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Abstract

We propose a GAN-based scene-specific instance syn-

thesis and classification model for semi-supervised pedes-

trian detection. Instead of collecting unreliable detection-

s from unlabeled data, we adopt a class-conditional GAN

for synthesizing pedestrian instances to alleviate the prob-

lem of insufficient labeled data. With the help of a base

detector, we integrate pedestrian instance synthesis and de-

tection by including a post-refinement classifier (PRC) into

a minimax game. A generator and the PRC can mutually

reinforce each other by synthesizing high-fidelity pedestri-

an instances and providing more accurate categorical in-

formation. Both of them compete with a class-conditional

discriminator and a class-specific discriminator, such that

the four fundamental networks in our model can be joint-

ly trained. In our experiments, we validate that the pro-

posed model significantly improves the performance of the

base detector and achieves state-of-the-art results on multi-

ple benchmarks. As shown in Figure 1, the result indicates

the possibility of using inexpensively synthesized instances

for improving semi-supervised detection models.

1. Introduction

Pedestrian detection is a fundamental and critical step to-

ward many real-world applications, such as surveillance and

autonomous driving. Recent progress [1] [48] in pedestrian

detection is mainly attributed to adapting deep convolution-

al neural networks (CNNs) to this task. However, there are

still various challenges. Collecting and manually annotating

a large amount of data for supervised learning requires lots

of time and considerable human effort. In this paper, we

limit our discussion to semi-supervised pedestrian detec-

tion. In our setting, there are a limited amount of labeled da-

ta and a large amount of unlabeled data. It is critical for our

task to exploit the unlabeled data to facilitate learning on the

Figure 1. Pedestrian instance synthesis and detection on the

CUHK-Square dataset. In a semi-supervised setting (5% labeled

data), the proposed model generates high-fidelity pedestrian in-

stances. When including the synthesized instances in the training

of the PRC, the resulting PRC surpasses a base detector even with

full supervision as shown in the right subfigure (lower is better).

labeled data. Although the state-of-the-art detection perfor-

mance is promising, we found that it drops significantly as

the amount of labeled data reduces. For instance, the model

‘RPN+BF’ [47] achieves a log-average miss rate of 9.6% in

the FPPI (false positives per image) range [10−2, 100] on the

Caltech1X benchmark [7], but the performance significant-

ly degrades to 39.2% when only 5% of the total training data

was used. In many real-world applications, insufficiency of

labeled data often happens. Meanwhile, the performance of

semi-supervised pedestrian detection is still far from being

satisfactory.

Although some efforts have been made to combat the

problem of insufficient labeled data, e.g., [38] [40] [41],

most of them apply the current detector to collect new in-

stances from unlabeled data and then re-train the detec-

tor. The main drawback of those methods is that the cor-

rectness of the collected instances cannot be guaranteed.

Other works of solving the same problem is synthesizing

pedestrian instances through rendering 3D human model-

s [15] [4] [19]. However, the synthesized pedestrian in-
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Figure 2. Illustration of the semi-supervised pedestrian instance synthesis and detection mechanism of our proposed GAN-based approach.

stances look unrealistic and unnatural. According to the s-

tudy in [48], the performance of pedestrian detection meth-

ods heavily depends on the quality and diversity of train-

ing data. How to readily exploit the available unlabeled

data is one of the most critical issues for semi-supervised

pedestrian detection. Alternatively, it is promising to adopt

generative adversarial networks (GANs) [13] to synthesize

photo-realistic pedestrian instances. This makes us consid-

er whether both pedestrian instance synthesis and detection

could be taken into account simultaneously if we want to

perform semi-supervised pedestrian detection.

The key idea of this work is mutual reinforcement be-

tween pedestrian instance synthesis and detection. Specif-

ically, we adopt a Faster R-CNN [34] as our base detector.

