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Abstract

Few-shot learning presents a challenge that a classifier

must quickly adapt to new classes that do not appear in the

training set, given only a few labeled examples of each new

class. This paper proposes a position-aware relation net-

work (PARN) to learn a more flexible and robust metric a-

bility for few-shot learning. Relation networks (RNs), a kind

of architectures for relational reasoning, can acquire a deep

metric ability for images by just being designed as a simple

convolutional neural network (CNN) [23]. However, due to

the inherent local connectivity of CNN, the CNN-based rela-

tion network (RN) can be sensitive to the spatial position re-

lationship of semantic objects in two compared images. To

address this problem, we introduce a deformable feature ex-

tractor (DFE) to extract more efficient features, and design

a dual correlation attention mechanism (DCA) to deal with

its inherent local connectivity. Successfully, our proposed

approach extents the potential of RN to be position-aware

of semantic objects by introducing only a small number

of parameters. We evaluate our approach on two major

benchmark datasets, i.e., Omniglot and Mini-Imagenet, and

on both of the datasets our approach achieves state-of-the-

art performance. It’s worth noting that our 5-way 1-shot

result on Omniglot even outperforms the previous 5-way 5-

shot results.

1. Introduction

Humans can effectively utilize prior knowledge to eas-

ily learn new concepts given just a few examples. Few-

shot learning [11, 20, 15] aims to acquire some transfer-

able knowledge like humans, where a classifier is able to

generalize to new classes when given only one or a few

labeled examples of each class, i.e., one- or few-shot. In

this paper, we focus on the ability of learning how to com-

pare, namely metric-based methods. Metric-based method-

s [2, 11, 22, 23, 25] often consist of a feature extractor and a

Figure 1: Two situations where the comparison ability of RN will

be limited. The top row shows the two compared images, and

the bottom row shows their extracted features, where blue areas

represent the response of corresponding semantic objects. (a) The

convolutional kernel fails to involve the two objects. (b) The con-

volutional kernel fails to involve the same fine-grained features.

metric module. Given an unlabeled query image and a few

labeled sample images, the feature extractor first generates

embeddings for all input images, and then the metric mod-

ule measures distances between the query embedding and

sample embeddings to give a recognition result.

Most existing metric-based methods for few-shot learn-

ing focused on constructing a learned embedding space to

better adapt to some pre-specified distance metric function-

s, e.g., cosine similarity [25] or Euclidean distance [22].

These studies expected to learn a distance metric for im-

ages, but actually only the feature embedding is learnable.

As a result, the fixed but sub-optimal metric functions

would limit the feature extractor to produce discriminative

representations. Based on this problem, recently Sung et

al. [23] introduced a relation network, which was designed

as a simple CNN, to make the metric learnable and flexible

in a data-driven way (in this paper we denote the simply
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CNN-based relation network as RN), and they achieved

impressive performance in few-shot learning. However,

according to our analysis, the comparison ability of RN is

still limited due to its inherent local connectivity.

As we all know, convolutional operations naturally have

the translation invariance to extract features from images,

meaning that higher responses of extracted features mainly

locate in positions corresponding to the semantic object-

s [27]. There are two situations: (i) two semantic objects

of images are in totally different spatial positions, as shown

in Figure 1(a); (ii) they are in close spatial positions while

their fine-grained features do not, as shown in Figure 1(b).

We note that these two situations commonly occur in the

datasets, especially the situation (ii), which should not be

overlooked. For these two situations, Sung et al. [23] sim-

ply concatenated two compared features together and used

RN to learn their relationship. However, we argue that

the comparison ability of RN is inherently constrained due

to its local receptive fields. In situation (i), as shown in

Figure 1(a), each convolution step can only involve a same

local spatial region, which rarely contains two objects at the

same time. In situation (ii), even if the convolutional ker-

nel involves two objects simultaneously, it may also fail to

involve their related fine-grained semantic features, e.g., in

Figure 1(b) it involves body features of the sample and head

features of the query, which is not optimal and reasonable

as a comparison operation. These two situations motivate us

to promote RN aware of objects and fine-grained features in

different positions.

