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Abstract

We introduce UprightNet, a learning-based approach for

estimating 2DoF camera orientation from a single RGB

image of an indoor scene. Unlike recent methods that lever-

age deep learning to perform black-box regression from

image to orientation parameters, we propose an end-to-end

framework that incorporates explicit geometric reasoning.

In particular, we design a network that predicts two rep-

resentations of scene geometry, in both the local camera

and global reference coordinate systems, and solves for the

camera orientation as the rotation that best aligns these two

predictions via a differentiable least squares module. This

network can be trained end-to-end, and can be supervised

with both ground truth camera poses and intermediate repre-

sentations of surface geometry. We evaluate UprightNet on

the single-image camera orientation task on synthetic and

real datasets, and show significant improvements over prior

state-of-the-art approaches.

1. Introduction

We consider the problem of estimating camera orientation

from a single RGB photograph. This is an important problem

with applications in robotics, image editing, and augmented

reality. Classical approaches often rely on 2D projective

geometric cues such as vanishing points [26]. However,

more recent methods have sought to leverage the power of

deep learning to directly regress from an image to extrinsic

calibration parameters, by training on images with known

ground truth orientation information [48, 19]. But these

methods typically do not explicitly leverage the knowledge

of projective geometry, treating the problem as a black-box

regression or classification.

In this work, we introduce UprightNet, a novel deep net-

work model for extrinsic camera calibration that incorporates

explicit geometric principles. We hypothesize that injecting

geometry will help achieve better performance and better
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Figure 1: UprightNet overview. UprightNet takes a single

RGB image and predicts surface geometry in both local

camera and global upright coordinate systems. The camera

orientation is then computed as the alignment between these

two predictions, solved for by a differentiable least squares

module, and weighted using predicted weight maps.

generalization to a broader class of images, because geom-

etry affords generally applicable principles, and because

geometric representations provide a structured intermediary

in the otherwise highly non-linear relationship between raw

pixels and camera orientation.

In particular, we define and use surface frames as an

intermediate geometric representation. The orthogonal basis

of the surface frames include the surface normal and two

vectors that span the tangent plane of the surface. Surface

frames allow us to capture useful geometric features—for

instance, predicted surface normals on the ground will point

directly in the up direction, and horizontal lines in the scene

will point perpendicular to the up direction. However, it

is not enough to know normals and other salient vectors in

camera coordinates, we also need to know which normals

are on the ground, etc. Therefore, our insight is to predict

surface geometry not only in local camera coordinates, but

also in global upright coordinates, as shown in Figure 1.

Such a global prediction is consistent across different

camera views and is highly related to the semantic task of
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predicting which pixels are horizontal surfaces (floors and

ceilings), and which are vertical (walls). The camera orien-

tation can then be estimated as the rotation that best aligns

these two representations of surface geometry. This overall

approach is illustrated in Figure 1. This alignment problem

can be solved as a constrained least squares problem. We

show in this paper that such an approach is end-to-end differ-

entiable, allowing us to train the entire network using both

supervisions on the intermediate representation of surface

geometry, as well as on the final estimated orientation.

We evaluate UprightNet on both synthetic and real-world

RGBD datasets, and compare it against classical geometry-

based and learning-based methods. Our method shows sig-

nificant improvements over prior methods, suggesting that

the geometry guidance we provide to the network is impor-

tant for learning better camera orientation.

2. Related Work

Single image camera calibration is a longstanding prob-

lem in computer vision. Classical geometry-based methods

highly rely on low-level image cues. When only a single

image is available, parallel and mutually orthogonal line

segments detected in the images can be used to estimate van-

ishing points and the horizon lines [22, 36, 11, 26, 35, 6, 51,

5, 27, 47, 50, 3]. Other techniques based on the shape of ob-

jects such as coplanar circles [9] and repeated patterns [40]

have also been proposed. When an RGB-D camera is avail-

able, one can solve for the upright orientation by assuming

an ideal Manhattan world [15, 42, 43, 24]. When the scene

in question has been mapped in 3D, one can also solve for

the camera pose by re-localizing the cameras with respect to

the 3D maps [29, 7, 39, 8, 23].