To develop a detection model with better generalization ca-

pability, we introduce an additional post-refinement classi-

fier (PRC) following the Faster R-CNN. Inspired by Triple-

GAN [23], the PRC is incorporated with a generator to deal

with the problem of insufficient labeled data. In addition, a

class-conditional discriminator competes with both the gen-

erator and PRC in the minimax game. To fool this discrim-

inator, the generator attempts to synthesize high-fidelity in-

stances for each category, and the PRC tries to produce

more accurate predictions on the unlabeled instances. To

encourage the generator to synthesize more realistic pedes-

trian instances, an additional class-specific discriminator is

included in our framework to focus on distinguishing the

real and synthesized pedestrian instances. We also adop-

t a class-wise mean feature matching step to regularize the

generator and alleviate the domain shift, such that the class-

conditional distribution of the synthesis instances can match

with that of the real pedestrian instances in the latent space

learnt by PRC. Better classification can in turn lead to more

accurate guidance to the generator. Consequently, the pro-

posed model is able to improve both pedestrian instance

synthesis and detection in the semi-supervised setting. To

ensure test efficiency, the PRC is finally applied to perfor-

m pseudo-labeling on unlabeled data. We aim to re-train

our base detector on the pseudo-labeled data, such that the

resulting detector is expected to have similar performance

to the PRC. Beyond our expectation, we found that the re-

trained detector can achieve comparable or even superior

results. An overview of the proposed approach is shown in

Figure 2.

1.1. Contributions

The main contributions of the proposed approach can be

summarized as follows:

(1) We develop a new semi-supervised GAN-based frame-

work, which effectively exploits unlabeled data for

scene-specific instance synthesis with high-fidelity.

This work provides new insights into semi-supervised

pedestrian detection.

(2) In our framework, the PRC, a generator and two kinds

of discriminators can be trained jointly to facilitate mu-

tual reinforcement between pedestrian synthesis and

detection.

(3) We further explore how to re-train the base detector us-

ing the pseudo-labeled data provided by the PRC. The

resulting model can be used as a standalone detector

which is capable of competing with or even outper-

forming the PRC without affecting efficiency.

(4) We conduct thorough experiments to validate the ef-

fectiveness of the proposed approach. We show that

our approach is effective in semi-supervised pedestri-

an instance synthesis. We also demonstrate that our

approach significantly improves the performance of

semi-supervised pedestrian detection.

To the best of our knowledge, this work is the first attempt

to incorporate scene-specific pedestrian instance synthesis

into the overall detection framework in a semi-supervised

setting.
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2. Related Work

With the recent development of CNNs, a remarkable

progress has been made in the field of pedestrian detection.

Since we adopt a Faster R-CNN [34] as our base pedestri-

an detector, we mainly review the recent works on CNN-

based pedestrian detection methods. A number of widely

used CNNs [21] [16] [36] have been applied to object detec-

tion and achieved a noticeable performance improvement

as reported in previous works [34] [12] [6] [29]. Faster R-

CNN has exhibited an impressive capability in general ob-

ject detection. Based on that model, many pedestrian detec-

tion methods have been developed, and great progress has

been achieved. For instance, Zhang et al. [47] replaced the

downstream classifier of Faster R-CNN with a boosted for-

est model. When incorporating with a hard example mining

strategy, their model improves detection performance sig-

nificantly. Similarly, Hu et al. [18] incorporated the features

extracted from the convolutional feature maps of a CNN in-

to a boosted decision model. Instead of feeding the original

images, You et al. [45] studied the mechanism of filtered

channel features and extended it by using two or more con-

volutional layers with designed kernels upon HOG+LUV

feature maps. The extended filtered channel features im-

proved detection performance over the original ones.

