNet dataset, a reduced version of the ImageNet

dataset [10], it totally contains 200 classes of 110, 000 im-

ages, which is a very challenging dataset for clustering.

For the transfer learning classification task, we adopt the

similar setting as that in [22], where we mainly consider the

CIFAR-10, CIFAR-100 of 100 classes. Training and testing

samples are separated.

Evaluation Metrics. To evaluate the performance of clus-

tering, we adopt three commonly used metrics including

normalized mutual information (NMI), accuracy (ACC),

adjusted rand index (ARI). These three metrics favour dif-

ferent properties in clustering task. For details, please refer

to the appendix. For all three metrics, the higher value indi-

cates the better performance.

To evaluate the quality of feature representation, we

adopt the non-linear classification task which is the same as

that in [22]. Specifically, after the training of DCCM, we fix

the parameter of deep neural network and train a multilayer

perception network with a single hidden layer (200 units)

on top of the last convolutional layer and fully-connected

layer features separately in a supervised way.

Implementation Details. The network architecture used

in our framework is a shallow version of the AlexNet (de-

tails for different datasets are described in the supplemen-

tary materials). Similar to [8], we adopt the RMSprop opti-

mizer with lr = 1e−4. For hyper-parameters, we set α = 5
and β = 0.1 for all datasets, which are relatively stable

within a certain range. The thresholds to construct highly-

confident pseudo-graph and select highly-confident pseudo-

label are set to 0.95 and 0.9, respectively. The small per-

turbations used in the experiments include rotation, shift,

rescale, etc. For discriminator of mutual information esti-

mation, we adopt the network with three 1 × 1 convolu-

tional layers, which is same to [22]. We use pytorch [40] to

implement our approach.

4.1. Main Results

We first compare the DCCM with other state-of-the-art

clustering methods on the clustering task. The results are

shown in the Table 2. Most results of other methods are di-

rectly copied from DAC [8]. DCCM significantly surpasses

other methods by a large margin on these benchmarks un-

der all three evaluation metrics. Concretely, the improve-

ment of DCCM is very significant even compared with the

state-of-the-art method DAC [8]. Take the clustering ACC

for example, our result 0.623 is 10.1% higher than the per-

formance 0.522 of DAC [8] on the CIFAR-10 dataset. On

the CIFAR-100 dataset, the gain of DCCM is 8.9% over

DAC [8].

Figure 3 visualizes feature embeddings of the DCCM

and DAC on CIFAR-10 using t-SNE [33]. We can see that

compared with DAC, DCCM exhibits more discriminative

feature representation. Above results can sufficiently verify

the effectiveness and superiority of our proposed DCCM.

To further evaluate the quality of feature representations,

we adopt the classification task and compare DCCM with

other deep unsupervised feature learning methods. We com-

pare DCCM against several unsupervised feature learning
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Table 2. Clustering performance of different methods on six challenging datasets. The best results are highlighted in bold.

Datasets CIFAR-10 CIFAR-100 STL-10 ImageNet-10 Imagenet-dog-15 Tiny-ImageNet

Methods\Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005

SC [55] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013 0.063 0.022 0.004

AC [19] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021 0.069 0.027 0.005

NMF [6] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016 0.072 0.029 0.005

AE [3] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073 0.131 0.041 0.007

DAE [45] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078 0.127 0.039 0.007

GAN [43] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078 0.135 0.041 0.007

DeCNN [54] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073 0.111 0.035 0.006

VAE [25] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079 0.113 0.036 0.006

JULE [53] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028 0.102 0.033 0.006

DEC [50] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079 0.115 0.037 0.007

DAC [8] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017

DCCM (ours) 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182 0.224 0.108 0.038

(a) Initial stage of DCCM (b) Middle stage of DCCM (c) Final stage of DCCM (d) Final stage of DAC

Figure 3. Visualizations of embeddings for different stages of DCCM and DAC on the CIFAR-10 dataset. Different colors denote various

clusters. From (a) to (c), with the increasing of epochs, DCCM tends to progressively learn more discriminative features. Based on (c) and

(d), features of DCCM are more discriminative than that of DAC.

DCCM(ours) 

AAE 

BiGAN 

NAT 

DIM 

VAE 

CIFAR-10 CIFAR-100 

Figure 4. Non-linear classification accuracy (top 1) results of

different deep unsupervised feature learning methods on two

datasets. ’Conv’ denotes the features after the last convolutional

layer, and ’Y(64)’ denotes the 64-dimensional feature of fully-

connected layer.

methods, including variational AE (VAE) [25], adversarial

AE (AAE) [34], BiGAN [12], noise as targets (NAT) [4],

and deep infomax (DIM) [22]. The top 1 non-linear classi-

fication accuracy comparison is presented in Figure 4. We

can also observe that DCCM achieves much better results

than other methods on CIFAR-10 and CIFAR-100 datasets.

Especially on the CIFAR-10 dataset, our results on both

convolutional and fully-connected layer features are more

than 8% higher than these of the second best method DIM.

Since we incorporate the graph-based class information and

transform the instance-level mutual information into the

triplet-level, our method can learn much more discrimina-

tive features, which accounts for the obvious improvement.

Table 3. Ablation study of DCCM on the CIFAR-10 dataset. LR,

PL, and MI corresponds to local robustness, pseudo-label, and mu-

tual information, respectively.