On the other hand, using machine learning methods to

estimate camera orientation from a single image has gained

attention. Earlier work proposes to detect and segment sky-

lines of the images in order to estimate horizon lines [13, 2].

More recently, CNN-based techniques have been developed

for horizon estimation from a single image [52, 19, 48].

Most of these methods formulate the problem as either re-

gression or classification and impose a strong prior on the

location of features correlated with the visible horizon and

of corresponding camera parameters.

Single-image surface normal prediction powered by deep

networks [46, 12] can provide a supervision signal for many

3D vision tasks such as planar reconstruction [33], depth

completion [53] and 2D-3D alignment [4]. Recently, surface

normal was used for single-image camera estimation by di-

rectly estimating a ground plane from the depth and normal

estimates of segmented ground regions [34]. Unfortunately,

such method assumes the ground plane is always visible in

the images, and only applies to vehicle-control use cases. In

addition, there are recent work making use of local surface

frame representation for a variety of 3D scene understanding

tasks [20, 21]. However, our method extends beyond these

ideas by estimating both local and global aligned surface

geometry from single images and use such correspondences

to estimate camera orientation. Suwajanakorn et al. [44]

shows that the supervision on relative pose could automat-

ically discover consistent keypoints of 3D objects, and our

method is inspired by this work on end-to-end learning of

intermediate representation via pose supervision.

3. Approach

Man-made indoor scenes typically consist of prominently

structured surfaces such as walls, floors, and ceilings, as

well as lines and junctions arising from intersections be-

tween these structures. Prominent lines also arise from other

scene features, such as oriented textures. In indoor images,

such geometric cues provides rich information about camera

orientation. We propose to exploit such geometric features

by explicitly predicting surface geometry as an intermediate

step in estimating camera orientation.

To understand the benefits of such an approach, imagine

that we take an image and predict per-pixel surface nor-

mals, in camera coordinates. How do these relate to camera

orientation? Surface normals on the ground and other hor-

izontal surfaces point in the same direction as the cameras

up vector—exactly the vector we wish to estimate. Simi-

larly, surface normals on walls and other vertical surfaces

are perpendicular to the up vector. Hence, finding the cam-

era orientation can be posed as finding the vector that is

most parallel to ground normals, and at the same time most

perpendicular to wall normals.

However, such an approach assumes that we know which

pixels are ground and which are walls. Thus, we propose

to also predict normals in global scene coordinates. This

approach is in contrast to most work that predicts surface

normals, which usually predict them only in the camera ref-

erence frame (e.g., if the camera is rolled 45 degrees about

its axis, the predicted normals should be rotated accordingly).

Given surface geometry predicted in both camera and scene

coordinates, the camera orientation can be found as the rota-

tion that best aligns these two frames.

This approach is suitable for learning. If the alignment

procedure is differentiable, then we can train a method end-

to-end to predict orientation by comparing to ground-truth

orientations. A key advantage is that we can also apply

supervision to the intermediate geometric predictions if we

have ground truth.

What kind of surface geometry should we estimate? Nor-

mals are useful as described above, but do not capture in-

plane features such as junctions and other lines. Hence, we

propose to estimate a full orthonormal coordinate frame at

each pixel, comprised of a normal and two tangent vectors.

We predict these frames as a dual surface geometry represen-

tation in two coordinate systems:
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(a) Image (b) nc (c) tc (d) bc (e) fgz

Figure 2: Visualization of surface geometry. From left to

right: (a) image, (b-d) local camera surface frames Fc, (e)

the third row of global upright surface frames Fg .

• Fc: the surface geometry in local camera coordinates.

• Fg: the surface geometry in global upright coordinates.