To address the problems of large variance in pedestri-

an scale and occlusion, Cai et al. [3] proposed a multi-

scale CNN to perform detection on multiple output layer-

s. In [24], Li et al. proposed a scale-aware Fast R-CNN

(SA-FastRCNN) model, in which multiple subnetworks are

jointly trained to detect pedestrians with scales in different

ranges. An active detection model (ADM) [50] could also

provide more accurate prediction of multi-scale pedestrians

by adopting a set of coordinate transformations with multi-

layer feature representations. To simultaneously handle the

two problems, Lin et al. [25] jointly trained a multi-scale

network and a human parsing network. The former network

learns multi-grained features which are useful for detecting

small-size pedestrians, and the latter network learns a fine-

grained attention map to improve the detection of occlud-

ed pedestrians according to the visible parts. On the other

hand, Wang et al. [39] proposed a part and context network

(PCN), which integrates complementary branches capturing

semantic information of body part and contextual informa-

tion to address the problem of occlusion. Another strategy

is to apply a guided attention mechanism to focus on visible

parts of occluded pedestrians. Zhang et al. [49] incorpo-

rated the Faster R-CNN with an add-on attention network

(FasterRCNN+ATT). The attention mechanism across CN-

N channels was useful to reveal various occlusion patterns,

such that the performance of occluded pedestrian detection

was improved. In contrast, Wang et al. [42] focused on opti-

mizing detection bounding box localization. In their model,

a bounding box regression loss was included in the overall

loss function of Faster R-CNN to enhance pedestrian detec-

tion in crowd scenarios.

To improve classification on hard pedestrian/background

instances, the fused deep neural network (F-DNN) [9] al-

lows multiple parallel networks to refine the final predic-

tion. To obtain context information, auxiliary segmenta-

tion tasks have been included in pedestrian detection mod-

els. For instance, Fidler et al. [10] applied the learnt seg-

mentation masks to facilitate the detection task. In addi-

tion, segmentation results can be used to guide pedestrian

detection as in [14]. In [2], a simultaneous detection and

segmentation R-CNN (SDS-R-CNN) was proposed to im-

prove pedestrian detection by including an auxiliary task of

semantic segmentation. In addition, Costea et al. [5] per-

formed semantic segmentation on channel feature maps to

construct semantic channels, which can be viewed as addi-

tional visual cues. This consequently leads to performance

gains. Further, Ouyang et al. [30] integrated feature extrac-

tion, deformation handling, occlusion handling and classifi-

cation into a joint deep learning framework. In addition to

enhancing pedestrian detection performance, there are also

lots of effort made to speed up detection. YOLO [32] [33],

SSD [26] and DSSD [11] were proposed to combine the re-

gion proposal generation and classification stages.

While significant effort has been devoted to improving

the detection performance in the fully-supervised setting,

the resulting improvement comes at the cost of the required

huge amount of labeled data. Meanwhile, only a few of the

existing works focus on studying semi-supervised pedes-

trian detection. To address this problem, a variant semi-

supervised boosting model was proposed in [44]. They ex-

ploited the similarity between labeled data and unlabeled

data in the process of training boosted models. Another rel-

evant work is the adoption of a two-stage detection method

in [43]. The authors applied a self-paced learning paradigm

to progressively train an AlexNet to score proposals gener-

ated by an initial detector. Significantly different from these

methods, our work is applied to semi-supervised pedestri-

an instance synthesis and detection. Instead of collecting

possibly unreliable instances from unlabeled data for con-

structing additional labeled data, we improve model train-

ing by leveraging synthesized instances with high certain-

ty. To mutually reinforce pedestrian instance synthesis and

detection, we jointly train the corresponding fundamental

networks in a minimax game.

3. Method

To facilitate semi-supervised pedestrian detection, our s-

trategy is to exploit class-conditional GAN-based data aug-

mentation to address the problem of insufficient scene-

specific labeled data. We adopt a Faster R-CNN as our

base detector and initially train it on the labeled data on-

ly. The input image goes through the backbone network,
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and then proposals are generated by a region proposal net-

work (RPN) on the resulting feature maps. To perform more

accurate classification for the proposals, we build a semi-

supervised GAN-based model, which consists of 4 funda-

mental networks: the PRC C, a class-conditional genera-

tor G, a class-conditional discriminator Dcon, and a class-

specific discriminator Dspe. These networks compete in a

four-player minimax game.

3.1. Instance Synthesis and Classification in Semi
supervised Setting

Optimizing the generator. Let pl and pu denote the

distributions of labeled and unlabeled data, respectively.

