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Abstract

Incremental learning using Deep Neural Networks

(DNNs) suffers from catastrophic forgetting. Existing meth-

ods mitigate it by either storing old image examples or only

updating a few fully connected layers of DNNs, which, how-

ever, requires large memory footprints or hurts the plastic-

ity of models. In this paper, we propose a new incremen-

tal learning strategy based on conditional adversarial net-

works. Our new strategy allows us to use memory-efficient

statistical information to store old knowledge, and fine-tune

both convolutional layers and fully connected layers to con-

solidate new knowledge. Specifically, we propose a model

consisting of three parts, i.e., a base sub-net, a generator,

and a discriminator. The base sub-net works as a feature ex-

tractor which can be pre-trained on large scale datasets and

shared across multiple image recognition tasks. The gener-

ator conditioned on labeled embeddings aims to construct

pseudo-examples with the same distribution as the old data.

The discriminator combines real-examples from new data

and pseudo-examples generated from the old data distribu-

tion to learn representation for both old and new classes.

Through adversarial training of the discriminator and gen-

erator, we accomplish the multiple continuous incremental

learning. Comparison with the state-of-the-arts on public

CIFAR-100 and CUB-200 datasets shows that our method

achieves the best accuracies on both old and new classes

while requiring relatively less memory storage.

1. Introduction

In many classification tasks, we often encounter the

cases where novel categories emerge after model training

is done. In these cases, it’s highly desirable to have a

learning method at hand that can incrementally train the

model on new classes while still maintaining the perfor-

mance on old classes. One straightforward method is to

fine-tune the model on the new classes after training on

old classes. This method, however, suffers from a prob-

lem called catastrophic forgetting [24, 9], i.e., little knowl-

edge of old classes is retained after fine-tuning the original

model on new classes. Another naive method is to retrain

the model on both old and new data. This again becomes

infeasible when quick training is demanded or when the old

data is simply not available any more.

To mitigate the catastrophic forgetting problem of

DNNs, two strategies are often employed: (i) select and

store a subset of old image data to mix with new image

data; (ii) only update the fully connected layers during in-

cremental learning. For (i), the distance to the mean sample

of each class is usually used as the metric for sorting sam-

ples, such as in recent methods iCaRL [28] and the End-

to-End incremental model [3]. This kind of operation, un-

fortunately, seriously weakens the performance of trained

model on old classes, since variations within each class are

lost. For (ii), only updating fully connected layers, as did

in a recent work FearNet [17], can indeed prevent dras-

tic change in DNN models during incremental learning and

thus reduce the chance of catastrophic forgetting. However,

it lacks the representation learning of DNN’s convolutional

layers and limits the plasticity of the model, which results

in inferior performance on the new classes.

In view of these deficiencies, we aim at designing a sys-

tem that stores old data in a more efficient way and al-

lows more parameters to be fine-tuned in incremental class

learning. Specifically, instead of storing a subset of orig-

inal images, we store the statistical information (i.e. mean

and covariance) of feature embeddings for old classes, and

fine-tune partial convolution layers together with fully con-

nected layers during incremental class learning. To this

end, we propose a conditional adversarial network which

consists of three parts, i.e., a base sub-net, a generator,

and a discriminator. The base sub-net takes images as in-

put and outputs convolutional feature maps, which we call

real-examples. The generator takes as input normalized em-

beddings sampled from random Gaussian distributions with

saved data statistics and also outputs convolutional feature

maps, which we call pseudo-examples. The real-examples

and pseudo-examples are mixed together to train the dis-

criminator which performs both multi-category classifica-

tion and true/false discrimination. The discriminator can

in turn participate in adversarial learning for the genera-
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tor that is conditioned on discriminative embeddings. Dur-

ing incremental learning, old class information is retained

from pseudo-examples generated by the generator condi-

tioned on old class statistics. We alternately train generator

and discriminator to achieve multiple continuous incremen-

tal learning.

In summary, our main contributions are three-fold:

(i) we propose a new incremental learning strategy us-

ing conditional generative adversarial networks, which

allows efficient storage of old information and mean-

while appropriately keeps the plasticity of model;

(ii) we build a generator, which is conditioned on embed-

dings of old classes and produces perceptual convolu-

tional features as pseudo-examples to replay old class

information;

(iii) we construct a discriminator, which owns two heads

and can produce normalized embeddings that are dis-

criminative for multi-category classification and indis-

criminative for true/false example identification.