In this paper, we propose a position-aware relation net-

work (PARN), where the convolution operator can over-

come its local connectivity to be position-aware of related

semantic objects and fine-grained features in images. Com-

pared with RN [23], our proposed model provides a more

efficient feature extractor and a more robust deep metric

network, which enhances the generalization capability of

the model to deal with the above two situations. The overall

framework is shown in Figure 2. Our main contributions

are as follows:

• During the feature extraction phase, we introduce the

deformable feature extractor (DFE) to extract more ef-

ficient features, which contain fewer low-response or

unrelated semantic features, for effectively alleviating

the problem in the situation (i).

• Our another important contribution is that we further

exploit the potential of RN to be position-aware to

learn a more robust and general metric ability. During

the comparison phase, we propose a dual correlation

attention mechanism (DCA) that utilizes position-wise

relationships of two compared features to capture their

global information, and then densely aggregate the

captured information into each position of outputs. In

this way, the subsequent convolutional layer can sense

related fine-grained features in all positions, and adap-

tively compare them despite of the local connectivity.

• With the setting of using a shallow feature extraction

network, our method achieves state-of-the-art results

with a comparable margin on two major benchmarks,

i.e., Omniglot and Mini-Imagenet. It’s worth noting

that our 5-way 1-shot result on Omniglot even outper-

forms the previous 5-way 5-shot results.

2. Related Work

Recent methods for few-shot learning usually adopted

the episode-based strategy [25] to learn meta-knowledge

from a set of episodes, where each episode/task/mini-batch

contains C classes and K samples of each class, i.e., C-

way K-shot. The acquired meta-knowledge could en-

able the model to adapt to new tasks that contain unseen

classes with only a few samples. According to the va-

riety of meta-knowledge, recent methods could be sum-

marized into the three categories, i.e., optimization-based

(learning to optimize the model quickly) [6, 18, 28, 29],

memory-based (learning to accumulate and generalize ex-

perience) [3, 16, 19] and metric-based (learning a general

metric) [2, 11, 22, 23, 25] methods.

Briefly, optimization-based methods usually associated

with the concept of meta-learning/learning to learn [7, 24],

e.g., learning a meta-optimizer [18] or taking some wise op-

timization strategies [6, 28, 29], to better and faster update

the model for new tasks. Memory-based methods generally

introduced memory components to accumulate experience

when learning old tasks and generalize them when perform-

ing new tasks [3, 16, 19]. Our experimental results show

that our method outperforms them without the need for up-

dating the model for new tasks or introducing complicated

memory structure.

Metric-based methods, where our approach belongs to,

can perform new tasks in a feed-forward manner, which

often consist of a feature extractor and a metric module.

The feature extractor first generates embeddings for the

unlabeled query image and a few labeled sample images,

and then the recognition result is given by measuring dis-

tances between the query embedding and sample embed-

dings in the metric module. Earlier works [2, 11, 22, 25]

mostly focused on designing embedding methods or some

well-performed but fixed metric mechanism. For example,

Bertinetto et al. [2] designed a task-adaptive feature extrac-

tor for new tasks by utilizing a trained network to predict

parameters. And Vinyals et al. [25] proposed a learnable at-

tention mechanism by introducing LSTM to calculate fully

context embeddings (FCE), and applying softmax over the

cosine similarity in the embedding space, which developed

the idea of a fully differentiable neural neighbors algorith-

m. Yet their approach was somewhat complicated. Snel-

l et al. [22] then further exceeded them with prototypical
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networks by simply learning an embedding space, where

prototypical representations of classes could be obtained

by directly calculating the mean of samples, and they used

Bregman divergences [1] to measure distance, which out-

performs the cosine similarity used in [25].