(x, y) ∼ pl represents a labeled data pair, where y is the

class label of a sample x. Similarly, if x ∼ pu, this means

that x represents an unlabeled sample. To make the synthe-

sized pedestrian instances have a similar background envi-

ronment as the real instances, we propose to train a class-

conditional generator G, which translates pairs of random

vector and class label (z, y) sampled from a prior distribu-

tion ps to new scene-specific instances. In addition to the

adversarial training term ℓGadv , we include a mean feature

matching term ℓfeaMat into the overall loss function of G

to alleviate the domain shift between real and synthesized

data. Therefore, the optimization of the generator can be

formulated as follows:

min
θG

ℓGadv + µℓfeaMat, (1)

where

ℓGadv =E(z,y)∼ps

[

log
(

1−Dcon

(

G(z, y), y
)

)]

+ E(z,y)∼ps

y=y+

[

log
(

1−Dspe

(

G(z, y)
)

)]

,
(2)

y+ denotes the label of the pedestrian class, and the weight-

ing factor µ is used to adjust the relative importance be-

tween adversarial training and distribution matching. To

fool Dcon, G learns to synthesize instances of both pedestri-

an and background classes. To compete with Dspe, G needs

to put more focus on pedestrian instance synthesis. As will

be demonstrated by the experiments in Section 4.2 (Figure

4 and Table 1), combining Dcon and Dspe indeed leads to

higher synthesis quality of pedestrian instances. Further-

more, the mean feature matching term ℓfeaMat is defined

as follows:

ℓfeaMat =
∥

∥

∥
E(x,y)∼pl

[

1{y=y+}fC(x)
]

− E(z,y)∼ps

[

1{y=y+}fC
(

G(z, y)
)

]
∥

∥

∥

2

2
,

(3)

where the function 1{·} return 1 if the input is true and 0

otherwise, and fC(·) denotes the features on the last hidden

layer of the PRC. Minimizing this term encourages G to

generate pedestrian instances that match the statistics of the

real instances in the latent space, such that incorporation of

the synthesized instances is effective for classifier training.

Optimizing the PRC. The goal of the proposed model

is not just to synthesize more realistic pedestrian instances,

but also improve the accuracy of pedestrian detection. To-

ward this end, both real and synthesized instances are used

for training the PRC. In addition to the mean feature match-

ing term in Eq.(3), the overall loss function of the PRC in-

cludes an adversarial training term ℓCadv and a classification

evaluation term ℓclaEva. The corresponding optimization

formulation is presented as follows:

min
θC

ℓCadv + λf ℓfeaMat + λcℓclaEva, (4)

where λf and λc are weighting factors for controlling the

relative importance of the corresponding terms in the over-

all loss function. For an unlabeled sample, let ŷ denote

the estimate of its class label according to the prediction

p(x|θC), where the PRC is parameterized by θC . To com-

pete with the discriminator Dcon, the PRC needs to make ŷ

as accurate as possible. Therefore, the adversarial training

term ℓCadv is defined as follows:

ℓCadv = Ex∼pu

[

p(x|θC) log
(

1−Dcon(x, ŷ)
)

]

. (5)

Since the synthesized instances are associated with speci-

fied class labels, they can be used for supervised learning

(i.e. in the same way as the manually labeled instances be-

ing used). In addition, the PRC can also learn from the unla-

beled real instances by including a conditional entropy term

with respect to the posterior probability distribution into the

overall loss function. Thus, the term ℓclaEva is defined as

follows:

ℓclaEva =E(x,y)∼pl

[

− y log p(x|θC)
]

+ Ex∼pu

[

− p(x|θC) log p(x|θC)
]

+ E(z,y)∼ps

y=y+

[

− y log p
(

G(z, y)|θC
)]

.

(6)

Minimizing the overall loss function in Eq.(6) forces the

PRC to correctly classify both the labeled real data and the

synthesized data, along with producing confident predic-

tions on the unlabeled real data. With the inclusion of high-

fidelity synthesized instances, the PRC can learn to gener-

alize well to other unseen instances.

