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Abstract

Visual counting, a task that predicts the number of ob-

jects from an image/video, is an open-set problem by nature,

i.e., the number of population can vary in [0,+∞) in theory.

However, the collected images and labeled count values are

limited in reality, which means only a small closed set is

observed. Existing methods typically model this task in a

regression manner, while they are likely to suffer from an

unseen scene with counts out of the scope of the closed set.

In fact, counting is decomposable. A dense region can al-

ways be divided until sub-region counts are within the pre-

viously observed closed set. Inspired by this idea, we pro-

pose a simple but effective approach, Spatial Divide-and-

Conquer Network (S-DCNet). S-DCNet only learns from

a closed set but can generalize well to open-set scenarios

via S-DC. S-DCNet is also efficient. To avoid repeatedly

computing sub-region convolutional features, S-DC is exe-

cuted on the feature map instead of on the input image. S-

DCNet achieves the state-of-the-art performance on three

crowd counting datasets (ShanghaiTech, UCF CC 50 and

UCF-QNRF), a vehicle counting dataset (TRANCOS) and

a plant counting dataset (MTC). Compared to the previ-

ous best methods, S-DCNet brings a 20.2% relative im-

provement on the ShanghaiTech Part B, 20.9% on the UCF-

QNRF, 22.5% on the TRANCOS and 15.1% on the MTC.

Code has been made available at: https://github.

com/xhp-hust-2018-2011/S-DCNet.

1. Introduction

The task of visual counting in Computer Vision is to in-

fer the number of objects (people, cars, maize tassels, etc.)

from an image/video. It has wide applications, such as auto-

matic crowd management [15, 16, 17, 37, 38], traffic moni-

toring [14, 25], and crop yield estimation [10, 13, 23]. Ex-

tensive attention has been received in recent years.

∗Haipeng Xiong and Hao Lu contributed equally. Zhiguo Cao is the

corresponding author.

Figure 1. The histogram of count values of 64× 64 local patches

on the test set of ShanghaiTech Part A dataset [38]. The orange

curve denotes the relative mean absolute error (rMAE) of CSR-

Net [20] on local patches.

Counting is an open-set problem by nature as a count

value can range from 0 to +∞ in theory. It is thus typi-

cally modeled in a regression manner. Benefiting from the

success of convolutional neural networks (CNNs), state-of-

the-art deep counting networks often adopt a multi-branch

architecture to enhance the feature robustness to dense re-

gions [2, 4, 38]. However, the observed patterns in datasets

are limited in practice, which means networks can only

learn from a closed set. Are these counting networks still

able to generate accurate predictions when the number of

objects is out of the scope of the closed set? Meanwhile, ob-

served local counts exhibit a long-tailed distribution shown

in Figure 1. Extremely dense patches are rare while sparse

patches take up the majority. As what can be observed, the

relative mean absolute error (rMAE) increases significantly

with increased local density. Is it necessary to set the work-

ing range of CNN-based regressors to the maximum count

value observed, even with a majority of samples are sparse

such that the regressor works poorly in this range?

In fact, counting has an unique property—spatially de-

composable. The above problem can be largely alleviated

with the idea of spatial divide-and-conquer (S-DC). Sup-

pose that a network has been trained to accurately predict a

closed set of counts, say 0 ∼ 20. When facing an image

with extremely dense objects, one can keep dividing the
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Figure 2. An illustration of spatial divisions. Suppose that the

closed set of counts is [0, 20]. In this example, dividing the im-

age for one time is inadequate to ensure that all sub-region counts

are within the closed set. For the top left sub-region, it needs a

further division.

Figure 3. Spatial divisions on the input image (left) and the fea-

ture map (right). Spatially dividing the input image is straight-

forward. The image is upsampled and fed to the same network

to infer counts of local areas. The orange dashed line is used to

connect the local feature map, the local count and the sub-image.