In the above metric-based methods, embeddings would

be limited to produce discriminative representations in or-

der to meet the fixed but sub-optimal metric methods. Some

approaches [4, 14] tried to adopt the Mahalanobis metric,

while still inadequate in the high-dimensional embedding

space. To solve this problem, Sung et al. [23] introduced

relation networks (RNs) for few-shot learning, which are

a kind of architectures for relational reasoning and success-

fully applied in visual question answering tasks [17, 20, 30].

They achieved impressive performance by designing a sim-

ply CNN-based relation network (RN) to develop a learn-

able non-linear metric module, which is simple but flexible

enough for the embedding network. However, due to the

local connectivity of CNN, RN would be sensitive to the s-

patial position relationship of compared objects. Therefore,

we further exploit the potential of RN to learn a more robust

metric ability, which avoids this problem.

3. Approach

In this section, we give the details of the proposed

position-aware relation network (PARN) for few-shot learn-

ing. At first, we will present the overall framework of

PARN. Then we will introduce our deformable feature ex-

tractor (DFE) which could extract more efficient features.

At last, to promote RN position-aware of fine-grained fea-

tures in images, we propose a dual correlation attention

mechanism (DCA).

3.1. Overall

The network architecture is given in Figure 2. At first, a

sample and a query image are fed into a feature extraction

network, which is designed as a DFE. With DFE, extracted

features f1 and f2 can be more focused on the semantic

objects, which is beneficial to improve the subsequent com-

parison efficiency and precision.

Then, in order to make a robust comparison between

f1 and f2, we apply the dual correlation attention mod-

ule (DCA) over them, so that each position of the output

feature map fmn(m,n ∈ {1, 2}) contains global cross- or

self-correlation information, where fmn means that each

position of fm attends to all positions of fn. In this way,

even if the subsequent convolution operations are locally

connected, each convolution step can adaptively sense re-

lated fine-grained semantic features in all positions.

Finally, we concatenate the above output features

fmn(m,n ∈ {1, 2}), and feed them into a standard CNN

to learn the relation score.

Figure 2: Overview of our proposed PARN for few-shot learn-

ing. DFE is the deformable feature extractor. DCA is the dual

correlation attention module, which consists of a cross-correlation

attention module (CCA) and a self-correlation attention module

(SCA). The two SCA blocks are a shared module. The symbol

‘∼’ represents a concatenating operation.

3.2. Deformable Feature Extractor

Figure 3(a) shows a standard feature extractor (SFE).

Due to the translation invariance of convolutional oper-

ations, the output feature extracted by SFE would only

present high responses in spatial positions corresponding to

the object. Other positions are low-response or unrelated

features that may induce the metric module to perform some

redundant comparison operations on them, which affects

the efficiency of the comparison. In the worst scenario like

Figure 1(a), it is difficult to accurately compare the two

objects.

Inspired by the idea of deformable convolutional net-

works [5, 9] for object detection tasks, we try to deploy

deformable convolutional layers for the feature extraction

network to extract more efficient features that contain fewer

low-response or unrelated semantic features. As shown in

Figure 3(b), the convolutional kernel of a deformable con-

volutional layer is not a regular k × k grid, but k2 param-

eters with 2D offsets. Each parameter wi(0 ≤ i ≤ k2)
of the kernel should take an offset coordinate (∆x,∆y),
transforming the original operation from wi ∗ f(x,y) to

wi ∗ f(x+∆x,y+∆y), where f(x,y) refers to a spatial point

at the coordinate (x, y) of f . In our work, the offsets are

learned by applying a convolutional layer over the input

feature map following Dai et al. [5]. And the offsets map

has the same spatial resolution as the output map, while its

channel dimension is 2k2, since for every spatial position of

the output map there are k × k × 2 = 2k2 offset scalars.

Comparing the features extracted by SFE and DFE in

Figure 3(a)(b), we can learn that DFE can filter out unrelat-

ed information to some extent, and extract a more efficient

feature, which is expected to improve the subsequent com-

parison efficiency and performance.
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Figure 3: Two feature extractors. Feature maps are shown in spa-

tial shapes. Blue areas on output features represent the response

of corresponding semantic objects.