Adversarial training. We follow the adversarial train-

ing scheme of the Triple-GAN model in general. The dis-

criminator Dcon competes with both the generator and the

PRC in a minimax game by distinguishing the labeled da-

ta pairs {(x, y)|(x, y) ∼ pl} from two kinds of fake data

pairs: {(G(z, y), y)|(z, y) ∼ ps} and {(x, ŷ)|x ∼ pu}. We
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can formulate the corresponding optimization problem as

follows:

max
θDcon

E(x,y)∼pl

[

logDcon(x, y)
]

+
1

2
E(z,y)∼ps

[

log
(

1−Dcon(G(z, y), y)
)]

+
1

2
Ex∼pu

[

log(1−Dcon(x, ŷ))
]

.

(7)

Meanwhile, the other discriminator Dspc learns to further

judge whether the pedestrian instance is real or fake. Its

optimization formulation can be expressed as follows:

max
θDspe

E(x,y)∼pl

y=y+

[

logDspe(x, y)
]

+ E(z,y)∼ps

y=y+

[

log
(

1−Dspe(G(z, y), y)
)]

.
(8)

Dcon and Dspe play different roles in our model. The for-

mer makes G learn the background information as well as

pedestrians, and the latter enforces G to synthesize more

realistic pedestrian instances with better shapes and detail-

s. When we jointly train the four networks, the generator

and the PRC are able to mutually reinforce each other in

the form of generating more realistic pedestrian instances

for data augmentation, along with producing more accurate

guidance on category information. Therefore, the proposed

model is able to facilitate both pedestrian instance synthesis

and detection in the semi-supervised setting.

3.2. Enhancement of the Base Detector

The PRC can be reasonably expected to have a better ca-

pability of distinguishing unseen pedestrians from the back-

ground. However, the PRC cannot be applied alone to per-

form efficient pedestrian detection on full images. This is

because there are a large number of bounding boxes in the

background, which can be quickly filtered out by the pre-

trained base detector. To improve the test efficiency, we aim

to re-train the detector on the pseudo-labeled data, such that

the new model is able to approximate the PRC in classifica-

tion performance without affecting efficiency. Toward this

end, we apply the pre-trained base detector and PRC to scan

unlabeled images. The locations of the detection bounding

boxes and the pedestrians in the corresponding regions are

taken as the pseudo ground truths for the unlabeled images.

These images, combined with automatically generated an-

notations, are used to re-train the base detector. Note that

the pseudo-labeled images are partially labeled since some

pedestrians may be missed by the detector. In the following,

we describe in detail how to re-train the detection model on

partially labeled data.

The training set contains a limited number of manually

labeled images and a large number of pseudo-labeled im-

ages. In each iteration, the mini-batch holds two random-

ly selected images from these two kinds of data. To up-

date the model, training samples are in the form of ran-

domly selected candidate bounding boxes from a sliding

window on a specific feature layer. Each sample x can

be represented by the corresponding bounding box coordi-

nate b = (bx, by, bw, bh), where (bx, by) denotes the top-

left corner, bw denotes the width, and bh denotes the height.

The corresponding label y indicates whether b is a pedes-

trian bounding box. A sample is considered as positive if

the intersection-over-union (IoU) ratio of the corresponding

bounding box and the closest ground-truth bounding box

is greater than 0.5, and negative otherwise. The detection

loss function ℓdet for each training sample is made up of

the category prediction component and position regression

component, defined as follows:

ℓdet(x, y) = −y log p(x|θR) + νr1
{y=y+}ℓlocReg(b, b̃),

(9)

where θR denotes the parameters of the detection model,

b̃ represents the ground-truth bounding box closest to the

proposal b, and νr is a weighting factor of the regression

term ℓlocReg , which is defined as follows:

ℓlocReg(b, b̃) =
∑

ς∈{x,y,w,h}

ϕ(bς − b̃ς), (10)

where ϕ denotes the robust L1 loss function used in Fast R-

CNN. Note that this term works only for the positive train-

ing samples as y = y+ in that case. Re-training the base

detector on both real-labeled and pseudo-labeled data can

be expressed through the following optimization formula-

tion:

min
θR

E(x,y)∼pl

[

ℓdet(x, y)
]