2. Related Work

2.1. Incremental Learning

Over the years, there have been many different incre-

mental learning models proposed in the literature, among

which traditional methods gradually evolve into recent deep

learning methods.

In traditional methods, incremental learning strategy is

determined by the specific classifier type. Among vari-

ous classifiers, SVM [2] is the most popular and has been

widely applied to large scale image classification [1]. Dif-

ferent incremental learning strategies based on SVM are

then explored. Ruping [30] utilized the mixture of old sup-

port vectors and new examples to reduce the consumption of

time and memory for incremental learning. Cauwenberghs

and Poggio [4] derived an immediate and effective solution

for updating support vectors by retaining the Karush-Kuhn-

Tucker (KKT) conditions on all previously seen data. To

circumvent the tedious training procedure of SVM classi-

fiers, the simple nearest neighbor method is also studied for

incremental learning. Ristin et al. [29] proposed to com-

bine the nearest neighbor classifier and random forest to

form the Nearest Class Mean Forest (NCMF), and used it

for incremental learning. These traditional methods have

high stability and do not sharply weaken after incorporating

new classes, since the feature representation is fixed. Nev-

ertheless, the fixed and not data-specific representation can

result in low plasticity and limit the performance on new

classes.

In recent years, deep learning models have drawn much

attention due to their state-of-the-art performance. Under

this tendency, deep-learning-based incremental learning has

become dominating. However, relevant studies all suffer

from catastrophic forgetting, which means typical deep neu-

ral networks tend to catastrophically forget previous knowl-

edge when new classes are added. Many of the methods on

this problem have been comprehensively reviewed in [18].

Among them, there is one kind that focuses on regulariza-

tion of model parameters, such as [7], [19], and [5]. [7]

creatively used the sparse representation to mitigate catas-

trophic forgetting of old information. [19] added additional

constraint to the loss function to decrease the plasticity of

parameters which contribute the most to previous tasks.

[5] generalized [19] with a KL-divergence-based regular-

ization over the conditional likelihood. Contrary to the pa-

rameter regularization, Mallya et al. [23] studied learning

the binary masks that “piggyback” on network with fixed

weights. Besides, there are more methods focusing on data-

specific losses. In [22], Li and Hoiem attempted to retain

old knowledge by constraining the original and new net-

works to have similar responses on old tasks for new data,

which fully eliminated the need of requiring and storing old

data. This method saves computational cost a lot, but only

works in restricted scenarios where new tasks share simi-

lar discriminative features with old tasks. To better reduce

the catastrophic forgetting, [28] and [3] added additional

distillation loss for subset of old training images, which

were selected according to the class mean examples. [37]

and [13] further developed [28] by tackling the problem of

data imbalance between the old and new classes. [17] pro-

posed a brain-inspired dual-memory system, in which the

fast learning memory for new classes could be consolidated

to long-term storage for old classes, hence realizing incre-

mental learning. This method adopts extra unsupervised re-

construction loss for feature vectors, and stores memory-

efficient statistics of vectors. However, it only fine-tunes

fully connected layers on new classes and the model archi-

tecture is not end-to-end. All in all, comparing with param-

eter regularization, adding data-specific loss has become

more popular and is shown to be more effective for miti-

gating catastrophic forgetting. Hence in our method, differ-

ent kinds of data-specific losses are considered and used for

incremental learning.

2.2. Generative Models

We resort to generative models to implement our effi-

cient storage strategy. One of closely related works is the

Generative Adversarial Networks (GANs) [10], where an

adversarial training of the generator and discriminator was

introduced. Radford et al. [27] further developed GANs

to Deep Convolutional GANs (DCGANs), and added a set

of constraints on the architecture of convolutional GANs to

make the training stable. These strategies have been widely

utilized in other adversarial networks [31, 6, 15], and we

also follow similar strategies in training our adversarial net-

works. On the other hand, Mirza and Osindero [25] ex-
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tended GANs to a conditional version, in which generator

was conditioned on extra information. The extra informa-

tion can be any kind, such as class labels or data from other

modalities.

Some of these generative models combined with various

strategies have been explored for the incremental learning

[21]. One common approach was applying unconditional

GANs or GANs only conditioned on class labels to gen-

erate the image examples and performing pseudo-rehearsal

to mitigate the catastrophic forgetting [32, 36]. Differing

from them, our method takes the GANs conditioned on la-

beled embedding vectors as the generator and replays the

convolutional feature maps, which is more reasonable and

efficient.

