
Reasoning About Human-Object Interactions Through Dual Attention Networks

Tete Xiao1,2∗ Quanfu Fan2 Dan Gutfreund2 Mathew Monfort3 Aude Oliva3 Bolei Zhou4

1University of California, Berkeley 2MIT-IBM Watson AI Lab, IBM Research
3Massachusetts Institute of Technology 4The Chinese University of Hong Kong

Abstract

Objects are entities we act upon, where the functionality

of an object is determined by how we interact with it. In this

work we propose a Dual Attention Network model which rea-

sons about human-object interactions. The dual-attentional

framework weights the important features for objects and

actions respectively. As a result, the recognition of objects

and actions mutually benefit each other. The proposed model

shows competitive classification performance on the human-

object interaction dataset Something-Something. Besides,

it can perform weak spatiotemporal localization and affor-

dance segmentation, despite being trained only with video-

level labels. The model not only finds when an action is

happening and which object is being manipulated, but also

identifies which part of the object is being interacted with.

1. Introduction

Affordance, introduced by James Gibson [9], refers to

the properties of an object, often its shape and material, that

dictate how the object should be manipulated or interacted

with. The possible set of actions that an object can afford is

constrained. For instance, we can drink from a plastic bottle,

pour water into it, squeeze it, or spin it, but we cannot tear it

easily into two pieces (see Figure 1). Similarly, for a given

action, the possible objects which it can apply to are also

limited. For example, we can fold a paper but not a bottle.

A handful of works have exploited object information for

the recognition of Human-Object Interactions (HOIs) and

more general action recognition [3, 10, 31, 19, 44]. However,

understanding HOIs goes beyond the perception of objects

and actions: it involves reasoning about the relationships

between how the action is portrayed and the consequence on

the object (i.e., whether the shape or location of the object is

changed by the action upon it). Most of the previous works

pre-define human-object or action-object pairs for HOI [3,

10, 31]. The classification is done by either a graphical

model [12], a classifier based on the appearance features [10],

∗The work was done when Tete Xiao was an intern at IBM Research,

Cambridge.

Pour sth. into sth. Spin sth.

Bowl Bottle

Tear sth. into two pieces Fold sth.

Cloth Paper

Figure 1: Object and action co-dependence. The action

tearing something into two pieces can be performed on a

piece of paper but not a bottle. Given the object bottle, we

can pour water into it or spin it, but cannot fold it or tear it.

or a graph parsing model [31]. A potential issue with the

previous approaches is that the complexity of an HOI model

grows quickly as the number of objects and actions increase.

The reasoning capability of these approaches is also limited

due to the action-object pairs being preset for modeling. In

addition, full annotations including action labels and object

bounding-boxes are often required by these approaches for

the effective modeling of HOIs.

Here we propose a Dual Attention Network model that

leverages object priors as the guidance to where actions are

likely to be performed in a video stream and vice versa. The

focus of attention is represented by a heatmap indicating

the likelihood of where an action is taking place or where

an object is being manipulated in each frame. These atten-

tion maps can enhance video representation and improve

both action and object recognition, yielding very competi-

tive performance on Something-something [11] dataset. We

show that the attention maps are intuitive and interpretable,

enabling better video understanding and model diagnosis.

Such attention maps also facilitate weakly-supervised spa-

tiotemporal localization of objects and actions.