+ ν∗E(x,y∗)∼pl∗

y∗=y+

[

ℓdet(x, y
∗)
]

+ νcE x′∈N (x)

(x,y)∼pl,y=y+ or

(x,y∗)∼pl∗ ,y
∗=y+

[

‖p(x|θR)− p(x′|θR)‖
2
2

]

,

(11)

where y∗ denotes the pseudo labels of an instance x col-

lected from the pseudo-labeled data, and pl∗ represents the

corresponding distribution. The third term in Eq.(11) is in-

cluded to encourage the detection model to produce consis-

tent predictions for a sample x′ located in the neighborhood

N (x) centered at x (e.g., IoU(x, x′)>0.7). Both ν∗ and νc
are weighting factors for adjusting the relative contribution

of the pseudo-labeled samples and the consistency regular-

ization term.

4. Experiments

In this section, we focus on verifying that our proposed

model for pedestrian instance synthesis significantly im-

proves the accuracy of pedestrian detection in the semi-

supervised setting. In order to conduct such validation, we
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(a) Real pedestrian instances (b) Synthesized pedestrian instances

Figure 3. Examples of the real pedestrian instances and synthesized pedestrian instances produced by the proposed model on CUHK-Square

(top row), MIT-Traffic (middle row) and Caltech1X (bottom row).

use three benchmark datasets: MIT-Traffic [38], CUHK-

Square [37] and Caltech-USA [7]. In the experiments,

we managed to achieve a significant improvement over the

baseline detector and outperform the previous state-of-the-

art methods on all the test datasets. In particular, the per-

formance of our approach is comparable/superior to those

of the fully supervised models on both MIT-Traffic and

CUHK-Square.

4.1. Experimental Setting

In all the experiments, our semi-supervised setting is that

only 5% of the training images are fully annotated, and the

remaining 95% images are regarded as unlabeled data with-

out including any annotations in the training process. We

follow the evaluation criterion in [8], in which the heights of

pedestrians are at least 50 pixels and visual levels are at least

65%. The detection methods are evaluated using the stan-

dard log-average miss rate (MR) which is the official metric

of Caltech-USA dataset. The average value is computed at

9 FPPI rates in the log-space range [10−1, 100] ([10−2, 100]
for Caltech1X), which is the same as the main competing

methods. For our base detector Faster R-CNN, we directly

use the source code provided by the authors. We imple-

ment the proposed semi-supervised GAN-based model us-

ing TensorFlow. The model is trained by using the Adam

solver [20]. For re-training the base detector, we use the

stochastic gradient descent optimizer with a momentum of

0.9. We start with an initial learning rate of 10−3, and then

decrease it by 10 times after 2000 (20000 for Caltech1X)

iteration.

4.2. Evaluation of the Synthesis Quality

First of all, we investigate the effectiveness of the pro-

posed semi-supervised GAN-based model in pedestrian in-

stance synthesis. Figure 3 shows examples of synthesized

instances on the three test datasets. The synthesized pedes-

Table 1. Comparison of the proposed model and its variants in

terms of quality of synthesis on Caltech1X.

Method IS FID

Ground-truth 3.05±0.35 -

SN-GAN [28] 1.89±0.05 216.66

Our Model w/o Dspe 2.39±0.13 103.60

Our Model 2.74±0.08 44.18

(a) SN-GAN (b) Ours w/o Dspe (c) Ours

Figure 4. Comparison of the proposed model and its variants in

pedestrian instance synthesis on Caltech1X.

trian instances have a complete body structure and look nat-

ural with satisfactory qualities. Compared to the real pedes-

trian instances, the synthesized ones also have a similar

style and degree of clarity. This indicates that the generator

in our model can effectively capture the scene information

and generate reasonable scene-specific instances.

Quality of synthesis. To highlight the advantage of

combining a class-conditional discriminator and a class-

specific discriminator, we compare the proposed model

with a state-of-the-art GAN model, SN-GAN [28], trained

on labeled data only. We also compare with a variant ‘Our

Model w/o Dspe’ by removing the class-specific discrimi-

nator from our model. Figure 4 shows additional synthe-

sis results for comparing these three models on Caltech1X.