Methods
Correlations Metrics

LR PL MI NMI ACC ARI

M1 LPG 0.304 0.405 0.232

M2 L̂PG X 0.412 0.512 0.323

M3 L̂PG + L̂PL X X 0.448 0.583 0.358

M4 L̂PG + L̂PL + LMI X X X 0.496 0.623 0.408

We also compare with several state-of-the-art methods

under the same architecture and analyze the influence of

various sampling strategy in the supplementary materials.

4.2. Correlation Analysis

We analyze the effectiveness of various correlations from

three aspects: Local Robustness, Pseudo-label and Triplet

Mutual Information in this section. The results are shown

in Table 3.

Local Robustness Influence. The only difference between

methods M2 and M1 lies in whether to use the local ro-

bustness mechanism or not. We can see that M2 signif-

icantly surpasses the M1, which demonstrates the robust-

ness and effectiveness of local robustness. Because we set

high threshold to select positive pairs, without transforma-
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Figure 5. BCubed precision and recall curves [1] for the pseudo-

graphs of various epochs on CIFAR-10. These circle points on

the lines correspond to the fixed pseudo-graph threshold 0.95 in

experiments.

tion, these easy pairs have limited contribution to parameter

learning. With the local robustness loss, we construct many

hard sample pairs to benefit the network training. So it sig-

nificantly boosts the performance.

Effectiveness of Pseudo-label. With the help of pseudo-

label, M3 (with both pseudo-graph and pseudo-label)

achieves much better results than M2 (with only pseudo-

graph) under all metrics. Specifically, there is a 7.1% im-

provement on clustering ACC. The reason is that pseudo-

label can make full use of the category information behind

the feature distribution, which can benefit the clustering.

Triplet Mutual Information Analysis. Comparing the re-

sults of M4 and M3, we can see that the triplet mutual in-

formation can further improve the clustering ACC by 4.0%.

As we analyzed in Section 3.4, with the help of pseudo-

graph, triplet mutual information can not only make use of

the features correspondence of the same sample, but also

introduce discriminative property by constructing positive

and negative pairs. So it can further improve the result.

4.3. Overall Study of DCCM

In this section, we conducted experiments on CIFAR-

10 [27] to investigate the behavior of deep comprehensive

correlations mining. The model is trained with the unified

model optimization which is introduced in Section 3.5.

BCubed Precision and Recall of Pseudo-graph.

BCubed [1] is a metric to evaluate the quality of partitions

in clustering. We validate that our method can learn

better representation in a progressive manner by using

the BCubed [1] precision and recall curves, which are

computed based on the pseudo-graphs of different epochs

in Figure 5. It is obvious that with the increasing of epochs,

the precision of the pseudo-graph becomes much better,

which will improve the clustering performance in return.

Statistics of Prediction Features. According to Claim 1,

the ideal prediction features have the one-hot property, so

that we can use the highly-confident pseudo-label to guide

the training. To verify it, we compare the distribution of the

(a) Distribution of the largest probability

0.05 0.1 0.3 0.5 0.7 0.9 0.95

Pe
rf
or
m
an

ce

0.2

0.313

0.425

0.538

0.65

Threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ACC NMI ARI

(b) Influence of thres2

Figure 6. The distribution of the largest probability in all predic-

tion features and the influence of threshold for highly-confident

pseudo-label on the CIFAR-10 dataset.

largest prediction probability between the initial stage and

the final stage. The results on the CIFAR-10 dataset is pre-

sented in Figure 6(a). For the CIFAR-10 dataset, the largest

probability p is in the range of [0.1, 1]. We count the proba-

bility in nine disjoint intervals, such as [0.1, 0.2], [0.2, 0.3],
· · · , and [0.9, 1]. We can see that in the initial stage, less

than 10% of all samples have the probability that is larger

than 0.7, while after training, nearly 80% of all samples

have the probability that is larger than 0.9. The above re-

sults imply that the largest probability tends to be 1, and

others tend to be 0, which is consistent with our Claim 1.

Influence of Thresholds. In Figure 6, we test the influ-

ence of threshold to select highly-confident pseudo-label for

training. We can see that with the increase of threshold, the

performance also increases. The reason is that with low

threshold, some incorrect pseudo-label will be adopted for

network training, which will affect the performance. So it

is important to set relatively high threshold to select highly-

confident pseudo-label for supervision.

5. Conclusions

For deep unsupervised learning and clustering, we pro-

pose the DCCM to learn discriminative feature represen-

tation by mining comprehensive correlations. Besides the

correlation among different samples, we also make full use

of the mutual information between corresponding features,

local robustness to small perturbations, and their intercorre-

lations. We conduct extensive experiments on several chal-

lenging datasets and two different tasks to thoroughly eval-

uate the performance. DCCM achieves significant improve-

ment over the state-of-the-art methods.

Acknowledgment

The work of Z. Lin was supported by 973 Program of

China (grant no. 2015CB352502), NSF of China (grant

nos. 61625301 and 61731018), Qualcomm, and Microsoft

Research Asia. The work of H. Zha was supported by the

National Key Research and Development Program of China

(grant no. 2017YFB1002601) and National Natural Science

Foundation of China (grant nos. 61632003 and 61771026).

8157



References
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