3. The Proposed Method

3.1. Overview

We propose a deep-learning-based incremental learning

strategy and integrate representation learning and incremen-

tal classifier learning in one framework. Specifically, we

follow two guiding principles in designing our new strat-

egy: i) using statistics of feature embeddings to store old

knowledge; ii) fine-tuning both convolution layers and fully

connected layers to accommodate new knowledge. In con-

trast to existing methods [3, 17, 22, 28, 11] which only

fine-tune the fully-connected layers and/or store the origi-

nal images from old classes, our method has several ben-

efits. Firstly, compared to images, feature embeddings are

more discriminative and memory efficient. Secondly, the

statistics of embeddings further keeps storage consumption

for each class fixed as the dataset scale expands. Thirdly,

the old class information can be largely preserved when

combining embedding statistics with a generator to gener-

ate faithful pseudo-examples. Finally, fine-tuning both con-

volutional layers and fully connected layers increases the

flexibility of our model in learning new classes.

Based on above consideration, we design a system that

combines information extracted from new image data and

old embeddings to train the discriminator consisting of both

convolutional and fully connected layers. Concretely, we

propose a conditional adversarial network A = {B,G,D}
for incremental learning. As shown in Figure 1, there are

three parts in it, which are a base sub-net B, a generator

G, and a discriminator D. The base sub-net B serves as

a feature extractor which can be pre-trained on large-scale

datasets. Its parameters can be shared by most classifica-

tion tasks, and are thus fixed during our incremental class

learning. The generator G is conditioned on embeddings

sampled from statistics of old classes and is used for gener-

ating information at the same feature-level as the output of

base network B. Our network design is inspired by recent

success of GANs. To realize the adversarial learning as in

GANs, we call the output of B and G as real-examples and

pseudo-examples, respectively. The discriminator D pos-

sesses two heads: one for multi-category classification and

one for true/false example recognition. Below we will in-

troduce the generator G, discriminator D, and incremental

learning strategy in detail.

3.2. Generator

In this section, we aim to design a sub-network, which

takes embeddings for old classes as input and generates fea-

tures that share the same distribution and size as the output

of base network B.

An optional scheme could reverse the representation ex-

traction part of D and make a symmetric decoder to recon-

struct the intermediate CNN features (i.e. the output of B).

To train this sub-network, the mean squared error (MSE) re-

construction loss can be employed, similar to auto-encoder

used in [17]. However, the intermediate features we intend

to obtain are spatial features, and can not be easily recon-

structed by simple MSE loss. Furthermore, totally reversing

the architecture of discriminator for representation extrac-

tion also comes with higher computational complexity.

We instead formulate the problem of generating fea-

tures of same distribution as the maximum likelihood es-

timation. From [10, 27], it has been widely accepted that

GANs provide an attractive alternative to maximum like-

lihood estimation. Hence we design a sub-network which

resembles generator of GANs, and train it in an adversarial

way. Within the architecture of generator, there are several

fractionally-strided convolution layers, batch normalization

layers and non-linear activation layers. The arrangement of

batch normalization layers and selection of activation lay-

ers are according to empirical guidelines used in [27]. The

rather few number of fractionally-strided convolution lay-

ers in GANs can help reduce computational complexity and

improve training speed for incremental class learning.

Although our generator originates from GANs, it be-

comes different when applied to incremental learning.

Firstly, we use labeled embeddings of old classes instead

of random noises as input, which means that our gener-

ator is conditioned on discriminative feature embeddings.

Secondly, we distinguish feature-level examples, instead of

image-level examples. This shares similar spirits with the

perceptual loss as commonly used in image transformation

tasks [15, 20]. In our problem, the feature-level examples

contain more perceptual information about the images and

are thus more informative for the image classification tasks.

3.3. Discriminator

In this section, we describe our discriminator for

both multi-category classification and adversarial learning.

Specifically, we aim to design a sub-network, which pos-

sesses two functions, i.e., distinguishing examples of mul-
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Figure 1. The architecture of our proposed model for incremental learning. It consists of three parts: a base sub-net B, a generator G,

and a discriminator D with two heads. The B takes images as input and the G is fed with normalized feature embeddings sampled from

statistics of old data. After adversarial training, G outputs convolutional feature representations with similar distribution to old data. During

incremental learning, images from new classes are fed to B, and G is conditioned on statistics of old classes. These convolutional feature

representations from both B and G are mixed together into a new mini-batch, which is then fed into D to train the classifier for both new

and old classes. We take the adversarial learning strategy for our network, and alternate the training of generator and discriminator for

continuous incremental learning. The cyan and red arrowed lines respectively indicate the training process for discriminator and generator.

tiple categories and assisting in adversarial learning for the

generator.