We can make the following observations: the synthesized
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Figure 5. The score distributions of the ‘expert’ classifier for the

synthesized pedestrian instances produced by the proposed model

and variants on Caltech1X.

instances of both ‘Our Model w/o Dspe’ and ‘Our model’

have substantially higher quality than those of SN-GAN. In

addition, ‘Our model’ performs better than ‘Our Model w/o

Dspe’ in reducing the appearance ambiguity and preserving

more reasonable structure of the human body. Further, we

evaluate these models in terms of inception score (IS) [35]

and Fréchet inception distance (FID) [17] in Table 1. We

can clearly observe that ‘Our model’ achieves the highest

value of IS and lowest value of FID on Caltech1X.

Expert evaluation. Our final objective is to improve

semi-supervised pedestrian detection via the inclusion of

synthesized pedestrian instances. IS and FID cannot guar-

antee the semantics of synthesized instances. To handle

this problem, we propose to adopt a fully supervised clas-

sification network as an ‘expert’ to score the synthesized

pedestrian instances. We consider that the confidence s-

core of the ‘expert’ can indicate whether the pedestrians

in the synthesized images are well represented. Figure 5

shows the score distribution of the synthesized instances

produced by SN-GAN, ‘Our model w/o Dspe’ and ‘Our

model’ on Caltech1X. Compared with SN-GAN and ‘Our

model w/o Dspe’, there are much more synthesized pedes-

trian instances of ‘Our model’ that have high confidence

scores (>0.5). On the other hand, we apply PCA to visual-

ize the distributions of the synthesized pedestrian instances

by SN-GAN and ‘Our model’. Each instance is represent-

ed by the features extracted from the last hidden layer of

the ‘expert’ network. As shown in Figure 6, we can no-

tice that the synthesized pedestrian instances of ‘Our mod-

el’ match well with the real pedestrian instances than those

of SN-GAN. This is important for pedestrian instance aug-

mentation. When we include our synthesized data in the

training process, both the amount and diversity of pedestri-

an instances can significantly increase while reducing the

risk of misleading the PRC.

4.3. StateoftheArt Comparison

In this subsection, we perform a comparison with the

state-of-the-art semi-supervised pedestrian detection meth-

ods on the test datasets. Our base detector is a Faster R-

CNN with VGG-16 [36] as the backbone network, and the

(a) SN-GAN (b) Our Model

Figure 6. The embedding of the real pedestrian instances and syn-

thesized pedestrian instances on Caltech1X. PCA is adopted to

project the features extracted from the last hidden layer of the ‘ex-

pert’ network to 2D.

Table 2. The log-average miss rates of our model and the compet-

ing methods in the FPPI range [10−1
, 100] on CUHK-Square and

MIT-Traffic.

Method CUHK-Square MIT-Traffic

Generic Detector Adaptation [38] 0.8240 0.7915

Transferring Boosted Detector [31] 0.6936 0.6770

Confidence-encoded SVM [41] 0.6352 0.6475

Transferring Attributes [51] 0.6249 -

Data-reconstructed CNN [46] 0.5361 0.5327

SMC Faster R-CNN [27] 0.4326 0.4703

Variant SemiBoost [44] 0.4290 0.3647

Temporal Ensembling [22] 0.2820 0.4494

Self-paced CNN [43] 0.2742 0.2687

Our Base Detector (Initial) 0.3467 0.3458

Our Base Detector (Re-trained) 0.1924 0.1509

setting of the corresponding hyper-parameters is the same as

[47]. We initially train the base detector on the labeled data

only as the baseline, and the corresponding test results are

used as the lower bound for our evaluation. We also report

the results of the base detector retrained on the augmented

labeled data through pseudo-labeling unlabeled data. Table

2 shows the detection results of our proposed approach and

the competing methods on CUHK-Square and MIT-Traffic.