S-DC on the feature map avoids redundant computations and is

achieved by upsampling, decoding and dividing the feature map

of high resolution.

image into sub-images until all sub-region counts are less

than 20. Then the network can accurately count these sub-

images and sum over all local counts to obtain the global

image count. Figure 2 graphically depicts the idea of S-DC.

A follow-up question is how to spatially divide the count.

A naive way is to upsample the input image, divide it into

sub-images and process sub-images with the same network.

This way, however, is likely to blur the image and lead

to exponentially-increased computation cost and memory

consumption when repeatably extracting the feature map.

Inspired by RoI pooling [12], we show that it is feasible

to achieve S-DC on the feature map, as conceptually illus-

trated in Figure 3. By decoding and upsampling the feature

map, the later prediction layers can focus on the feature of

local areas and predict sub-region counts accordingly.

To realize the above idea, we propose a simple but effec-

tive Spatial Divide-and-Conquer Network (S-DCNet). S-

DCNet learns from a closed set of count values but is able

to generalize to open-set scenarios. Specifically, S-DCNet

adopts a VGG16 [30]-based encoder and an UNet [27]-

like decoder to generate multi-resolution feature maps. All

feature maps share the same counting predictor. Inspired

by [19], in contrast to the conventional density map regres-

sion, we discretize continuous count values into a set of

intervals and design the counting predictor to be a classi-

fier. Further, a division decider is designed to decide which

sub-region should be divided and to merge different lev-

els of sub-region counts into the global image count. We

show through a controlled toy experiment that, even given

a closed training set, S-DCNet effectively generalizes to

the open test set. The effectiveness of S-DCNet is fur-

ther demonstrated on three crowd counting datasets (Shang-

haiTech [38], UCF CC 50 [15] and UCF-QNRF [16]), a ve-

hicle counting dataset (TRANCOS [14]), and a plant count-

ing dataset (MTC [23]). Results show that S-DCNet indi-

cates a clear advantage over other competitors and sets the

new state-of-the-art across five datasets.

The main contribution of this work is that we propose to

transform open-set counting into a closed-set problem. We

show through extensive experiments that a model learned in

a closed set can effectively generalize to the open set with

the idea of S-DC.

2. Related Work

Current CNN-based counting approaches are mainly

built upon the framework of local regression. According

to their regression targets, they can be categorized into two

categories: density map regression and local count regres-

sion. We first review these two types of regression. Since

S-DCNet learns to classify counts, some works that refor-

mulate the regression problem are also discussed.

Density Map Regression The concept of density map

was introduced in [18]. The density map contains the spa-

tial distribution of objects, thus can be smoothly regressed.

Zhang et al. [37] first adopted a CNN to regress local den-

sity maps. Then almost all subsequent counting networks

followed this idea. Among them, a typical network architec-

ture is multi-branch. MCNN [38] and Switching-CNN [2]

used three columns of CNNs with varying receptive fields

to depict objects of different scales. SANet [4] adopted In-

ception [34]-liked modules to integrate extra branches. CP-

CNN [32] added two extra density-level prediction branches

to combine global and local contextual information. AC-

SCP [28] inserted a child branch to match cross-scale con-

sistency and an adversarial branch to attenuate the blur-

ring effect of the density map. ic-CNN [26] incorporated

two branches to generate high-quality density maps in a

coarse-to-fine manner. IG-CNN [1] and D-ConvNet [29]

drew inspirations from ensemble learning and trained a se-

ries of networks or regressors to tackle different scenes.

DecideNet [21] attempted to selectively fuse the results of
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density map estimation and object detection for different

scenes. Unlike multi-branch approaches, Idrees et al. [16]

employed a composition loss and simultaneously solved

several counting-related tasks to assist counting. CSR-

Net [20] benefited from dilated convolution which effec-

tively expanded the receptive field to capture contextual in-

formation.

Existing deep counting networks aim to generate high-

quality density maps. However, density maps are actually

in the open set as well. Detailed discussion of the open set

problem in density maps is provided in the Supplement.