Surface frames. To represent surface geometry, we define

a surface frame F(i) at every pixel location i as a 3 × 3
matrix formed by three mutually orthogonal unit vectors

F(i) = [n(i) t(i) b(i)] in either local camera coordinates

or global upright coordinates:

• nc, ng: surface normal in camera and upright coordi-

nates, respectively.

• tc, bc, tg, bg: mutually orthogonal unit vectors that

span the tangent plane of the corresponding surface

normal, in camera and upright coordinates respectively.

(t stands for tangent, and b for bitangent.)

As usual, we define the camera coordinate system as a view-

dependent local coordinate system, and the global upright

coordinate system as the one whose camera up vector aligns

with global scene up vector.

Which tangent vectors should we choose for t and b?

For curved surfaces, these tangent vectors are often defined

in terms of local curvature. However, for man-made indoor

scenes, many surfaces are planar and hence lack curvature.

Instead, we define these vectors to align with the upright

orientation of the scene. In particular, we define the tan-

gent vector t as a unit vector derived from the cross product

between the surface normal n and the camera y-axis (point-

ing rightward in our case). The bitangent vector b is then

b = n× t. This definition of tangent vectors has a degener-

acy when the surface normal is parallel to the camera y-axis,

in which case we instead compute t to align with the up vec-

tor. However, an advantage of this choice of tangents is that

this degeneracy is rare in practice. We find this choice leads

to the best performance in our experiments. However, other

surface frame representations could also be used [20, 21].

Camera orientation. Let R be the 3 × 3 rotation matrix

transforming local camera coordinates to global upright co-

ordinates. R maps an upright surface frame Fg(i) to its

corresponding camera surface frame Fc(i) as follows:

Fg(i) = RFc(i) (1)

Note that there is no natural reference for determining the

camera heading (yaw angle) from a single image, and more-

over we are most interested in determining camera roll

and pitch because they are useful for graphics applications.

Therefore, our problem is equivalent to finding the scene up

vector in the camera coordinate system, which we denote

u, and which happens to be the same as the third row of R.

The scene up vector u encodes both roll and pitch, but not

yaw. It also relates the two surface frames as follows:

fgz (i) = uTFc(i) (2)

where we define fgz (i) = [ng
z(i) t

g
z(i) b

g
z(i)] ∈ R

3 as the

third row of Fg(i) and it has unit length by definition.

The last column of Figure 2 shows the vectors fgz (i). Note

that fgz (i) is consistent in the same supporting surfaces across

images, and hence we refer to it as a scene layout vector. For

example, ng
z for ground, wall and ceiling pixels is always

fixed, to 1, 0 and -1, respectively, across all images, while

they can differ in camera coordinates for different images

according to camera orientation. Therefore, a beneficial

property of the global upright frame representation is that it

is similar in spirit to performing a semantic segmentation of

the ground, ceiling, and other supporting structures.

To estimate 3DoF camera orientation, we could predict

both camera and upright surface frames for an image, then

estimate a rotation matrix that best aligns these frames. How-

ever, since we only estimate 2DoF camera orientation, it is

sufficient to predict Fc and fgz .

Figure 1 shows an overview of our approach. Given a sin-

gle RGB image, our network predicts per-pixel local camera

surface frames Fc and scene layout vectors fgz . Using corre-

sponding local/upright frames, we can formulate computing

the best up vector as a constrained least squares problem.

We show how this problem can be solved in a differentiable

manner (Sec. 3.1), allowing us to train a network end-to-end

by supervising it with ground truth camera orientations.

Predicting weights. A key challenge in our problem for-

mulation is the varying uncertainty of surface geometry pre-

dictions in different image regions. We solve orientation

estimation via rigid alignment as a least squares problem,

which is sensitive to outliers in the predicted surface frames.

To address this problem, at each pixel i, we propose to ad-

ditionally predict separate weights wn(i), wt(i), wb(i) for

each of the n, t and b maps, and integrate these weights into

the least squares solver. We have no ground truth weights
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available for supervision, but because we can train our sys-

tem end-to-end, the network can learn by itself to focus on

only the most reliable predicted regions. Hence during train-

ing, our model jointly optimizes for surface frames, weights

maps, and camera orientation.