The performance of ‘Our Base Detector (Retrained)’ is far

better than ‘Our Base Detector (Initial)’. The performance

gains reach about 15 percentage points on CUHK-Square

and 19 percentage points on MIT-Traffic. The proposed

approach outperforms the second-best method ‘Self-paced

CNN’ by about 8 and 12 percentage points on these two

datasets, respectively.

In addition, we also test our approach on a more com-

plex dataset, Caltech1X. Previous works focus on perform-

ing fully supervised learning on this dataset. Consequent-

ly, we compare with the representative pedestrian detec-

tion models, e.g., the original Faster R-CNN, RPN+BF and

SDS-RPN. These models are trained on the labeled data

only. Different from other competing methods, ‘Variant

SemiBoost’ is a non-deep semi-supervised method, which

is trained on the same labeled data and unlabeled data as the
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Figure 7. Comparison of the proposed approach with its variants on semi-supervised pedestrian detection on CUHK-Square, MIT-Traffic

and Caltech1X. The log-average miss rate is computed in the FPPI range [10−1
, 100] ([10−2

, 100] for Caltech1X).

Table 3. The log-average miss rates of our model and the compet-

ing methods in the FPPI range [10−2
, 100] on Caltech1X.

Method Caltech1X

Faster R-CNN [34] 0.6098

RPN+BF [47] 0.3916

SDS-RPN [2] 0.3566

SDS-R-CNN [2] 0.3403

Variant SemiBoost [44] 0.5253

Our Base Detector (Initial) 0.4565

Our Base Detector (Re-trained) 0.2379

proposed approach. Table 3 shows the detection results of

our approach and the competing methods. ‘Variant Semi-

Boost’ performs poorly. The proposed approach improves

the baseline by about 22 percentage points and achieves the

best result. This improvement is notable given this limited

number of labeled images.

4.4. Discussion

To obtain a better insight into the effect of semi-

supervised pedestrian instance synthesis and detection, we

conduct more experiments in this subsection. Specifically,

we demonstrate the performance of the PRC in our mod-

el on the test datasets to illustrate the benefits of synthe-

sized pedestrian instances. We also train our base detec-

tor based on full supervision as ‘Our Base Detector (Ful-

Sup)’, where all the training images are fully annotated. The

detection-error-tradeoff curves of our model and its variants

are plotted in Figure 7. The PRC significantly outperforms

‘Our Base Detector (Initial)’ in all the cases, which indi-

cates that the synthesized instances are indeed useful for

pedestrian instance augmentation. It is worth noting that

the PRC even surpasses ‘Our Base Detector (Ful-Sup)’ on

CUHK-Square. Compared to the PRC, ‘Our Base Detec-

tor (Re-trained)’ is able to achieve comparable performance

on CUHK-Square and MIT-Traffic, and better performance

on Caltech1X, which verifies that our re-training strategy is

effective. Further, we present two ablation studies on Cal-

tech1X to highlight the importance of mean feature match-

ing in our model. We build two variant models: ‘PRC w/o

Syn. Ins.’ and ‘PRC w/o Fea. Mat.’. The former does

not use the synthesized instances for training the PRC, and

the latter disables the mean feature matching term ℓfeaMat

in Eq.(4). We can find that the two variants have a similar

performance. Although they outperform the baseline, the

improvement is not as significant as our full model. There-

fore, we conclude that mean feature matching is an effective

way to mitigate the domain shift and plays an important role

in our semi-supervised GAN-based model.

5. Conclusion

In this paper, we explored how to synthesize scene-

specific instances using GANs to address the problem of in-

sufficient labeled data in semi-supervised pedestrian detec-

tion. Different from previous works on collecting new in-

stances from unlabeled data, our approach addresses this is-

sue via simultaneous pedestrian instance synthesis and im-

provement in classification. Toward this end, with the help

of a base detector, we developed a semi-supervised GAN-

based model to mutually reinforce a generator and the PRC.

We also verified that the proposed model is capable of gen-

erating high-fidelity pedestrian instances with limited su-

pervision. It was demonstrated that those instances indeed

lead to significant performance gains in pedestrian detec-

tion on multiple datasets. Encouraged by the results, we an-

ticipate that the proposed approach can be applied to other

general object detection problems.
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