To obtain the discriminative representation for multi-

category classification, we inherit the feature extraction part

of D from existing common CNNs [12]. That is, at certain

intermediate convolution layer, we divide one typical CNN

for classification into two parts, which are utilized for B and

D respectively. To fulfil both two classification functions,

we further add two heads on top of the feature extraction

part. Note that in recent methods about semi-supervised

learning with GANs [26, 34], only one extra class for recog-

nizing pseudo-examples is added. It is because the pseudo-

examples they used are unlabeled, whereas our generator is

conditioned on labeled feature embeddings.

Besides, when the discriminator is participated in adver-

sarial learning for the generator, we additionally constrain

the feature embeddings output by D to be similar to input

vectors of G. To reduce the matching error, we propose to

add an ℓ2 normalization layer for embeddings. Note that the

output feature embedding v of D and the input vector u of

G are then both the normalized unit vectors.

3.4. Loss

Our overall loss for training is

L = Ladversary + Lclassification + Lreconstruction, (1)

which consists of three different data-specific losses, i.e.,

adversarial loss Ladversary , multi-category classification

loss Lclassification, and reconstruction loss Lreconstruction.

For Ladversary , we solve an adversarial min-max prob-

lem:

min
θG

max
θD l

E[logDθD l
(BθB (I))]+

E[log(1−DθD l
(GθG(u|mi,Σi)))],

(2)

in which I and u are respectively the input image for B and

input embedding for G, θB and θG are parameters of B and

G, θD l means the parameters of D with the head for binary

classification (i.e., recognizing true/false examples), mi and

Σi are the mean and covariance of embeddings for class i.

This is a typical optimization target for GANs, except that

we take the convolution feature maps output by B to replace

real image for input of D, and condition the generator G on

the statistics of embedding vectors of each class.

For Lclassification, we minimize the cross-entropy loss:

min
θD c

−(E[logDθD c
(BθB (I))]+

E[logDθD c
(GθG(u|mi,Σi))]),

(3)

in which θD c represents the parameters of D with the

head for multi-category classification. Lclassification con-

strains the representation indiscriminative for recognizing

true/false examples to be discriminative for multi-category

classification.

For Lreconstruction, instead of directly measuring the

reconstruction of convolution feature maps by pixel-wise

MSE loss, we propose to match the embeddings using co-

sine distance:

Lreconstruction = E[1− cos(u, DθD (GθG(u|mi,Σi)))],
(4)

in which u is the input embedding of G sampled from a

Gaussian distribution with mean mi and covariance Σi,
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DθD (GθG(u)) is the new output embedding for u, and

cos(x, y) computes the cosine of the angle between two

vectors. Furthermore, since the embedding vectors are nor-

malized unit vectors, the cosine distance in (4) can now be

equivalently re-written in the form of inner product:

L′

reconstruction = −E[uTDθD (GθG(u|mi,Σi))], (5)

3.5. Incremental Learning

Algorithm 1 Incremental Learning via Conditional Adver-

sarial Networks

Input: Sequence of image set {X0, X1, X2, . . . , Xt}
Output: Incrementally learned model A = {B,G,D}

// Initialization

1: Train D using X0;

2: Calculate statistics {m,Σ}0 of normalized embeddings

for initial classes;

3: Sample from statistics and get {u}0;

4: Alternately train G and D in an adversarial way using

{X0, {u}0} and the loss in Eq. (1);

5: Update {m,Σ}0, {u}0;

// Incremental learning

6: for s = 1, . . . , t do

7: Train D using {Xs, {u}0,1,...,s−1} and the loss in

Eq. (3);

8: Calculate {m,Σ}0,1,...,s and get {u}0,1,...,s;

9: Alternately train G and D in an adversarial way us-

ing {Xs, {u}0,1,...,s} and the loss in Eq. (1);

10: Update {m,Σ}0,1,...,s, {u}0,1,...,s;

11: end for

We study the scenario of incremental learning where

samples of new classes continuously appear. This is more

aligned with practical situation, unlike [22] and [16] where

only transfer learning between two tasks is considered.