3.1. Up vector from surface frame correspondences

Differentiable constrained least squares. Given local sur-

face frames Fc and the corresponding fgz , our goal is to find

the up vector u that best aligns them. Given Eq. 2, we can

write the following constrained minimization problem:

min
u

N
∑

i=1

∥

∥uTFc(i)− fgz (i)
∥

∥

2

2

subject to ‖u‖
2
= 1 (3)

where N is the number of pixels. Eq. 3 can be rewritten in

matrix form as:

min
u

‖Au− b‖
2

2
, subject to ‖u‖

2
= 1 (4)

where the matrix A ∈ R
3N×3 can be formed by vertically

stacking matrices Fc(i) for each pixel i, and similarly vector

b ∈ R
3N can be formed by stacking the vectors fgz (i).

If there were no unit-norm constraint, this problem would

be a standard least squares problem. Similarly, if b = 0, the

problem becomes a homogeneous least squares problem that

can be solved in closed form using SVD [17]. In our case,

b is not necessarily a zero vector, preventing us using such

standard approaches. However, we show that Eq. 4 can be

solved analytically, allowing us to use it to compute a loss in

an end-to-end training pipeline.

In particular, we can write the Lagrangian of Eq. 4 as

L = (Au− b)T (Au− b)− λ(uTu− 1) (5)

where λ is a Lagrange multiplier. The KarushKuhnTucker

condition of Eq. 5 leads to the following equations:

(ATA− λI)u = ATb, uTu = 1 (6)

To solve for λ and u from Eq. 6 analytically, we use the

techniques proposed in [14]. Specifically, we have following

theorem [14]:

Theorem 1 Eq. 6 can be reduced to a quadratic eigenvalue

problem (QEP):

Iλ2 − 2Hλ+H2 − ggT = 0 (7)

where H = ATA, g = ATb, and Eq. 7 has a solution for

λ. Further, the solution λ and u = (H− λI)
−1

g satisfies

(H − λI)u = g and uTu = 1.

We refer readers to the supplementary material and to

[14] for the proof. Fortunately, to solve this QEP, we can

reduce it to an ordinary eigenvalue problem [14]:

[

H −I

−ggT H

] [

γ

µ

]

= λ

[

γ

µ

]

(8)

where γ = (H − λI)−2g and µ = (H − λI)γ. Since the

block matrix on the left hand side of Eq. 8 is not necessarily

symmetric, the optimal λ corresponds to its minimum real

eigenvalue. The derivative of this eigenvalue can be found

in closed form [45], and so the solver is fully differentiable.

Weighted least squares. To improve the robustness of the

least squares solver, we weight each correspondence in Eq. 3:

min
u

N
∑

i=1

∥

∥

∥
W(i)

(

uTFc(i)− fgz (i)
)T

∥

∥

∥

2

2

subject to ‖u‖
2
= 1 (9)

and corresponding Lagrangian can be similarly modified as

L′ = (Au− b)TWTW(Au− b)− λ(uTu− 1) (10)

where W ∈ R
3N×3N is a diagonal matrix, and each

3× 3 block, denoted as W(i), is diag([wn(i) wt(i) wb(i)]).
Hence, we can use the technique described above to solve

for λ and u. In our experiments, we show that the predicted

weights not only help to reduce the overall estimation er-

ror in the presence of noisy predictions, but also focus on

supporting structures, as shown in Figure 4 and Figure 5.

3.2. Loss functions

UprightNet jointly optimizes for surface frames, weights,

and camera orientation in an end-to-end fashion. Our overall

loss function is the weighted sum of terms:

Ltotal = Lo + αFLF + α∇L∇ (11)

In contrast to prior approaches that directly perform regres-

sion or classification on the ground-truth camera orientation,

our method explicitly makes use of geometric reasoning over

the entire scene, and we can train a network end-to-end with

two primary objectives:

• A camera orientation loss that measures the error be-

tween recovered up vector and the ground-truth.