1.1. Related work

Action recognition. Deep convolutional neural net-

works have been used with success for action recognition

[23, 38, 45, 13, 16]. For instance, we can exploit the suc-
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Figure 2: Framework overview. Our approach exploits the role of human action and object in human-object interactions via

the dual attention module. The Dual Attention Network first predicts plausible action and object labels independently as the

priors (1st prediction). Then the priors are used to generate attention maps that weight the features of object and action for the

2nd prediction. Action Recog.: action recognition head. Object Recog.: object recognition head.

cess of CNNs for static images and RNNs for temporal

relations by feeding CNN-based features from single frame

into an RNN model [49, 5, 20]. An alternative approach

is to extend 2D CNNs by applying 3D convolutional filters

(C3D) on raw videos to directly capture the spatiotemporal

information [39]. The 3D filters can be “inflated” from 2D

filters (I3D) [2] and can be initialized with an ImageNet [4]

pre-trained model. Recent works involve Non-local Net-

works [43], which uses space-time non-local operations to

capture long-range dependencies; and Temporal Relation

Network [50], which sparsely samples frames from different

time segments and learns their causal relations. In addition

to the end-to-end frameworks on raw video inputs, optical

flow [15] has also proven to be useful [35, 2, 50] when com-

bined with features extracted from raw RGB images.

Human-object interactions and visual affordance.

Several works have exploited human-object interactions and

affordance for action recognition. Gupta et al. [12] integrate

perceptual tasks to exploit the spatial and functional con-

strains for understanding human-object interactions. Kop-

pula et al. [22] frame the problem as a graph, where the

nodes represent objects and sub-activities while the edges

represent the affordance and relations between human ac-

tions and objects. The graph model can be optimized using

structural Support Vector Machine (SVM) [22] or Condi-

tional Random Field (CRF) [24]. Jain et al. [18] merge spa-

tiotemporal graph with an RNN to model different kinds of

spatial-temporal problems such as motion, action prediction

and anticipation. Gkioxari et al. [10] propose InteractNet

to detect 〈 human, verb, object 〉 triplets by exploiting the

appearance features from detected persons. Dutta and Zielin-

ska [7] employ a probabilistic method to predict the next

action in human-object interactions [41]. Fang et al. [8]

propose a model to learn the interactive region and action

label of an object via watching demonstration videos.

Attention models. Attention mechanism has been
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Figure 3: Illustration of the attention module for the kth

frame. It encodes action (object) priors and attends image

regions accordingly, yielding the representation for object

(action) recognition.

adopted for action recognition. Sharma et al. [33] use a

soft attention module to re-weight CNN features spatially.

Ramanathan et al. [32] propose to attend people involved

in specific events for event detection in multi-person videos.

Song et al. [36] exploit skeleton data for attention module to

extract more discriminative features in human-centered ac-

tions. Du et al. [6] propose to incorporate a spatial-temporal

attention module into a classical CNN-RNN video recogni-

tion model.

Co-attention models [34, 46, 47, 48, 27, 26] are widely

adopted in tasks relating to language and vision such as im-

age captioning [40], visual question answering (VQA) [1]

and visual question generation (VQG) [29]. Lu et al. [27]

propose a hierarchical co-attention model for VQA, in which

image representation is used to guide the question atten-

tion and vice versa, exploiting the relation between the two

modalities, image and text.
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Comparison to our approach. In contrast to the self-

attention and human-attention models for action recognition,

and the co-attention models for multi-modal (text and vision)

tasks, our framework applies dual attention in the context

of multi-task learning on a single input modality, namely

the raw video. Our novel iterative model exploits the ac-

tion/object relations to simultaneously learn cross-task ob-

ject/action attention maps, which significantly differs from

previous works that use self-guided attention [33, 6]. Our

model is able to not only outperform the previous state-of-

the-art on a human-object interaction dataset [11] but also

yield interpretable attention maps (see Section 4).

2. Dual Attention Network for Human-Object

Interactions

The dual attention network is designed in such a way that

the streams of human activity and objects interact with each

other by cross-weighting the intermediate features of action

and object for recognition. Our attention module is general

and can be plugged into any CNN-based action recognition

models for feature enhancement. We first describe CNN-

based feature representations for video understanding in

Sections 2.1 and 2.2. We then introduce the dual attention

model in Section 2.3, the building block for reasoning about

actions and objects. Finally we detail the full framework in

Section 2.4.