Given an initial image set X0 from old classes, we first

need to train an original model. In the training process, the

base sub-net B which is pre-trained on the large-scale Im-

ageNet dataset [8] is fixed, and only the discriminator D

is fine-tuned. After training D, we collect the normalized

embedding set from D and calculate its statistics {m,Σ}0,

which contains the mean vector and covariance matrix for

each class. Then with the combination of X0 and nor-

malized embeddings {u}0 sampled from statistics, we train

G and D in an adversarial way using the loss function as

in Eq. (1). With the new G and D, we update statistics

{m,Σ}0 and corresponding sampled embeddings {u}0.

When image data of new classes X1 arrives, we mix with

the old embeddings {u}0 to retrain D. The loss function

in Eq. (3) is used. Taking new images and old embed-

dings, we can obtain the new statistics {m,Σ}0,1 and new

sampled embeddings {u}0,1. New sampled embeddings to-

gether with X1 are then mixed to alternately train G and D

again using the loss in Eq. (1), and the statistics and sampled

embeddings are further updated.

We repeat the above steps by recurrently training gener-

ator and discriminator every time new image data from new

classes (e.g., {X2, · · · , Xt}) appears. Then the multiple

continuous incremental learning is achieved. We summa-

rize the detailed procedure of continuous incremental learn-

ing in Algorithm 1.

4. Experimental Setup

4.1. Evaluation Metrics

To evaluate the performance of retaining old knowledge

and accommodating new knowledge for different incremen-

tal learning strategies, we adopt three metrics: αorig , αnew,

and αall. They respectively denote the mean test accura-

cies of original data, new data and all accessible data for

multi-time incremental learning. For the first-time learning,

i.e., t = 0, only original data is provided and incremental

learning has not truly begun, thus αorig,0, αnew,0 and αall,0

are not considered. Our metrics are similar to those in [18],

but we do not normalize αorig and αall by dividing offline

model accuracy on original data. The reason is that lower

accuracy of offline model can easily result in higher values

of normalized metrics, which may not reflect the true accu-

racies.

4.2. Datasets

We employ two commonly-used public datasets for in-

cremental learning: CIFAR-100 and CUB-200. For both

two datasets, we randomly arrange the class order. The first

half classes are taken to train original model, and the re-

maining classes are added incrementally with uniform num-

ber. We set the incremental step values utilized in out ex-

periment to be 2, 5, 10, and 25, sequentially.

CIFAR-100 dataset consists of 100 mutually-exclusive

classes, e.g., apple, baby, and house. Within each class,

there are 500 images for training and 100 images for testing.

All of the 60,000 images are small and have 32× 32 pixels.

On this dataset, images of 50 classes are initially used for

training original model.

CUB-200 dataset includes 200 fine-grained bird species.

For each category, the training image number is about 29-

30, and the testing image number is about 11-30. There are

5,994 images for training and 5,794 images for testing in

total.

4.3. Implementation Details

Our incremental learning strategy is applicable to

any existing deep networks, including VGG [33],

GoogLeNet [35], ResNet [12], and DenseNet [14]. In our

experiments, we particularly employ ResNet-50 as the ar-

chitecture of original model. This deep network has five
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blocks of convolution layers. We take the first four blocks

of convolution layers as the base network, and modify the

last block of convolution layers for feature extraction of dis-

criminator.

To keep the training of generator and discriminator sta-

ble, we find an important detail empirically: resetting clas-

sifier each time before fine-tuning discriminator. It is partic-

ularly effective for discriminator learning. If we continue to

use previous parameters for old classes in classifier and only

randomly initialize parameters for new classes, the learning

for new classes just does not converge, even after adapting

learning rate.

For the training of generator, we set the initial learning

rate to 0.0002 and momentum to 0.5. For the training of

discriminator, we set the initial learning rate to 0.05 and

momentum to 0.9. For the training of both generator and

discriminator, we set the weight decay to 0.0001, and epoch

number to 90. After each 40 epochs, the initial learning rate

is divided by 10. During all training, we use the method

of stochastic gradient descent (SGD) with mini-batches to

minimize predefined losses. The samples within a mini-

batch are randomly and uniformly picked from the set of

all image data of new classes and/or feature embeddings

sampled from old class statistics.

4.4. Baseline Models

We first set a benchmark for comparison, which is an of-

fline model trained with all required image data. We use

ResNet-50 as the architecture of offline model. We also de-

sign a reference model Ours-R which is similar to our pro-

posed model but only updates fully connected layers during

incremental learning. In the Ours-R model, three fully con-

nected layers are added after the last convolution layer of

ResNet-50, and represent the discriminator. The generator

and discriminator are alternately trained during continuous

incremental learning.