• A surface geometry loss that measures errors be-

tween predicted surface frames and ground-truth sur-

face frames in both local camera and global upright

coordinate systems.

Camera orientation loss Lo. The camera orientation loss

is applied to the up vector estimated by the surface frame

correspondences and weights using our proposed constrained
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weighted least squares solver. Specifically, the loss is defined

as the angular distance between the estimated up vector û

and the ground-truth one u:

Lo = arccos (û · u) (12)

Note that both û and u are unit vectors. We can backprop-

agate through our differentiable constrained weighted least

squares solver to minimize this loss directly.

A numerical difficulty is that the gradient of arccos(x)
reaches infinity when x = 1. To avoid exploding gradients,

our loss automatically switches to 1 − ûTu when û · u is

greater than 1− ǫ. In our experiments, we set ǫ = 10−6 and

find that this strategy leads to faster training convergence

and better performance compared to alternatives.

Surface frames loss LF . We also introduce a supervised

loss LF over predicted surface frames in both coordinate

systems to encourage the network to learn a consistent sur-

face geometry representation. In particular, we compute the

cosine similarity between each column of F̂c and the corre-

sponding column of the ground-truth Fc. We also compute

the cosine similarity between f̂gz and the ground-truth fgz ,

yielding the following loss:

LF = 2−
1

3N

N∑

i=1

∑

f∈{n,t,b}

f̂
c(i) · f c(i)−

1

N

N∑

i=1

f̂
g
z (i) · f

g
z (i)

(13)

Gradient consistency loss L∇. Finally, to encourage piece-

wise constant predictions on flat surfaces and sharp disconti-

nuities, we include a gradient consistency loss across multi-

ple scales, similar to prior work [30, 31, 32]. The gradient

consistency loss L∇ measures the ℓ1 error between the gra-

dients of the prediction and the corresponding ground truth:

L∇ =

S
∑

s=1

1

3Ns

Ns
∑

i=1

∑

f∈{n,t,b}

||∇f̂ c(i)−∇f c(i)||1

+

S
∑

s=1

1

Ns

Ns
∑

i=1

||∇f̂gz (i)−∇fgz (i)||1 (14)

where S is the number of scales, and Ns is the number of

pixels in each scale. In our experiments, we set S = 4 and

use nearest neighborhood downsampling to create image

pyramids for both the prediction and ground-truth.

3.3. Network architecture

We adopt a U-Net-style network architecture [16, 37]

for UprightNet. Our network consists of one encoder and

three separate decoders for F̂c (9 channels), f̂gz (3 channels)

and weight maps (3 channels), respectively. We adopt an

ImageNet [38] pretrained ResNet-50 [18] as the backbone

encoder. Each decoder layer is composed of a 3 × 3 con-

volutional layer followed by bilinear upsampling, and skip

connections are also applied. We normalize each column of

F̂c and f̂gz to unit length. For the weight maps, we add a sig-

moid function at the end of the weight stream and normalize

predicted weight maps by dividing them by their mean.

4. Experiments

To validate the effectiveness of UprightNet, we train and

test on synthetic images from the InteriorNet dataset [28] and

real data from ScanNet [10], and compare with several prior

single-image orientation estimation methods. Furthermore,

to test generalization ability, we directly apply all methods

trained on ScanNet to images drawn from the SUN360 [49]

dataset without fine-tuning. For all datasets, we show both

qualitative and quantitative results, as well as comparisons

to other baselines.

4.1. Datasets

InteriorNet [28] is a large, photo-realistic indoor scene

dataset of high-quality rendered images with associated

ground-truth surface normals and camera poses. We use

a pre-release subset of around 34k images. Each scene in-

cludes 3 images randomly sampled from a rendered videos.

Compared to other synthetic dataset such as SUNCG [41],

InteriorNet has a much larger variation in camera pitch and

roll. In our experiments, we randomly split InteriorNet into

training, validation, and test sets using ratios of 77%, 3%,

and 20% based on different scene IDs. During training, we

generate randomly cropped images with a vertical field of

view (FoV) varying between 35 and 45 degrees.