3.3. Dual Correlation Attention Module

Despite of more efficient features, as mentioned in Sec-

tion 1, if we just use convolutional operations to implement

the subsequent comparison procedure, the comparison abil-

ity is still limited, since it is somewhat difficult to involve

related fine-grained semantic features of the two images

at each convolution step. To deal with this problem, one

immediate idea is to use a larger receptive field by enlarg-

ing the size of the convolutional kernel, or stacking several

convolutional layers. However, with more parameters and

deeper layers, the model will fall into overfitting problems

more easily.

Inspired by the non-local networks [26] that captures

long-term dependencies for video classification task, we

propose a dual correlation attention mechanism (DCA) for

the two-input deep relation network. The proposed atten-

tion mechanism uses just a small number of parameters

to capture relationships between any two positions of fea-

tures, regardless of their spatial distance, and then utilizes

the captured position-wise relationships to aggregate global

information at each spatial position of outputs. In this way,

even if the subsequent convolutional kernel is small, each

convolution step can involve global information of the two

input features, and adaptively perform the comparison on

them.

As shown in Figure 2, the proposed DCA consists of

a cross-correlation attention module (CCA) and a self-

correlation attention module (SCA), where CCA calculates

f12 (or f21) by attending every spatial position of f1 (or

f2) to the global information of f2 (or f1), and SCA calcu-

lates f11 (or f22) by attending every spatial position of f1

(or f2) to the global information of its own. We will give

their details respectively below.

Cross-correlation attention module As shown in

Figure 4, given two extracted features f1 ∈ R
C×H1×W1

and f2 ∈ R
C×H2×W21, CCA first applies two shared

1 × 1 convolutional layers over them respectively to

make a embedding over the channel dimension, and

then generates two feature maps f
′

1 ∈ R
C

′

×H1×W1

and f
′

2 ∈ R
C

′

×H2×W2 , where C
′

is less than C. We

reshape them into f
′

1 ∈ R
H1W1×C

′

and f
′

2 ∈ R
H2W2×C

′

.

Then we apply a cross-interrelation operation g(f
′

1, f
′

2)
to calculate their relationships of any two positions

into the cross-attention map Ac. From the spatial

position i of f
′

1 and j of f
′

2, we can respectively get

two spatial points/vectors {f
′

1i,f
′

2j} ∈ R
C

′

, where

i ∈ {1, ..., H1W1}, j ∈ {1, ..., H2W2}. The pointwise

calculation of g(f
′

1, f
′

2) is denoted as gij(f
′

1i, f
′

2j),

i.e., gij computes the value of Ac
ij , which indicates

the relationship between f
′

1i and f
′

2j . Here we choose

the cosine similarity function for gij to calculate their

relationships, then Ac
ij can be computed as follows:

Ac
ij = gij(f

′

1i, f
′

2j) = f
′

1if
′T

2j (1)

where f
′

1i =
f

′

1i

‖f
′

1i
‖

and f
′

2j =
f

′

2j

‖f
′

2j
‖

are the l2-normalized

vectors. We denote f
′

1 = [f
′

1i] ∈ R
H1W1×C

′

and f
′

2 =

[f
′

2j ] ∈ R
H2W2×C

′

, meaning that f
′

1 and f
′

2 are obtained

by performing l2-normalization over f
′

1 and f
′

2 respectively

along their channel dimension. Then Eq. (1) can be rewrit-

ten in matrix form:

Ac = g(f
′

1, f
′

2) = f
′

1f
′T

2 (2)

where Ac ∈ R
H1W1×H2W2 contains all the correlationships

between every spatial position of f
′

1 and f
′

2.