Among existing works on incremental learning, we use

several recent state-of-the-art methods based on deep CNNs

as our competing baselines. They are respectively the

Fixed Expansion Layer (FEL) network [7], Elastic Weight

Consolidation (EWC) [19], Learning without Forgetting

(LwF) [22], iCaRL [28], End-to-End incremental model [3],

and FearNet [17].

5. Experimental Results

5.1. Direct Way v.s. Statistic Way of Storing Feature
Embeddings

During our incremental learning, the input vectors of G

are crucial for effective reconstruction of high-level percep-

tual information. Hence apart from the statistic way (s-way)

we adopt, the other different approach is also explored for

comparison. A natural choice is directly extracting and stor-

Table 1. Comparison of different approaches to get input vectors

for G on CIFAR-100 dataset with the incremental step value as 10

classes.
t=1 t=2 t=3 t=4 t=5

d-way

αorig,t 0.747 0.689 0.640 0.586 0.556

αnew,t 0.853 0.842 0.815 0.822 0.815

αall,t 0.765 0.711 0.673 0.619 0.590

s-way

αorig,t 0.744 0.689 0.638 0.590 0.557

αnew,t 0.853 0.847 0.812 0.820 0.816

αall,t 0.762 0.713 0.670 0.618 0.591

ing the output of ℓ2 normalization layer introduced in Sec-

tion 3.3. We call this approach d-way.

By using CIFAR-100 dataset and incremental step value

of 10 classes, we compare the test accuracies for 5 times

continuous incremental learning, i.e., αorig,t, αnew,t, and

αall,t, where t ranges from 1 to 5. The results are shown in

Table 1. We can see that the d-way and s-way have similar

performance. However, the s-way can keep storage con-

sumption fixed for each class, even when the dataset scale

increases. Hence we will use the s-way for the following

experiments.

5.2. Comparison of Accuracies

We compare the three kinds of mean test accuracies in-

troduced in Section 4.1 between our method and other base-

lines on CIFAR-100 and CUB-200 datasets. The compari-

son results with different incremental step values are shown

in Tables 2 and 3.

Across different incremental step values, we can see that

the average accuracy for original data αorig gradually in-

creases. It is because the total times of incremental learning

decrease, and the chance of forgetting old knowledge be-

comes smaller. Meanwhile, the average accuracy for new

data αnew continuously decreases, since the classes to be

incrementally learned in one time are becoming more and

tasks get more difficult. For all classes seen so far, the av-

erage accuracy αall is influenced more by αorig , and keeps

ascending slowly, or sometimes declining slightly.

In both tables, since the benchmark is trained at one

time on all required images, its test accuracy is the highest

and serves as an upper bound for all incremental learning

methods. To properly compare the performance of different

methods for incremental learning, we mainly consider αall

within the three different metrics. The reason is that αall

reflects the overall performance of the classifiers in recog-

nizing all classes seen so far. By comparing αall among

various methods for incremental learning, we can clearly

see that our method achieves the best performance on both

datasets.

Below we analyze the performance of different methods

in terms of each metric αorig , αnew, and αall. For αorig ,

the last five methods including iCaRL, End-to-End, Fear-

Net, Ours-R, and Ours obviously perform better than the
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first three methods including FEL, EWC, and LwF. The rea-

son is that the last five methods all store and take advantage

of old data or corresponding specific perceptual knowledge

during incremental learning, while the first three methods

only use information extracted from previous models to re-

tain old knowledge. Hence the data-specific information

seems more effective for retaining knowledge than trained

model. For αnew, the first three methods turn to have com-

parable results as other ones. It further reflects how severe

the catastrophic forgetting problem is. Besides, the FearNet

which only fine-tunes fully connected layers during incre-

mental learning is not far behind for αnew as expected. It

may be due to the use of a specialized extra module for clas-

sification of new data. For αall, it can be seen that iCaRL

and End-to-End perform similarly due to their similar learn-

ing strategies. FearNet and Ours-R both contain a genera-

tive model which is comprised of fully connected layers and

behave more reliably than other methods at most times, but

are defeated by our method, since we add extra convolu-

tion layers to better accommodate the new knowledge. All

in all, there usually exists a discrepancy between retaining

old knowledge and accommodating new knowledge, which

requires us to find a trade-off to achieve the best compre-

hensive result.

We also illustrate the change of test accuracy for all

classes seen so far, i.e., αall,t, along with new classes con-

tinuously appearing. The two public datasets and different

methods shown in Tables 2 and 3 are used for comparison.