Local Count Regression Local count regression directly

predicts count values of local image patches. This idea

first appeared in [7] where a multi-output regression model

was used to regress region-wise local counts simultane-

ously. [9] and [23] introduced such an idea into deep count-

ing. Local patches were first densely sampled in a sliding-

window manner with overlaps, and a local count was then

assigned to each patch by the network. Inferred redundant

local counts were finally normalized and fused to the global

count. Stahl et al. [33] regressed the counts for object pro-

posals generated by Selective Search [36] and combined lo-

cal counts using an inclusion-exclusion principle. Inspired

by subitizing, the ability for a human to quickly counting a

few objects at a glance, Chattopadhyay et al. [5] transferred

their focus to the problem of counting objects in everyday

scenes. The main challenge thus became large intra-class

variances rather than the occlusions and perspective distor-

tions in crowded scenes.

While some above methods [5, 33] also leverage the idea

of spatial divisions, they still regress the open-set counts.

Although local-region patterns are easier to be modelled

than the whole image, the observed local patches are still

limited. Since only finite local patterns (a closed set) can

be observed, new scenes in reality have a high probability

including objects out of the range (an open set). Moreover,

dense regions with large count values are rare (Figure 1) and

the networks may suffer from sample imbalance. In this pa-

per, we show that a counting network is able to learn from

a closed set with a certain range of counts, say 0 ∼ 20, and

then generalizes to an open set (including counts > 20) via

S-DC.

Beyond Naive Regression Regression is a natural way

to estimating continuous variables, such as age and depth.

However, some literatures suggest that regression is encour-

aged to be reformulated as an ordinal regression problem or

a classification problem, which enhances performance and

benefits optimization [6, 11, 19, 24]. Ordinal regression is

usually implemented by modifying well-studied classifica-

tion algorithms and has been applied to the problem of age

estimation [24] and monocular depth prediction [11]. Li et

al. [19] further showed that directly reformulating regres-

classifier division decider

2× 2 AvgPool, s 2 2× 2 AvgPool, s 2

1× 1 Conv, 512, s 1 1× 1 Conv, 512, s 1

1× 1 Conv, class num, s 1 1× 1 Conv, 1, s 1

− Sigmoid

Table 1. The architecture of classifier and division decider.

AvgPool denotes average pooling. Convolutional layers are de-

fined in the format: Conv size×size, output channel, s stride.

Each convolutional layer is followed by a ReLU function except

the last layer. In particular, a sigmoid function is employed at the

end of division decider to generate soft division masks.

sion to classification was also a good choice. Since count

values share a similar property like age and depth, it mo-

tivates us to follow such a reformulation. In this work,

S-DCNet follows [19] to discretize local counts and clas-

sify count intervals. Indeed, we observe in experiments that

classification with S-DC works better than direct regression.

3. Spatial Divide-and-Conquer Network

In this section, we describe the transformation from

quantity to interval which transfers count values into a

closed set. We also explain in detail our proposed S-DCNet.

3.1. From Quantity to Interval

Instead of regressing an open set of count values, we fol-

low [19] to discretize local counts and classify count inter-

vals. Specifically, we define an interval partition of [0,+∞)
as {0}, (0, C1], (C2, C3], ... , (CM−1, CM ] and (CM ,+∞).
These M +1 sub-intervals are labeled to the 0-th to the M -

th classes, respectively. For example, if a count value is

within (C2, C3], it is labeled as the 2-th class. In practice,

CM should be not greater than the max local count observed

in the training set.

The median of each sub-interval is adopted when recov-

ering the count from the interval. Notice that, for the last

sub-interval (CM ,+∞], CM will be used as the count value

if a region is classified into this interval. It is clear that

adopting CM for the last class will cause a systematic er-

ror, but the error can be mitigated via S-DC as what we will

show in experiments.

3.2. SingleStage Spatial DivideandConquer

As shown in Figure 4, S-DCNet includes a VGG16 [30]

feature encoder, an UNet [27]-like decoder, a count-interval

classifier and a division decider. The structure of the clas-

sifier and the division decider are shown in Table 1. Notice

that, the first average pooling layer in the classifier has a

stride of 2, so the final prediction has an output stride of 64.