2.1. Representing videos with neural networks

There are two de facto paradigms to extract video repre-

sentations: 1) Image-based models which use spatial convo-

lutional kernels to process frames independently, and later

perform temporal feature aggregation by another model such

as a Long Short-Term Memory network (LSTM) [14] or

a Temporal Relation Network (TRN) [50]; 2) Video-based

models which apply convolutional kernels across frames

to process a video with spatial and temporal dimensions

directly.1

Image-based models. Given a video V with T frames,

CNN features from each frame are extracted independently,

resulting in a set of T raw features {f1,f2, · · · ,fT }, where

fk ∈ R
d×N , d is the feature dimension and N = HW is the

vectorized spatial dimension of the feature map. The CNN

features are then averaged by global pooling over the spatial

dimension, i.e.,

f̄k =
1

N

N
∑

i=1

fk [., i] (1)

After that, various modules that process and fuse infor-

mation across temporal domain can be applied on top of

1We group the models based on the domain that they use for extracting

features of each frame, i.e., whether cross-time dynamics are exploited,

rather than types of convolutional kernels.

extracted features. For example, all frames can be modeled

by an LSTM, resulting in the final representation of a video

v̂ as:

v̂ = LSTM
(

f̄1, f̄2, · · · , f̄T

)

(2)

Alternatively, TRN [50] is a simple yet effective network

module recently proposed to explicitly learn and model tem-

poral dependencies across sparsely sampled frames at differ-

ent temporal scales. TRN can be applied on top of any 2D

CNN architecture. More specifically, an n-order relation, for

a given number n, is modeled as:

Rn(V ) = hφ

(

∑

k1<k2<···<kn

gθ(f̄k1
, f̄k2

, · · · , f̄kn
)

)

(3)

Here hφ and gθ are both multi-layer perceptrons (MLPs)

fusing features of different frames. For the sake of efficiency,

rather than summing over all possible choices of n ordered

frames, a small number of tuples uniformly sampled are

chosen. The model can be extended to capture relations at

multiple temporal scales by considering different values of

n. The final representation of a video is an aggregation of a

2-order TRN up to an n-order TRN:

v̂ = R2(V ) +R3(V ) + · · ·+Rn(V ) (4)

where n is a hyperparameter of the model.

Video-based models. A video-based model operates

on multiple frames within a video. As a result, given a

video with T frames, features of each frame are not in-

dependent anymore, so that cross-time dynamics may be

learned in this way. Besides, temporal down-sampling is

often adopted to form a sufficiently large receptive field over

temporal domain, so that the number of remaining frames

T ′ is less or equal than T . Denote a set of T ′ features as

{f1,f2, · · · ,fT ′}, where fk can be a super frame if T ′ < T ,

and like in image-based models each frame is then averaged

by spatial global pooling. Since dynamics are expected to

be learned implicitly within convolutional neural networks,

the final representation of a video is usually acquired by

averaging across all (super) frames:

v̂ =
1

T ′

T ′

∑

k=1

f̄k (5)

2.2. Object recognition in videos

Given a video of an HOI, we want to recognize the action

and the object associated with the interaction. For exam-

ple, for a “playing” action, we want our model to recognize

that it is “playing a violin” rather than “playing a piano”.

For training we assume that labels are provided at the video

level without bounding-boxes. A straight-forward method

for joint action-object recognition is to add a separate classi-

fication head for object recognition alongside the head for
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spilling water onto plate tipping wallet over Ground truth: throwing remote in the air and letting it fall

Prediction: shoe falling like a rock

Figure 4: Examples of attention maps yielded by the Dual Attention Network with their predicted labels above. For each

clip four frames are shown out of eight frames for TRN with a stride of two. The first row is the input frames while the second

and third ones are attention maps for recognizing action and object respectively. The model accurately learns the alignment

between actions and objects, even when the background is complicated (e.g., 1st clip), or the predicted labels are wrong (e.g.,

3rd clip). These examples are drawn from validation subsets.

action recognition. Note that the task differs from the stan-

dard object recognition in static images, because the model

should look for the objects being manipulated by the actor

instead of those in the background. As a result, the object

head should also utilize feature representations containing

temporal information, i.e., for image-based models such as

TRN, another multi-scale TRN module is used for object

recognition, whereas for video-based models we simply use

another MLP.