We can see from the Figure 2 that αall,t gradually descends

as new classes are continuously added for all incremental

learning methods (excluding Benchmark). Among different

methods, ours falls at the slowest pace, which implies the

best capacity for mitigating catastrophic forgetting. Across

different datasets, we can observe that methods on CUB-

200 generally decline slower than on CIFAR-100. This is

because the initial class number of CUB-200 is twice over

that of CIFAR-100, and the original model learned with ini-

tial data owns more robust information. This is especially

important for reliable learning of our generator, and leads to

the greater advantage of our method on CUB-200 dataset.

In view of this, our method shows great promise in apply-

ing to large scale dataset for which the initial class number

is normally bigger.

5.3. Comparison of Storage

Apart from test accuracies, we also compare the storage

for both data from old classes and parameters between dif-

ferent methods. This is particularly important for incremen-

tal learning, since if we do not consider the storage problem,

an offline model could be directly adopted and there would

be no need to explore other methods. Several recent meth-

ods including iCaRL, End-to-End, FearNet, and Ours-R are

compared with our method.
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Figure 2. Test accuracies of all classes seen so far.

Before analyzing the storage of each method, let’s denote

the image size 1 as l, the number of images stored for each

class as n, the number of classes as k, and the dimension

of feature embeddings as d. Among these parameters, l, n

and d are constant while k increases as incremental learn-

ing continues. For iCaRL and End-to-End which both store

subsets of images from old classes, their data storage con-

sumption is O(3 × l2 × n × k). They further store feature

embeddings for the additional distillation loss, which takes

O(n× k2) storage. So the total data storage for iCaRL and

End-to-End is O(3× l2×n× k+n× k2), and there are no

auxiliary parameters besides backbone CNN. For FearNet,

Ours-R and our method which store the statistics of feature

embeddings and conduct pseudo-rehearsal, the data storage

is O(d2 × k), the auxiliary parameter storage is depicted

by the adopted shallow network for generator which only

contains 2 or 3 convolution (or fully connected) layers.

From the analysis above, we can see that the latter meth-

ods including ours have advantages over the previous ones

(i.e., iCaRL and End-to-End) in terms of data storage when

the l and n are large, which is a typical requirement of

the previous methods to achieve stable incremental learn-

ing on large datasets. Moreover, with reasonable auxiliary

parameter storage, the methods that store feature embed-

dings can perform even better than methods that store sub-

sets of image data. As such, the strategy of storing feature

embeddings is recommended. To sum up, our method uses

bounded storage for old class statistics and auxiliary gener-

ator parameters, and achieves the state-of-art performance.

5.4. Ablation Study

We conduct an ablation study for the loss function of

proposed model. The public CIFAR-100 dataset with the

incremental step value as 10 classes is employed.

Ours without Adversarial Loss: We remove the adver-

sarial loss from our overall loss function. Specifically, the

second head in discriminator D for recognizing true/false

examples is deleted, and only classification loss and recon-

struction loss are utilized. During the training of genera-

1Without loss of generality, we assume images are square.
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Table 2. Comparison of test accuracies between our method and other baselines on CIFAR-100 dataset.

incremental step 2 5 10 25

αorig αnew αall αorig αnew αall αorig αnew αall αorig αnew αall

Benchmark 0.828

FEL 0.316 0.759 0.330 0.351 0.732 0.373 0.362 0.707 0.378 0.364 0.684 0.374

EWC 0.102 0.750 0.154 0.144 0.731 0.179 0.163 0.715 0.187 0.226 0.676 0.240

LwF 0.306 0.817 0.328 0.362 0.735 0.379 0.381 0.714 0.396 0.395 0.675 0.423

iCaRL 0.506 0.804 0.528 0.554 0.737 0.572 0.571 0.704 0.595 0.569 0.673 0.609

End-to-End 0.486 0.882 0.503 0.459 0.832 0.497 0.485 0.791 0.532 0.507 0.696 0.567

FearNet 0.547 0.871 0.569 0.613 0.835 0.625 0.648 0.824 0.662 0.648 0.689 0.663

Ours-R 0.543 0.824 0.556 0.587 0.782 0.595 0.614 0.751 0.625 0.622 0.669 0.634

Ours 0.562 0.882 0.580 0.619 0.843 0.631 0.644 0.830 0.671 0.651 0.717 0.670

Table 3. Comparison of test accuracies between our method and other baselines on CUB-200 dataset.