The feature encoder removes fully-connected layers

from the pre-trained VGG16. Suppose that the input patch

is of size 64 × 64. Given the feature map F0 (extracted
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Figure 4. The architecture of S-DCNet (left) and a two-stage S-DC process (right). S-DCNet adopts all convolutional layers in VGG16 [30]

while the first two convolutional blocks are simplified as Conv in the figure. An UNet [27]-like decoder is employed to upsample and

divide the feature map as per Figure 3. A shared classifier and a division decider receive divided feature maps, and respectively, generate

division counts Cis and division masks Wis, for i = 1, 2, ... After obtaining these results, Ci and Wi are merged to the i-th division count

DIVi shown in the right sub-figure. Specially, we average each count of low resolution into the corresponding 2×2 area of high resolution

before merging (avg shown in the figure). “◦” denotes the Hadamard product. Note that, the 64×64 local patch is only used as an example

for readers to understand the pipeline of S-DCNet. Since S-DCNet is a fully convolutional network, it can process images of arbitrary sizes

M ×N and return DIV2s of size M

64
× N

64
. The structures for the classifier and the division decider are presented in Table 1.

from the Conv5 layer) with 1

32
resolution of the input im-

age, the classifier predicts the class label of the count inter-

val CLS0 conditioned on F0. The local count C0, which

denotes the count value of the 64 × 64 input patch, can

be recovered from CLS0. Note that C0 is the local count

without S-DC, which is also the final output of previous ap-

proaches [5, 9, 23].

We execute the first-stage S-DC on the fused feature map

F1. F1 is divided and sent to the shared classifier to produce

the division count C1 ∈ R
2×2. Concretely, F0 is upsam-

pled by ×2 in an UNet-like manner to F1. Given F1, the

classifier fetches the local features that correspond to spa-

tially divided sub-regions, and predicts the first-level divi-

sion counts C1. Each of the 2× 2 elements in C1 denotes a

sub-count of the corresponding 32× 32 sub-region.

With local counts C0 and C1, the next question is to de-

cide where to divide. We learn such decisions with another

network module, division decider, as depicted in the right

part of Figure 4. At the first stage of S-DC, the division de-

cider generates a soft division mask W1 of the same size as

C1 conditioned on F1 such that for any w ∈ W1, w ∈ [0, 1].
w = 0 means no division is required at this position, and

the value in C0 is used. w = 1 implies that here the ini-

tial prediction should be replaced with the division count in

C1. Since W1 and C1 are both 2 times larger than C0, C0 is

upsampled by ×2 to Ĉ0, and the count is averaged into the

2× 2 local area in Ĉ0. The first-stage division result DIV1

Algorithm 1: Multi-Stage S-DC

Input: Image I and division time N

Output: Image count C

1 Extract F0 from I;

2 Generate CLS0 given F0 with the classifier, and recover

C0 from CLS0;

3 Initialize DIV0 = C0;

4 for i← 1 to N do

5 Decode Fi−1 to Fi;

6 Process Fi with the classifier and the division decider

to obtain CLSi and the division mask Wi;

7 Recover Ci from CLSi;

8 Update DIVi as per Eq. 2 ;

9 Integrate over DIVN to obtain the image count C;

10 return C

can thus be computed as

DIV1 = (✶−W1) ◦ avg(C0) +W1 ◦ C1 , (1)

where ✶ denotes a matrix filled with 1 and is with the same

size of W1. “◦” denotes the Hadamard product. avg is an

averaging re-distribution operator (equally dividing a count

value into a 2× 2 region).