ScanNet [10] is an RGB-D video dataset containing indoor

scenes with 3D camera poses and dense surface reconstruc-

tions. We use around 50K image frames, sampled approxi-

mately every second, for training and evaluation. In addition,

during training we use rendered surface normals produced

by Zhang and Funkhouser [53] for ground truth supervision,

and we use the official train/val/test split based on scene id.

We also use the same technique we use with InteriorNet to

randomly crop images.

SUN360. We also construct a test set of rectilinear crops

from the SUN360 panorama dataset [49] for use as a cross-

dataset test set. Specifically, we extract six rectified images

from each indoor panorama, with output camera parameters

uniformly sampled from the ranges present in the training set

of ScanNet. For all datasets and methods, we resize images

to 384x288 before feeding them to the networks.

4.2. Training details

We implement UprightNet in PyTorch [1]. For all experi-

ments, we train using Adam [25], starting from an ImageNet-

pretrained encoder with initial learning rate 0.0004 and mini-

batch size of 8. During training, we halve the learning rate
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Figure 3: Qualitative comparison of horizon line predic-

tions. From top row to bottom row: InteriorNet, ScanNet

and SUN360. Our trained model outperforms other baselines

in terms of accuracy on all three datasets.

every 5 epochs. More details on hyperparameter settings are

included in the supplemental material.

4.3. Comparisons to baseline methods

We compare UprightNet with four baseline methods:

• A regression baseline: a CNN that predicts roll and

pitch angles, trained with an ℓ1 loss.

• DeepHorizon [48], a CNN classification approach to

predicting horizon offsets and slopes.

• Hold-Geoffroy et al. [19]: a CNN classification method

for predicting horizon lines and fields of view.

• Lee et al. [26]: a state-of-the-art classical geometry-

based method.

To facilitate fair comparison, we re-implemented [48] and

[19] based on their published descriptions. For all learning-

based methods, we adopt the same network architecture and

pretrained weights as our method, and train and evaluate

them on the same datasets using the same training strategy.

To evaluate estimated camera orientations, we compute

the mean and median angular error between the predicted

and ground truth up vectors, as in Equation 12, as well as

absolute errors in both pitch and roll angles.

Table 1 shows quantitative results on InteriorNet, and

the top row of Figure 3 shows a visualization of estimated

horizon lines superimposed on the input images for qualita-

tive comparisons. Our proposed method achieve a signifi-

cant improvement (30%) compared to prior CNN-based and

geometry-based methods for all error metrics.

Method angular error (◦) pitch error (◦) roll error (◦)

avg. med. avg. med. avg. med.

CNN Regression 2.29 1.20 1.88 1.02 0.93 0.34

Upright [26] 3.95 1.76 3.59 1.70 1.15 0.33

DeepHorizon [48] 2.12 1.13 1.65 0.85 0.93 0.40

Hold-Geoffroy et al. [19] 1.76 0.81 1.35 0.58 0.81 0.26

Ours 1.17 0.52 0.99 0.47 0.44 0.11

Table 1: Quantitative comparisons on the InteriorNet

test set. Our approach has the best performance in terms of

all the metrics. All errors are in degrees and lower is better.

Method angular error (◦) pitch error (◦) roll error (◦)

avg. med. avg. med. avg. med.

CNN Regression 4.88 3.63 3.85 2.59 2.24 1.57

Upright [26] 14.51 5.71 4.65 2.13 12.99 4.32

DeepHorizon [48] 5.05 3.80 3.81 2.56 2.51 1.82

Hold-Geoffroy et al. [19] 4.55 3.33 3.53 2.33 2.15 1.50

Ours 3.74 2.94 2.88 2.04 2.12 1.48

Table 2: Quantitative comparisons on the ScanNet test-

set. See Table 1 for descriptions.