After obtaining the cross-attention map Ac, as shown

in Figure 4, the next step is the distribution operation that

performs dot-product between each sub-map of Ac with f
′

1

and f
′

2 respectively. We perform the distribution as follows:

{

f21 = AcT f
′

1

f12 = Acf
′

2

(3)

where fmn means that fm attends to the global informa-

tion of fn (m,n ∈ {1, 2},m 6= n). Specifically, we can

learn from Figure 4 that the output feature f21 captures

the global information of f1 into each its spatial position,

and so does f12 to f2. In this way, the subsequent con-

volutional layer can sense all the positions, and compare

1Actually H1 and W1 are equal to H2 and W2. Here we denote them

as different notations for clear explanation.
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Figure 4: The cross-correlation attention module (CCA). Feature maps are shown in spatial shapes. Weights of the two 1×1 convolutional

layers are shared. The cross-correlation attention map Ac contains all the position-wise correlationships of the two inputs. During the

distribution operation, Ac will be reshaped into shapes corresponding to the spatial shape of f1 (or f2). Each sub-map of Ac is then

performed dot-product with f
′

1 (or f
′

2) to aggregate cross-global information into each spatial position of the output f21 (or f12).

Figure 5: The self-correlation attention module (SCA). Feature maps are shown in spatial shapes. Weights of the 1× 1 convolutional layer

are shared with that in CCA. The self-correlation attention map As

1 contains all the position-wise relationships in f1. Each sub-map of

As

1 is then performed dot-product with f
′

1 to aggregate global information into each spatial position of the output f11.

them even with a small convolutional kernel. At last f21

and f12 will be reshaped into f21 ∈ R
C

′

×H2×W2 and

f12 ∈ R
C

′

×H1×W1 respectively, and then pass through a

1× 1 convolutional layer to increase the channel dimension

to C.

Self-correlation attention module As shown in Fig-

ure 5, SCA is similar to CCA in Figure 4, except that the

self-interrelation operation in SCA accept only one input to

generate a self-attention map As, which is actually the case

when two inputs of the cross-interrelation operation are the

same in our implementation. Besides, the weights of the

two 1× 1 convolutional layers in SCA are shared with that

in CCA. Therefore, referring to Eq. (2)(3), given the input

feature f1, we can also get the output f11:

As
1 = g(f

′

1, f
′

1) = f
′

1f
′T

1 (4)

f11 = As
1
T
f

′

1 (5)

where f11 means f1 attends to itself, and captures the glob-

al information to aggregate into each its spatial position. By

inputting f2 and performing the same operations, we can

also get As
2 and f22. The next step for f11 and f22 is the

same as for f12 and f21.

Then the computations of DCA are completed, where all

the introducing parameters are only one shared 1 × 1 con-
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volutional layer for embedding input features and another

shared 1× 1 convolutional layer for increasing the channel

dimension. After that, we concatenate these four globally

related features fmn(m,n ∈ {1, 2})2 and pass through a

CNN to learn the final relation score.

4. Experiments

In this section, we first introduce two benchmark datasets

and implementation details. Then we conduct a series of

ablation studies to analyze the effectiveness of our proposed

model. Finally we compare our proposed model with pre-

vious state-of-the-art methods on these two datasets.

4.1. Datasets

Omniglot [12] is a common benchmark for few-shot

learning, which contains 1,623 different handwritten char-

acters/classes from 50 different alphabets, and each class

has a maximum of 20 samples of size 28×28. We follow the

standard splits [22, 23, 25] that there are 1,200 classes for

meta-training and 423 classes for meta-testing. In addition,

we follow [19, 22, 25] to augment the dataset with random

rotations by multiples of 90 degrees during training.

Mini-Imagenet [25] is a subset of Imagenet, consisting

of 100 classes, each of which contains 600 images of size

84 × 84. We follow [6, 18, 22, 23, 25] in the exactly same

way to split the dataset, i.e., 64 classes for meta-training, 16

classes for meta-validation and 20 classes for meta-testing.