2.3. Dual attention module

We propose a dual attention model for action and object

recognition, as illustrated in Figure 3. The model is not de-

pendent on a specific CNN architecture thus it is general and

extensible. The dual attention uses action priors to attend

image features for objects, and object priors for actions. Sup-

pose that we have the probabilities pa and po over actions

and objects respectively of their likelihood to appear in the

video. First, we apply two MLPs to encode these proba-

bility vectors into two intermediate feature representations

ha,ho ∈ R
d. The dual attention module takes input of the

visual features at each frame and generates the object and

action attention distributions over N regions of each frame:

za
k = wT

a tanh
(

Wafk +Wotah
o
✶
T
)

(6)

zo
k = wT

o tanh
(

Wofk +Watoh
a
✶
T
)

(7)

αk = softmax(za
k) (8)

βk = softmax(zo
k) (9)

where ✶ ∈ R
N is a vector whose elements are all equal to 1.

Wa,Wo ∈ R
N×d and wa,wo ∈ R

N are the weights to be

learned. Wota,Wato ∈ R
N×d are parameters for object-to-

action attention and action-to-object attention, respectively.

αk,βk ∈ R
N are the attention weights over spatial features

in fk. The representation of each frame is obtained by a

weighted-average over its spatial domain:

f̃a
k =

N
∑

i=1

αk,ifk [, i] (10)

f̃o
k =

N
∑

i=1

βk,ifk [, i] (11)

Finally, for x in {a, o}, we obtain representations of a video

for action and object respectively by substituting f̄x
k with

f̃x
k in Equation 3 or 5.

2.4. Full architecture

The full architecture is illustrated in Figure 2. Given a

video, the network first predicts the plausible action and ob-

ject labels using two separate heads. The prediction results

serve as the priors of actions and objects, which are subse-

quently used to produce the attention maps for objects and

actions, via the dual attention module. A second prediction is

performed with the attention-based enhanced features. This

two-step scheme expresses the interaction between human

and objects. The two prediction modules along with the

attention module are integrated into one network for end-to-

end learning. Some actions may involve multiple entities,

for instance, “put something on something”. We therefore

use two softmax classifiers to predict the objects. If the order

of the objects is exchangeable, e.g., in the category “move

something and something closer”, the classifiers will learn to

predict the objects in the order as they appear in the ground

truth to avoid ambiguity. We use a null label as a placeholder

for those action classes with only a single object.

3. Experiments

We conduct comprehensive experiments below to validate

the efficacy of our proposed Dual Attention Network.

3.1. Implementation details

We choose Temporal Segment Networks (TSN) [42] and

TRN [50] as the backbones among image-based models,

and Temporal Shift Module (TSM) [25] among video-based

models, given their demonstrated superior performance. We

did not choose I3D [2] because the temporal down-sampling
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method top-1(A) top-5(A) top-1(O)

baseline 44.6 73.9 58.2

multi-tasking 45.7 75.0 59.9

dual attention 46.6 75.6 60.1

(a) Joint learning of two tasks. Dual attention

is better than multi-task learning at exploiting

action and object information.

method top-1(A) top-5(A) top-1(O)

baseline 44.6 73.9 -

- - 58.2

GT-object att. 50.2 79.7 -

GT-action att. - - 67.0

(b) Attention guided by ground-truth labels. The

significant improvements indicate that actions and

objects are indeed closely intertwined.

method top-1(A) top-5(A) top-1(O)

baseline 44.6 73.9 58.2

self attention 45.3 74.4 58.3

dual attention 46.6 75.6 60.1

(c) Self attention vs. dual attention. Action and

object priors offer a better attention mechanism

for recognition.