incremental step 2 5 10 25

αorig αnew αall αorig αnew αall αorig αnew αall αorig αnew αall

Benchmark 0.755

FEL 0.304 0.707 0.312 0.335 0.585 0.364 0.340 0.531 0.372 0.361 0.532 0.405

EWC 0.106 0.696 0.159 0.127 0.578 0.182 0.153 0.526 0.205 0.201 0.528 0.224

LwF 0.282 0.708 0.298 0.334 0.575 0.361 0.342 0.533 0.373 0.365 0.530 0.409

iCaRL 0.400 0.715 0.443 0.473 0.594 0.496 0.495 0.529 0.505 0.503 0.532 0.514

End-to-End 0.389 0.760 0.445 0.466 0.652 0.499 0.491 0.560 0.509 0.502 0.546 0.517

FearNet 0.440 0.751 0.478 0.504 0.662 0.527 0.553 0.598 0.533 0.556 0.571 0.560

Ours-R 0.416 0.723 0.442 0.482 0.628 0.501 0.518 0.594 0.520 0.528 0.550 0.534

Ours 0.468 0.769 0.497 0.527 0.683 0.549 0.562 0.624 0.576 0.565 0.590 0.576

tor G, instead of using original adversarial manner, we just

keep D fixed.

Ours without Reconstruction Loss: We remove the re-

construction loss from our overall loss function. Specifi-

cally, we omit the ℓ2 normalization layer in D, since re-

ducing the matching error between feature embeddings is

no longer concerned. Similarly, the sampled embeddings

for input of G are also unnormalized. Therefore, only the

classification loss and adversarial loss are employed.

Ours with Individual Classification Loss: We remove

both the adversarial loss and reconstruction loss from our

overall loss function, which means only an individual clas-

sification loss is employed. Specifically, the second head in

D for recognizing true/false examples and ℓ2 normalization

layer are deleted, and hence, the sampled embeddings for

input of G are unnormalized. During incremental learning,

we alternately fine-tune G and D by fixing one of them.

The comparison results are shown in Table 4. We can

observe that both the extra adversarial loss and reconstruc-

tion loss have contributed to the improvement of accuracies.

If only an individual classification loss is used, the αorig

and αall both drop dramatically. Besides, the adversarial

loss plays a more important role than reconstruction loss for

αorig , and is thus more capable of retaining old knowledge.

6. Conclusion

In this paper, we have proposed a new strategy for incre-

mental learning based on conditional adversarial networks.

It employs statistics of normalized feature embeddings to

Table 4. Ablation study for loss function on CIFAR-100 dataset

with the incremental step value as 10 classes. ‘noAdvLoss’ rep-

resents the method without adversarial loss, ‘noRecLoss’ means

the method without reconstruction loss, and ‘IndClasLoss’ refers

to the method with only an individual classification loss.

Ours noAdvLoss noRecLoss IndClasLoss

αorig 0.644 0.623 0.635 0.597

αnew 0.830 0.838 0.829 0.842

αall 0.671 0.654 0.663 0.628

store old knowledge, and fine-tunes both convolution layers

and fully connected layers to learn new knowledge. This

strategy is implemented through training a conditional ad-

versarial network which is comprised of three parts: a base

network, a generator, and a discriminator with two heads.

The statistics of feature embeddings from the discriminator

for the old classes are stored, and taken for obtaining input

vectors of generator during incremental learning. Generator

can produce pseudo-examples, which are then mixed with

the real-examples output by base network and fed into the

trainable discriminator. We alternately train generator and

discriminator for continuous incremental learning. Com-

parison results on both classification accuracies and storage

resources have proved the state-of-the-art performance of

our method.
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[30] Stefan Rüping. Incremental learning with support vector

machines. In International Conference on Data Mining

(ICDM), 2001. 2

[31] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training GANs. In Conference on Neural Information

Processing Systems (NIPS), 2016. 2

[32] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In Con-

ference on Neural Information Processing Systems (NIPS),

2017. 3

[33] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 5

[34] Jost Tobias Springenberg. Unsupervised and semi-

supervised learning with categorical generative adversarial

networks. In International Conference on Learning Repre-

sentations (ICLR), 2016. 4

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2015. 5

[36] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost

van de Weijer, and Bogdan Raducanu. Memory replay

GANs: Learning to generate images from new categories

without forgetting. In Conference on Neural Information

Processing Systems (NIPS), 2018. 3

[37] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 2

6628