4.2. Implementation Details

Network architectures Following the previous work-

s [22, 23, 25], our basic feature extraction network, the

standard feature extractor (SFE), consists of 4 convolutional

modules, each of which contains a 64-filter of 3 × 3 con-

volutions, followed by batch normalization [8] and ReLU

nonlinearity. Besides, we apply 2 × 2 max-pooling in the

last two layers. As for the basic relation network (RN),

we follow the same architecture in [23], namely two con-

volutional modules with 64-filter, followed by two fully

connected layers, and the final output is mapped into 0-1

as the relation score through a sigmoid function.

Training and testing details We implement all the ex-

periments in Pytorch with a GeForce GTX 1080 Ti GPU.

We use Adam [10] to optimize the network end-to-end,

starting with a learning rate of 0.001 and reducing it by a

factor of 10 when the validation accuracy stopped improv-

ing. We use the mean square error (MSE) loss to train the

network as a regression task, where the label is 1 when the

two input categories are the same, otherwise 0. No reg-

ularization techniques such as dropout or l2 regularisation

are applied during training. We follow Sung et al. [23] to

2In our experiments we also concatenate the two input features.

arrange the number of sample and query images for the 1-

shot and 5-shot tasks. The classification result is given by

the category with the highest score.

4.3. Ablation Study

In this subsection, we do some ablation experiments on

Mini-Imagenet to examine the effectiveness of DFE and

DCA.

Deformable feature extractor In Section 3.2, we pro-

pose DFE to extract more efficient features, which is ex-

pected to improve the subsequent comparison efficiency

and precision. To validate the expectation, we observe the

results of using SFE with 4 convolutional layers (SFE-4) or

DFE with 4 convolutional layers (DFE-4) to extract features

for the subsequent comparison. The structures of SFE-4 and

DFE-4 are the same, except that the last two convolutional

layers of DFE-4 are deformable convolutional layers. To

eliminate the influence of extra parameters introduced by

DFE-4, we set up SFE with 6 convolutional layers (SFE-

6) for comparison. In this ablation experiment, we just

use RN without DCA as the metric network. As we find

that the learning of deformable convolutional layers tends

to be unstable at the begining, we initialize the parameters

of the convolutional layer that learns offsets to be 0 and start

training them after about 10000 episodes of warm-up.

The results are shown in Table 1. It can be seen that

by using DFE, the accuracies are improved from 51.64%

to 52.07% in the 5-way 1-shot task and 66.08% to 67.53%

in the 5-way 5-shot task, and slightly better than SFE-6

that holds more parameters, which indicates the effective-

ness of DFE. In Figure 6, we further visualize the effective

Model 5-way 1-shot 5-way 5-shot params depth

SFE-4 51.64 ± 0.83% 66.08 ± 0.69% 0.424M 4

SFE-6 51.74 ± 0.84% 67.13 ± 0.67% 0.498M 6

DFE-4 52.07 ± 0.82% 67.53 ± 0.67% 0.445M 4

Table 1: The ablation study of DFE on Mini-Imagenet. Results are

obtained by averaging over 600 test episodes with 95% confidence

intervals.

Figure 6: Visualization of the effective receptive fields (ERF) [13]

of DFE. DFE can filter out some useless information, such as the

background.
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receptive field (ERF) [13] of DFE on the input images.

The visualization shows that the learned offsets in the de-

formable convolutional layers can potentially adapt to the

image object, meaning that DFE can filter out some useless

information to extract more efficient features, which helps

the subsequent comparison procedure. Note that ERF does

not represent the response of extracted features, but just

represents the effective area in the receptive field, that is,

the network is watching at these places. So it is acceptable

if DFE just filters out some background information, but

does not exactly focus on desirable objects.

Dual correlation attention mechanism In this abla-

tion experiment, we take SFE as the feature extractor and

RN as the basic metric network. So when no proposed

attention module is used, the overall network is our reim-

plementation of RN in [23]. To verify our proposed DCA,

we conduct experiments on whether RN is applied with

CCA, SCA or their combination DCA. For fair comparison,

a simple 1× 1 convolutional layer will be added before RN

as the baseline of the proposed attention modules.