Table 1: Ablation study. A: action recognition; O: object recognition. The baseline is a TRN-4 network.

model backbone domain modality frames top-1 val top-5 val top-1 test top-5 test

TSN† [42] BN-Inception 2D RGB 8 41.1 69.3 - -

TSN Dual Attention [ours] BN-Inception 2D RGB 8 42.1 71.2 - -

I3D† [2] ResNet-50 3D RGB 16 43.8 73.2 - -

2D-CNN w/ LSTM [28] VGG-like 2D RGB 48 40.2 - 38.8 -

3D-CNN w/ LSTM [28] VGG-like 3D RGB 48 51.9 - 51.1 -

2D-3D-CNN w/ LSTM [28] VGG-like 2D + 3D RGB 48+48 51.6 - 50.4 -

TSM‡ [25] ResNet-50 3D RGB 8 56.7 83.7 - -

TSM† ResNet-50 3D RGB 8 54.0 81.3 - -

TSM Dual Attention [ours] ResNet-50 3D RGB 8 55.0 82.0 - -

TRN [50]
BN-Inception 2D RGB 8 48.8 77.6 50.8 79.3

BN-Inception 2D RGB + Flow 8+8 55.5 83.0 56.2 83.1

TRN Dual Attention [ours]
BN-Inception 2D RGB 8 51.6 80.3 54.0 81.9

BN-Inception 2D RGB + Flow 8+8 58.4 85.2 60.1 86.1

Table 2: Comparisons to state-of-the-art methods on Something-V2, with results on both the validation and test subsets. †: Our

re-implemented model. ‡: From original paper, pre-trained on Kinetics [21] asides from ImageNet [4].

rate is overly large (e.g., 16 frames input and 2 super frames

output) so that it is naturally inproper to use spatial attention.

Base networks. Following [50] and [25], we adopt In-

ception with Batch Normalization [17] (BN-Inception) as

our base models of TSN and TRN, while ResNet-50 [13]

pre-trained on ImageNet [4] as it of TSM for fair com-

parisons. The input size is set to 224×224. The spatial

size of output features is 7×7 with 1024 and 2048 channels

for BN-Inception and ResNet-50, respectively. We append

dropout [37] after the extracted features, with a ratio of 0.5.

Dual attention module. The dual attention module gen-

erates distributions over the spatial grids of feature maps for

each frame. To embed the probabilities of action or object

labels, we use a two-layer MLP with ReLU activations [30].

Both layers of the MLP have 512 channels. We project im-

age features into 512 channels by a single-layer perceptron

before feeding them into the attention module.

Recognition heads. We use the same sampling strategy

as in [50] for multi-scale TRNs. gφ is a two-layer MLP with

256 units per layer, while hφ is a two-layer MLP whose

output channels match the number of classes. We do not use

dropout within classification heads. For both TSN and TSM

the recognition head is a two-layer MLP. The classification

heads do not share weights between the first (pre-attention)

prediction and the second (post-attention) prediction. This

design does not introduce computational overhead as the

CNN feature extraction, which dominates the computation,

is shared.

3.2. Setup

Dataset. We use Something-something dataset V2 [11],

a video action dataset for human-object interactions, with

220, 847 videos from 174 classes. Those classes are fine-

grained so a model needs to distinguish actions such as “lift-

ing up one end of something then letting it drop down” from

actions such as “lifting something up completely then letting

it drop down”. This requires the model to look into details of

different actions. Note that object labels (nouns), provided

in V2 by the workers, may result in some inconsistencies: a

mobile phone can be depicted as “phone”, “mobile phone”,

“a phone”, “a black phone” or even “iPhone”. We therefore

merge nouns describing the same or similar objects, for a

total of 307 object clusters (see supplementary material for

details). We conduct our study on this dataset because it

is among the very few ones containing videos of diverse

human-object interactions instead of a few pre-defined re-

lations between actions and objects. Also it is one of a few

large-scale video dataset which provides object labels.