3.3. MultiStage Spatial DivideandConquer

S-DCNet can execute multi-stage S-DC by further de-

coding, dividing the feature map until reaching the output

of the first convolutional block. In this sense, the maximum
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division time is 4 in VGG16 (actually we show later in ex-

periments that a two-stage division is adequate to guaran-

tee satisfactory performance). In multi-stage S-DC, DIVi

(i ≥ 2) is merged in a recursive manner as

DIVi = (✶−Wi) ◦ avg(DIVi−1) +Wi ◦ Ci . (2)

We employ two types of standard loss functions to train

S-DCNet: several cross-entropy losses Li

C
s that correspond

to different classification outputs CLSis, and a ℓ1 loss LN

R

for the final division output DIVN (N denotes the divi-

sion time). S-DCNet is learned in a multi-task manner

where the overall loss L is a summation of all losses, i.e.,

L =
∑N

i=0
Li

C
+ LN

R
. Note that, LN

R
is essential to provide

an implicit supervision signal for learning Wis. Multi-stage

S-DCNet is summarized in Algorithm 1.

4. Open Set or Closed Set? A Toy-Level Justi-

fication

As aforementioned, counting is an open-set problem

while the model is learned in a closed set. Can a closed-

set counting model really generalize to open-set scenarios?

Here we show through a controlled toy experiment that, the

answer is no. Inspired by [18], we synthesize a cell count-

ing dataset to explore the counting performance outside a

closed training set.

Synthesized Cell Counting Dataset We first generate

500 256 × 256 images with 64 × 64 sub-regions contain-

ing only 0 ∼ 10 cells to construct the training set (a closed

set). To generate an open testing set, we further synthesize

500 images with sub-region counts evenly distributed in the

range of [0, 20].

Baselines and Protocols We adopt three approaches for

comparisons, they are: i) a regression baseline with pre-

trained VGG16 as the backbone and the classifier module

used in S-DCNet as the backend except that the output chan-

nel is modified to 1. ℓ1 loss is used. This approach di-

rectly regresses the open-set counts; ii) a classification base-

line with the same VGG16 and the classifier settings as S-

DCNet, without S-DC; iii) our proposed S-DCNet, which

learns from a closed set but adapts to the open set via S-DC.

Regarding the discretization of count intervals, we

choose 0.5 as the step because cells can be partially pre-

sented in local patches. As a consequence, we have a parti-

tion of {0}, (0.0.5],(0.5, 1], ... ,(9.5, 10] and (10,+∞). All

approaches are trained with standard stochastic gradient de-

scent (SGD). The learning rate is initially set to 0.001 and

is decreased by ×10 when the training error stagnates.

Observations According to Figure 5, it can be observed

that both regression and classification baselines work well

in the range of the closed set (0 ∼ 10), but the count-

ing error increases rapidly when counts are larger than 10.

Figure 5. A toy-level justification. (a) Some 256× 256 images in

the simulated cell counting dataset. The numbers denote the range

of local counts of 64×64 sub-regions. (b) The mean absolute error

(MAE) of different methods versus 64× 64 sub-region counts. S-

DCNet(N) means N -stage S-DCNet.

This suggests a conventional counting model learned in a

closed set cannot generalize to the open set. However, S-

DCNet can achieve accurate predictions even on the open

set, which confirms the advantage of S-DC.

5. Experiments on Real-World Datasets

Extensive experiments are further conducted to demon-

strate the effectiveness of S-DCNet on real-world datasets.

We first describe some essential implementation details. Af-

ter that, an ablation study is conducted on the ShanghaiTech

Part A [38] dataset to highlight the benefit of S-DC. Finally,

we compare S-DCNet against current state-of-the-art meth-

ods on five public datasets. Mean Absolute Error (MAE)

and Root Mean Squared Error (MSE) are used as the evalu-

ation metrics following [38].

5.1. Implementation Details

Interval Partition We generate ground-truth counts of lo-

cal patches by integrating over the density maps. The counts

are usually not integers, because objects can partly present

in cropped local patches. We evaluate two different par-

tition strategies. In the first partition, we choose 0.5 as

the step and generate partitions as {0}, (0.0.5],(0.5, 1], ...