The results are shown in Table 2. We can see that in

1-shot and 5-shot tasks, the proposed CCA and SCA both

improve the performance. Especially when combining the

two modules as DCA, the accuracies increase to 54.36%

in the 1-shot task and 70.50% in the 5-shot task, which

outperforms the baseline by a clear margin. Besides, we

find that during training the network converges much faster

with DCA, indicating that DCA successfully allows RN to

perceive related semantic features in different positions, and

makes it easier to learn to compare.

To more intuitively observe the effectiveness of DCA, we

use the gradient-weighted class activation mapping (Grad-

CAM) introduced in [21] to visualize the output result ac-

tivations on the two compared images. As shown in Fig-

ure 7, when the related fine-grained semantic features of

two objects are in different positions, RN fails to compare

them without our proposed DCA, while with DCA it can

successfully do it. In other words, with the proposed DCA,

RN become more robust and general to learn metrics.

It is worthy to notice that CCA works much better than

SCA as shown in Table 2. We analyze that the main reason

may attribute to the certain ability of preliminary compari-

son of CCA, while SCA does not have it. As mentioned in

Section 3.3, the cross-attention map Ac of CCA is calculat-

ed by the cross-interrelation operation g(f1, f2), which is

actually implemented by a similarity function. Therefore,

when two input features come from different categories,

most values of Ac will tend to be smaller. Then in Eq. (3),

since f
′

1 and f
′

2 are relatively stable after the BN [8] layer

of SFE, we can infer that the response of f12 and f21 will

tend to be lower due to the small Ac. In other words, inputs

of different categories lead to small outputs. While the

situation is opposite when f1 and f2 come from the same

Method
5-way Acc.

1-shot 5-shot

RN 51.64 ± 0.83% 66.08 ± 0.69%

baseline 51.29 ± 0.82% 66.00 ± 0.70%

SCA 52.64 ± 0.91% 67.14 ± 0.70%

CCA 53.88 ± 0.87% 69.49 ± 0.69%

CCA&SCA 54.36 ± 0.84% 70.50 ± 0.64%

Table 2: The ablation study of DCA on Mini-Imagenet. The

baseline is a 1× 1 convolutional layer with RN. The combination

of SCA and CCA is the proposed DCA. Results are obtained by

averaging over 600 test episodes with 95% confidence intervals.

Figure 7: Three Visualization examples of the Gradient-weighted

Class Activation Mapping (Grad-CAM) [21] on two input images

for RN with or without DCA. With DCA, RN successfully com-

pares related semantic features of two images in different position-

s, while without DCA it fails to do it.

category. So we can learn that the outputs of CCA have

preliminarily represented the relationship between the two

inputs, which can help the subsequent RN to make further

comparisons.

Besides, as mentioned in Section 1, we propose DFE to

handle the situation (i) where two objects are in different po-

sitions, and DCA to deal with the situation (ii) where related

fine-grained features are in different positions. Comparing

the results of DFE in Table 1 and DCA in Table 2, we can

find that DCA contributes much more than DFE. According

to our analysis, one reason is that in datasets the situation

(ii) occurs more commonly than the situation (i), so the

effect of DCA can be more apparent. Another reason is that

since DCA can compare related features in any position, it

naturally has a certain ability to deal with the situation (i).

In other words, DCA is general for the two situations.

4.4. Comparison with the Stateofthearts

In this subsection, we combine DFE and RN with DCA

as our proposed position-aware relation network (PARN) to

compare with previous state-of-the-art approaches on Mini-

Imagenet and Omniglot.

Mini-Imagenet The results on Mini-Imagenet are

summarized in Table 4. The first three methods in Table 4
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Method
5-way Acc. 20-way Acc.