Training details. We use a multi-scale 4-frame TRN

(TRN-4) in all our ablation study for efficiency. Results of

an 8-frame TSN (TSN-8), an 8-frame TRN (TRN-8) and an

8-frame TSM (TSM-8) are included in the final experiment.

The networks are trained end-to-end. We augment the data

during training by scale and aspect-ratio jittering. The batch
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size is set to 32 for TRN-4, 16 for TSN-8 and TRN-8, and

8 for TSM-8 due to GPU memory limitation. We train all

models on a server with 8 GPUs for 70 epochs. It starts with

a learning rate of 0.01, and is reduced by a factor of 10 at

epoch 50 and 65. We use a momentum of 0.9. The weight

decay of models with BN-Inception is set as 0.0001, whereas

0.0005 for models with ResNet. We train our models with

unfrozen Batch Normalization, which effectively stabilizes

the training procedure.

3.3. Main results

Results on the validation subset are in Table 1a. Our dual

attention model attached on a TRN-4 network yields accura-

cies of 46.6/75.6 (top1/top-5) on action recognition and of

60.1 (top-1) on object recognition, a 2.0/1.7 and 1.9-point

boost over the baseline. Compared to a separately trained

model of joint learning of actions and objects (multi-tasking),

our approach achieves superior performance, indicating that

dual attention is a better approach to utilize the action and

object information interchangeably.

Figure 4 visualizes attention maps learned by our model.

For each clip, the first row contains four out of the eight

frames chosen by the TRN module. The second and third

rows are attention maps for actions and objects. We see that

our model learns meaningful alignment between actions and

objects. For action recognition, the attention map generally

covers a larger space capturing the global information of the

entire action series; for object recognition, the attention map

is sharp and neat, mostly on the object being manipulated by

the actor. Surprisingly, the model can attend to the relevant

region and predict correct classes even when the background

is complex, e.g., the first example, in which the model finds

the dishes in the sink as well as the water being spilled but

ignores the background. In cases where the model produces

inaccurate predictions, e.g., the third example, our model

still looks at reasonable regions across frames, although it

seems unable to recognize the fine-grained categories.

Cohesion of actions and objects. In order to understand

the potential maximum performance gain that we can expect

from our approach, we experiment with using ground-truth

annotations as action and object priors instead of predicting

them. As shown in Table 1b, ground-truth guided atten-

tions show a remarkable improvement for both action recog-

nition (5.6%/5.8%) and object recognition (8.8%). This

demonstrates that action and object recognition are closely

intertwined, and that improving the first prediction in our

approach can lead to an even bigger boost to performance.

Figure 5 shows the class-wise improvements over base-

line with dual attention. We can see that the performance of

action categories which are closely associated with certain

types of objects is boosted. For example, a liquid prior is

helpful for recognizing “spill something”. Similarly, some-

thing untwistable is helpful for predicting “pretend or try
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Figure 5: Class-wise improvements of the Dual Attention

Network with respect to the baseline model. Action classes

closely associated with certain objects are improved.

and fail to twist something”. Meanwhile, the performance of

actions related to the physical localization of objects, such

as “turn the camera upwards while film something” and

“move something away” also gets better. The improvement

on these action categories strongly indicates that our dual

attention mechanism facilitate the model to trace the object

manipulated by the actor.

Self attention vs. Dual attention. We train a model by

generating attention maps from image features only w/o the

guidance of priors, termed self-attention model. Table 1c

compares our approach with the self-attention one. The

inferior performance of self attention suggests that actions

and objects priors indeed provide useful information for

objects and actions recognition respectively.

3.4. Comparisons with state­of­the­art methods

Table 2 summarizes results on Something-Something V2.