,(Cmax − 0.5, Cmax] and (Cmax,+∞), where Cmax de-

notes the maximum count of the closed set. This partition

is named as One-Linear Partition.

In the second partition, we further finely divide the sub-

interval (0.0.5], because this interval contains a sudden

change from no object to part of an object, and a large pro-

portion of objects lie in this sub-interval. A small step of

0.05 is used to divide this interval. We call this partition

Two-Linear Partition.

Data Augmentation We follow the same data augmen-

tation used in [20], except for the UCF-QNRF dataset [16].

In particular, 9 sub-images of 1

4
resolution are cropped from
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the original image. The first 4 sub-images are from four cor-

ners, and the remaining 5 are randomly cropped. Random

scaling and mirroring are also performed. For the UCF-

QNRF dataset [16], we follow the same setting as in [16]

and crop the original image into 224× 224 sub-images.

Training Details S-DCNet is implemented with

PyTorch. We train S-DCNet using standard SGD.

The encoder in S-DCNet is directly adopted from convolu-

tional layers of VGG16 [30] pretrained on ImageNet, and

the other layers employ random Gaussian initialization with

a standard deviation of 0.01. The learning rate is initially

set to 0.001 and is decreased by ×10 when the training

error stagnates. We keep training until convergence. For

the ShanghaiTech, UCF CC 50, TRANCOS and MTC

datasets, the batch size is set to 1. For the UCF-QNRF

dataset, the batch size is set to 16 following [16].

5.2. Ablation Study on the ShanghaiTech Part A

Is S-DCNet Robust to Cmax? When reformulating the

counting problem into classification, a critical issue is how

to choose Cmax, which defines the closed set. Hence, it is

important that S-DCNet is robust to the choice of Cmax.

We conduct a statistical analysis on count values of local

patches in the training set, and then set Cmax with the quan-

tiles ranging from 100% to 80% (decreased by 5%). Two-

stage S-DCNet is evaluated. Another baseline of classifica-

tion without S-DC is also used to explore whether counting

can be simply modeled in a closed-set classification man-

ner. To be specific, we reserve the VGG16 encoder and the

classifier in this classification baseline.

Results are presented in Figure 6. It can be observed

that the MAE of the classification baseline increases rapidly

with decreased Cmax. This result is not surprising, be-

cause the model is constrained to be visible to count val-

ues not greater than Cmax. This suggests that counting

cannot be simply transformed into closed-set classifica-

tion. However, with the help of S-DC, S-DCNet exhibits

strong robustness to the changes of Cmax. It seems the

systematic error brought by Cmax can somewhat be allevi-

ated with S-DC. Regarding how to choose concrete Cmax,

the maximum count of the training set seems not the best

choice, while some small quantiles even deliver better per-

formance. Perhaps a model is only able to count objects

accurately within a certain degree of denseness. We also

notice Two-Linear Partition is slightly better than

One-Linear Partition, which indicates that the fine

division to the (0, 0.5] sub-interval has a positive effect.

According to the above results, S-DCNet is robust to

Cmax in a wide range of values, and Cmax is generally

encouraged to be set less than the maximum count value

observed. In addition, there is no significant difference

between two kinds of partitions. For simplicity, we set

Figure 6. The influence of Cmax to S-DCNet on the ShanghaiTech

Part A dataset [38]. The numbers in the brackets denote quantiles

of the training set, for example, 22 (95%) means the 95% quan-

tile is 22. ‘VGG16 Encoder’ is the classification baseline without

S-DC. ‘One-Linear’ and ‘Two-Linear’ are defined in Section 5.1.

Cmax to be the 95% quantile and adopt Two-Linear

Partition in the following experiments.

How Many Times to Divide? S-DCNet can apply S-DC

up to 4 times, but how many times are sufficient? Here we

evaluate S-DCNet with different division stages. Quanti-

tative results are listed in Table 2. It can be observed that

applying two-stage S-DC is clearly adequate.