Table 2 shows quantitative results on ScanNet, and the

second row of Figure 3 shows predicted horizon lines on that

dataset. ScanNet is more challenging for image calibration

compared to InteriorNet due to motion blur, extreme pitch

angles, and more complex scene structures. Nevertheless,

our method still improves calibration accuracy by a relative

20% in angular and pitch error, and is slightly better than the

best baseline methods in terms of roll angle.

Figure 4 shows visualizations of our predicted nc, fgz , and

weights for InteriorNet and ScanNet test images. For visual-

ization, in Figure 4(d) we combine the three weights maps by

adding the normalizing them, and overlay them on the orig-

inal input images. Interestingly, the network learns weight

maps that tend to focus on the vicinity of vertical/horizontal

surface line junctions. Such lines are very strong cues for

vanishing points. For instance, tc in the vicinity of vertical

junctions and bc in the vicinity of horizontal junctions both

represent 3D directions of their respective junction lines, and

also point towards 2D vanishing points [17]. It is interesting

that the network “discovers” such features automatically

4.4. Ablation analysis

We now explore how the weight maps and different con-

figurations of surface geometry supervision affect the perfor-

mance of UprightNet through validation on InteriorNet.

Impact of weights. We wanted to see if the network learns

to correctly assign large weights to regions with smaller

alignment error. We compute an alignment score map by

using the ground-truth up vector u to align each column of

F̂c with its corresponding scalar in f̂ cz . We define alignment

scores for surface normals as Sn = exp(−10|uT n̂c − n̂g
z |)
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(a) Image (b) nc (c) fgz (d) weights

Figure 4: Visualizations of predictions in InteriorNet (top

3 rows) and ScanNet (bottom 3 rows). In (d), we overlay

weight maps (combined weights for n, t and b) over input

images. Blue=small weights, red=large weights.

and similarly for the two tangent vectors.

Figure 5 visualizes these alignment scores, and compares

them with the predicted weights. The network indeed tends

to predict large weights where the alignment error is small.

This suggests that, while our surface geometry predictions

are not always accurate, the weights can capture which image

regions are more likely to have correct predictions, thus

leading to better estimation of camera orientation.

Impact of camera orientation loss. As shown in Table 3,

we evaluate our models using different configurations to an-

alyze their influence on the performance. Comparing with

direct estimation of camera pose from the predicted surface

frame correspondences, end-to-end optimization with cam-

era orientation loss boosts performance significantly. We

observe an additional increase in performance by incorporat-

ing predicted weights into orientation estimation. Since the

supervision of surface frames in both coordinate systems is

not required during training, we can also train a model using

supervision only from local camera frames, or only from

global upright frames. The ablations shown in Table 3 sug-

gest that using both local camera and global upright surface

geometry as supervision leads to the best performance.

Impact of surface geometry representation. We also ex-

(a) Image (b) nc (c) wn (d) Sn

(a) Image (b) tc (c) wt (d) St

(a) Image (b) bc (c) wb (d) Sb

Figure 5: Comparisons between predicted weights and

alignment scores. From left to right (a) input image, (b)

predict camera surface frames, (c) predicted weights, (d)

alignment scores S. In (c) and (d), white indicates large

weights and high alignment score (i.e. low alignment error).

Method angular error (◦) pitch error (◦) roll error (◦)

avg. med. avg. med. avg. med.

Ours (w/o weight) 1.83 1.15 1.22 0.81 0.90 0.57

Ours (w/o Lo) 2.71 1.74 1.21 2.83 1.37 0.93

Ours (w/o F c loss) 1.70 1.11 1.31 0.99 0.76 0.57

Ours (w/o Fu loss) 1.82 1.18 1.32 0.98 0.79 0.55

Ours (full) 1.17 0.52 0.99 0.47 0.44 0.11

Table 3: Ablation studies for different configurations on

the InteriorNet test set. Ours (full) indicate our proposed

full method, which achieves the best performance among all

tested configurations.

plore the influence of different surface geometry represen-

tations on camera orientation estimation. In particular, we

compare our full surface geometry representation to (1) a

single vector representation, i.e., just one of (n, t,b), and

(2) a combination of any two of them. As shown in Table 4,

our proposed full surface frame representation achieves the

best performance. This suggests that each basis vector of

our surface frames captures complementary geometry cues

in indoor scenes. In particular, nc of grounds/ceilings and

tc of vertical lines directly represent the scene up vectors

we seek, while bc of horizontal lines on supporting surfaces

could correspond to major vanishing points in the scene.