We do not use the earlier version as object annotations are

missing in V1 and label noise is greatly reduced in the

latest release. We compare our approach with TSN [42],

I3D [2], 2D and 3D CNNs with LSTM from Something-

Something [28], and previous state-of-the-art TRN and TSM.

These approaches differ from each other in many aspects

such as backbones, temporal feature fusion techniques, train-

ing schemes, number of input frames, model domains and

modalities. Still, models with the dual attention module sur-

pass all their counterparts. Specifically, TSN dual attention

is better than original TSN by 1.0/1.9% points; TSM dual

attention is better than original TSM by 1.0/0.7% points;

TRN dual attention achieves top-1 accuracy of 51.6% and

top-5 accuracy of 80.3% on the validation subset, which is

better than any previous 2D model. We conjecture that per-

formance boost of TRN being larger than it of TSN and TSM

is because TRN has more complex recognition heads so that

it might be able to better exploit attended features. When

TRN dual attention is turned into a two-stream models by

adding an optical flow branch in TRN, our approach further

boosts the performance to 58.4/85.2%.
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Figure 6: Visualization of spatial and temporal localization. We visualize one frame out of each segment (four frames).

Our method find the object being manipulated, as well as the segments in which the action actually happens.

4. Weakly-supervised Localization

We can reason about human-object interactions by in-

specting attention maps yielded by the model. Here, we

apply the model to two weakly-supervised localization tasks:

spatiotemporal localization and object affordance segmenta-

tion.

4.1. Spatiotemporal localization

The attention maps, learned from video-level action and

object labels only, can accurately localize objects in the

spatial domain, and actions in the temporal domain. The lo-

calization task requires the object attention map of all frames

available. This is achieved by running the dual attention net-

work alone with predictions of the object and action from our

model, and the CNN features extracted from every frame, as

input. A single forward pass with a batch of n frames can

generate n attention maps.

The “where”: spatial object localization. We generate

object bounding boxes by thresholding the object attention

map. We set the threshold to 60% of the maximum weight

in the map. We then apply the flood-fill algorithm to find

the connected regions. Bounding-boxes are generated by

calculating the minimum and maximum coordinates of each

region. We always take the largest bounding-box as a predic-

tion, while the second largest one (if available) is optionally

taken based on its size and the number of predicted objects.

The “when”: temporal action localization. We ob-

serve that a large amount of human-object interactions take

place once the object starts to move. Thus, we can associate

the start and end of an action via the alteration of the atten-

tion maps. We divide a video into segments covering 1/3
second each, i.e., four frames in one segment for videos from

the Something-Something dataset. We average the attention

maps within each segment to reduce the margin of error. We

measure the difference between two object attention maps

Action Category A.D.

Piling something up 49.1

Stacking number of something 48.4

Pouring sth. into sth. until it overflows 47.9

Pouring something into something 43.7

Digging something out of something 43.5

Pretending to put something on a surface 35.4

Spinning something so it continues spinning 34.8

Putting something on a surface 29.8

Spinning something that quickly stops spinning 28.5

Tipping something over 27.7

Uncovering something 26.8

Something falling like a rock 25.7

Throwing something onto a surface 22.7

Table 3: The average duration (A.D.) of trimmed videos in

each action category. The A.D. is measured by frames and

the fps rate is 12. The results are in accordance with our

human knowledge.

Model IoU=0.3 IoU=0.4 IoU=0.5

Dual Attention 72.5 56.0 33.7

Self Attention 62.2 40.4 26.4

Table 4: Object localization results (in Average Precision)

of dual attention and self attention on the validation subset.

P and Q (as they are two discrete probability distributions)

via the Kullback–Leibler divergence, i.e.:

DKL(P ||Q) = −
∑

i

P (i) log
Q(i)

P (i)
(12)

where the sum is over the discrete points in the domain of the

distribution. We filter out the leading (trailing) segments if

the difference to its preceding (succeeding) segment is below

3925



a threshold. The remaining segments are considered as the

interval in which an action happens. We set the threshold to

0.06. We consider an action spanning over the entire video if

the filtered video is shorter than one second to avoid actions

such as “holding something” or “showing something”.