The Effect of S-DC To highlight the effect of S-DC, we

compare S-DCNet against several regression and classifica-

tion baselines. These baselines adopt the same architecture

of VGG16 encoder and the classifier in S-DCNet. classifi-

cation is the result of C0 without S-DC, and Cmax is set to

be the 95% quantile (22). For all regression baselines, we

modify the output channel of the classifier to be 1 and em-

ploy the ℓ1 loss. We set three regression baselines. regres-

sion predicts counts without S-DC. To justify whether S-DC

can also work in regression, we adapt the S-DC idea to re-

gression under both open-set and closed-set settings. open-

set regression + S-DC is straight-forward. We do not limit

the output range, and it can vary from 0 to +∞. closed-set

regression + S-DC indicates that the output range is con-

strained within [0, Cmax] (Cmax is set to 22 for a fair com-

parison), and large outputs will be clipped to Cmax.

Results are shown in Table 3. We can see that counting

by classification without S-DC suffers from the limitation of

Cmax and performs even worse than regression. In addition,

regression can also benefit from S-DC, and it is encouraged

to limit the output range of the regressor in a closed set.

Moreover, with S-DC, S-DCNet significantly reduces the

counting error and outperforms both the classification and

regression baselines by a large margin. This verifies our ar-

gument that it is more effective to reformulate counting in

classification than in regression. Perhaps the optimization

is easier and less sensitive to sample imbalance in classi-

fication than in regression. Whatever, at least one thing is
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Division time MAE MSE

0 76.0 142.5

1 62.2 103.4

2 58.3 95.0

3 60.1 99.8

4 61.9 107.2

Table 2. Results of S-DCNet

with different S-DC stages. The

best performance is boldfaced.

Method MAE MSE

classification 77.4 149.3

regression 68.9 112.1

open-set regression + S-DC 66.6 107.9

closed-set regression + S-DC 64.7 105.7

S-DCNet (2) 58.3 95.0

Table 3. Effect of S-DC. Two classification and

regression baselines are compared against S-

DCNet. S-DCNet (2) denotes two-stage S-

DCNet. The best performance is boldfaced.

∑
2

i=0
Li

C
L2

R
MAE MSE

X 301.4 396.9

X 88.4 128.8

X X 58.3 95.0

Table 4. Effect of different loss functions. Note

that, multi-stage predictions are averaged if

L2

R is not applied, because the division decider

cannot receive supervision signal during train-

ing. The best performance is boldfaced.

Figure 7. Counting errors of 64 × 64 local patches on the test set

of ShanghaiTech Part A [38]. regression denotes direct local

counts regression using VGG16. C0, C1 and C2 are single-branch

predictions conditioned on F0, F1 and F2, respectively. DIV2

denotes two-stage S-DCNet, which fuses the predictions of C0,

C1 and C2 with S-DC.

made clear: a counting model can learn from a closed set

and generalize well to a open set via S-DC.

We further analyze the counting error of 64 × 64 local

patches in detail. As shown in Figure 7, we observe that

the direct single-branch prediction without S-DC (predict-

ing C0, C1 and C2 from F0, F1 and F2, respectively) per-

forms worse than the regression baseline, which can be at-

tributed to the limited Cmax of the classifier. After embed-

ding the S-DC strategy to divide and merge the count map

of multiple resolutions, counting errors significantly reduce.

Such a benefit is even much obvious in dense patches with

local counts greater than 100. It justifies our argument that,

instead of regressing a large count value directly, it is more

accurate to count dense patches through S-DC.

Loss Functions Also Matter We further validate the ef-

fect of different loss functions used in S-DCNet and report

the results in Table 4. S-DCNet works poorly when trained

with only L2

R
. This is not surprising, because no supervi-

sion signal is provided to multi-stage division results. In ad-

dition, it seems necessary for the division decider to decide

where to divide, because S-DCNet greatly benefits from the

help of merging loss L2

R
.