4.5. Generalization to SUN360

We explore the ability of different learning-based cal-

ibration methods to generalize across datasets by taking

models trained on ScanNet and testing them on crops from

the SUN360 indoor panorama dataset. We summarize the

results in Table 5, and visualize surface normal and weight
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Method angular error (◦) pitch error (◦) roll error (◦)

avg. med. avg. med. avg. med.

n 1.81 1.13 1.35 0.85 0.90 0.45

t 2.11 1.28 1.60 0.96 1.06 0.47

b 1.82 1.09 1.39 0.84 0.81 0.47

nt 1.52 0.97 1.27 0.83 0.58 0.29

nb 1.17 0.89 1.33 0.77 0.78 0.29

tb 1.56 0.66 1.29 0.62 0.66 0.20

ntb 1.17 0.52 0.99 0.47 0.44 0.11

Table 4: Ablation studies for different surface geometry

representations on the InteriorNet test set. ntb indicates

our full surface geometry representation.

(a) Image (b) nc (c) fgz (d) weights

Figure 6: Visualizations of predictions on the SUN360

testset. The last row shows a failure case.

predictions of our model in Figure 6. While the errors are

naturally higher on this unseen dataset, UprightNet still out-

performs prior methods by large margins in all error metrics.

This suggests that, compared with implicit features learned

from direct regression or classification, using an intermedi-

ate geometric representation can help a model attain better

generalization to new distributions of indoor imagery.

We also demonstrate the use of UprightNet for an appli-

cation in virtual object insertion in Figure 7. We orient a 3D

object with the camera’s pitch and roll estimated by Upright-

Net. The 2D translation of the object along the ground plane

is manually chosen by the artist. Finally, a 2D render of the

object is composited on top of the image to produce a final

results, shown in the bottom row of Figure 7.

5. Limitations and future work

The last row of Figure 6 demonstrate a common fail-

ure mode of our approach, where the image lacks sufficient

Method angular error (◦) pitch error (◦) roll error (◦)

avg. med. avg. med. avg. med.

CNN Regression 10.43 6.99 9.57 6.10 3.10 2.17

DeepHorizon [48] 9.53 6.28 8.68 5.50 2.98 1.89

Hold-Geoffroy et al. [19] 10.41 6.92 9.57 6.09 3.11 2.20

Ours 7.81 5.53 7.59 4.94 2.30 1.53

Table 5: Generalization performance on the SUN360 test

set. All methods are trained/validated on ScanNet. Our

method achieves the best performance on all metrics.

Figure 7: Application. Virtual insertion of 3D objects in

images from SUN360 dataset using the camera orientation

estimated by UprightNet.

supporting structure for the network to reason about geom-

etry, resulting in inaccurate surface geometry and camera

orientation predictions. In future work, other explicit 2D ge-

ometric priors, such as vanishing points, or camera intrinsics

(if known) can also be integrated to our framework.

6. Conclusion

We introduced UprightNet, a new method for predicting

2DoF camera orientation from a single indoor image. Our

key insight is to leverage surface geometry information from

both the camera and upright coordinate systems, and pose

camera orientation prediction as an alignment problem be-

tween these two frames. In particular, we showed how a

network can be trained to predict camera-centric and global

surface frames, and combine them with weights to estimate

the camera orientation. Our evaluations demonstrated not

only more accurate orientation estimation, but also better

generalization to unseen datasets, compared with prior state-

of-the-art methods.
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