1-shot 5-shot 1-shot 5-shot

MANN [19] 82.8% 94.9% - -

Matching Nets [25] 98.1% 98.9% 93.8% 98.5%

Siamese Nets [11] 98.4% 99.6% 95.0% 98.6%

Meta Nets [16] 98.95% - 97.0% -

Proto Nets [22] 97.4% 99.3% 95.4% 98.7%

MAML [6] 98.7 ± 0.4% 99.9 ± 0.1% 95.8 ± 0.3% 98.9 ± 0.2%

MMNet [3] 99.28 ± 0.08% 99.77 ± 0.04% 97.16 ± 0.10% 98.93 ± 0.05%

RN [23] 99.6 ± 0.2% 99.8 ± 0.1% 97.6 ± 0.2% 99.1 ± 0.1%

Meta-GAN [28] 99.67 ± 0.18% 99.86 ± 0.11% 97.64 ± 0.17% 99.21 ± 0.1%

PARN(ours) 99.91 ± 0.08% 99.93 ± 0.03% 98.55 ± 0.18% 99.48 ± 0.05%

Table 3: Few-shot classification accuracies on Omniglot. Results are mean accuracies over 1000 test episodes with 95% confidence

intervals. ‘-’: not reported

Method
5-way Acc.

1-shot 5-shot

Meta-LSTM [18] 43.44 ± 0.77% 60.60 ± 0.71%

MAML [6] 48.70 ± 1.84% 63.11 ± 0.92%

Meta-GAN [28] 52.71 ± 0.64% 68.63 ± 0.67%

MMNets [3] 53.37 ± 0.48% 66.97 ± 0.35%

Matching Nets [25] 43.40 ± 0.78% 51.09 ± 0.71%

Matching Nets FCE [25] 43.56 ± 0.84% 55.31 ± 0.73%

Proto Nets [22]1 44.53 ± 0.76% 65.77 ± 0.70%

Proto Nets [22]2 49.42 ± 0.78% 68.20 ± 0.66%

RN [23] 50.44 ± 0.82% 65.32 ± 0.70%

RN3 51.64 ± 0.83% 66.08 ± 0.69%

PARN(ours) 55.22 ± 0.84% 71.55 ± 0.66%

1 Trained with 5-way 15 queries per episode task, which is the same as

us.
2 Trained with 30-way 15 queries per episode task.
3 Our reimplementation of RN [23].

Table 4: Few-shot classification accuracies on Mini-Imagenet.

Results are mean accuracies over 600 test episodes with 95%

confidence intervals.

are optimization-based, and the fourth method (MMNets)

is memory-based. Others methods, including ours, are

metric-based. The result of our reimplementation of

RN [23] is better than the reported because our 2 × 2
max-pooling layers are applied in the last two layers but

not the first two, and avoid premature loss of information.

Compared with the optimization-based [6, 18, 28] and

memory-based methods [3], our proposed PARN achieves

better accuracies without the need for updating the model

for new tasks or introducing complicated memory structure.

As for metric-based methods, after combining DFE and

DCA, PARN improves RN from 51.64% to 55.22% in

the 1-shot task and 66.08% to 71.55% in the 5-shot task,

and defeats all the other metric-based methods by a clear

margin. In summary, our proposed method achieves

state-of-the-art performance.

Omniglot The experimental results on Omniglot are

shown in Table 3. Most previous methods have performed

quite well on the Omniglot dataset. However, in all 1-shot

and 5-shot tasks, our method still outperforms them by a

comparable margin and reaches state-of-the-art results. It is

worthy to notice that our 5-way 1-shot result even outper-

forms the previous 5-way 5-shot results.

5. Conclusion

In this paper, we propose the position-aware relation

network (PARN), a more effective and robust deep metric

network for few-shot learning. Firstly, we introduce the

deformable feature extractor (DFE) to extract more efficient

features, which is beneficial for the subsequent comparison

efficiency and precision. Secondly, by introducing only a

small number of parameters, our proposed dual correlation

attention mechanism (DCA) helps RN overcome its inher-

ent local connectivity to compare related semantic objects

or fine-grained features in different positions. Therefore,

our model is more flexible and robust to learn metrics. Last

but not least, we validate our proposed approach on Om-

niglot and Mini-Imagenet, which achieves state-of-the-art

performance.
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