Results. We perform temporal and spatial localization

on videos from the validation subset (see Figure 6). We can

see that the object being interacted is highlighted and a rea-

sonable bounding-box associated is generated accordingly.

Due to the stable and accurate attention map, we are able to

eliminate leading and trailing frames irrelevant to the action

and find the segments wherein the box is being lifted and the

key is falling. We note that compared to using optical flow

our approach has more advantages that it can be performed

with sparsely sampled segments if the video is very long,

and is more robust to camera shake.

We conduct quantitative evaluation of weakly-supervised

spatial localization by dual attention model and self attention

model on the validation subset, as shown in Table 4. We

randomly sample 100 videos from validation subset and

annotate 2 random frames in each video. We report the

average precision (AP) under various intersection-of-union

(IoU) criteria. As can be seen from Table 4, our dual attention

model yields much better localization accuracy than the

self-attention model, indicating that action priors help the

model better localize the object being manipulated. We

further analyze the statistics of the trimmed videos. Out

of total 24,777 videos, 16,592 (∼67%) are trimmed by our

temporal localization technique. The average trimmed length

is 13 frames (∼1 second), which, compared to the average

length of 3.1 seconds, accounts for 1/3 of overall frames.

After performing temporal localization, we also analyze

the average length of videos in each action category and

summarize the results in Table 3. The longest actions involve

“piling something up” and “stacking number of something”

whereas the shortest ones involve “throwing something onto

a surface” and “something falling like a rock”. It is also

interesting to see that pretending to do something is longer

than actually doing it, something continues spinning is longer

than it quickly stops spinning, and pouring something until

overflowing is longer than pouring something.

4.2. Object affordance segmentation

Humans can learn the roles of different parts of an object

by observing how the object is being used, i.e., by watching

examples of “pouring water into a bottle” we can infer not

only that water can be poured, but also through which part

of the bottle the water can be poured. Our model can learn

that detailed information. Given a question such as “Where

to plug cables?”, we find the videos with related labels, e.g.,

videos labeled with “plugging a cable into a computer”.

Note that since we would have acquired the ground-truth

object label when retrieving videos, the ground-truth object-

Where to plug in power plugs?

Plugging plug into socket

Where to open bottles?

Opening bottle

Where to put sth. into cups?

Putting something into cup

Where to open laptops?

Opening laptop

Where to open shelves?

Opening shelf

Where to pour sth. into jars?

Pouring water into jar

Where to lift books?

Lift one side of book

Where to pull out tissues?

Pulling tissue out of box

Where to plug cables?

Plugging cable into computer

Figure 7: Examples of object-affordance segmentation.

The model trained with video-level annotations can find

object parts associated with possible ongoing actions.

guided attention is used to create attention maps; meanwhile,

this model is trained with ground-truth objects to perform

action recognition thus it mixes actions and objects for affor-

dance discovery. After acquiring the attention maps, we then

segment by a threshold of 60% of the maximum attention

weight. The results are in Figure 7: the model focuses on the

object parts associated with the action instead of the whole

object. For example, the model focuses on the brim of a cup

for videos involving pouring something into a cup or putting

something into a cup. Importantly, the model knows to focus

on the handle of a shelf even in a still image. This enables

us to effectively parse object parts and infer their affordance

even when the labels used for training are at the video-level.

5. Conclusion

Dual Attention Networks is proposed to recognize human-

object interactions. It achieves very competitive perfor-

mance on Something-Something V2 dataset. Based on ac-

tions/objects priors, The model is able to produce intuitive

and interpretable attention maps which can enhance video

feature representations for improving the recognition of both

objects and actions and enable better video understanding.
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