Through the visualizations of Wis in Fig. 8, we observe

that reasonably good divisions can be achieved with the su-

pervision of L2

R
. This has another benefit, the network can

Figure 8. Visualizations of Wis in S-DCNet. The brighter the im-

age is, the greater the values are. In the input image, count values

greater than Cmax are indicated by yellow regions. It is clear that

Wi appropriately identifies regions to be divided.

Dataset Cmax max Gaussian kernel

SH Part A [38] 22.0 148.5

Geometry-AdaptiveUCF CC 50 [15] − −

UCF-QNRF [16] 8.0 131.5

SH Part B [38] 7.0 83.0 Fixed: σ = 15

Trancos [14] 5.0 24.5 Fixed: σ = 10

MTC [23] 3.5 8.0 Fixed: σ = 8

Partition Two-Linear

Type of Cmax 95% quantile

Table 5. Overall configurations of S-DCNet. max denotes

the maximum count of local patch in the training set, while

Cmax is the maximum count set for the closed set in S-DCNet.

Gaussian kernel is used to generate density maps from dot-

ted annotations. Specially, since UCF CC 50 adopts 5-fold cross-

validation, max and Cmax are set differently for each fold.

learn when to divide not just in counts larger than Cmax.

5.3. Comparison with State of the Art

According to the ablation study, the final configurations

for S-DCNet are summarized in Table 5. Qualitative results

are shown in the Supplement.

The ShanghaiTech Dataset The ShanghaiTech crowd

counting dataset [38] is consisted of two parts: Part A

and Part B. Part A includes 300 images for training and

182 for testing. This part represents highly congested

scenes. Part B contains 716 images in relatively sparse

scenes, where 400 images are used for training and 316
for testing. Quantitative results are listed in Table 6. Our

method outperforms the previous state-of-the-art SPN [8]

and SANet [4] with a 5.5% relative improvement in Part A

and 20.2% in Part B, respectively. These results suggest S-

DCNet is able to adapt to both sparse and crowded scenes.

The UCF CC 50 Dataset UCF CC 50 [15] is a tiny

crowd counting dataset with 50 images in extremely
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Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [37] 181.8 277.7 32.0 49.8

CP-CNN [32] 73.6 106.4 20.1 30.1

D-ConvNet [29] 73.5 112.3 18.7 26.0

IG-CNN [1] 72.5 118.2 13.6 21.1

DRSAN [22] 69.3 96.4 11.1 18.2

CSRNet [20] 68.2 115.0 10.6 16.0

SANet [4] 67.0 104.5 8.4 13.6

SPN [8] 61.7 99.5 9.4 14.4

S-DCNet 58.3 95.0 6.7 10.7

Table 6. Comparison with state-of-the-art ap-

proaches on the test set of ShanghaiTech [38] dataset.

The best performance is boldfaced.

Method MAE MSE

Idreeset al. [15] 468.0 590.3

Zhanget al. [37] 467.0 498.5

IG-CNN [1] 291.4 349.4

D-ConvNet [29] 288.4 404.7

CSRNet [20] 266.1 397.5

SANet [4] 258.4 334.9

DRSAN [22] 219.2 250.2

S-DCNet 204.2 301.3

Table 7. Comparison with state-of-

the-art approaches on the test set

of UCF CC 50 [15] dataset. The

best performance is boldfaced.

Method MAE MSE

Idreeset al. [15] 315 508

MCNN [38] 277 426

Encoder-Decoder [3] 270 478

CMTL [31] 252 514

Switching-CNN [2] 228 445

Base Network [16] 163 227

Composition Loss [16] 132 191

S-DCNet 104.4 176.1

Table 8. Comparison with state-of-

the-art approaches on the test set of

UCF-QNRF [16] dataset. The best per-

formance is boldfaced.

Method GAME(0) GAME(1) GAME(2) GAME(3)

CCNN [25] 12.49 16.58 20.02 22.41

Hydra-3s [25] 10.99 13.75 16.69 19.32

CSRNet [20] 3.56 5.49 8.57 15.04

SPN [8] 3.35 4.94 6.47 9.22

S-DCNet 2.92 4.29 5.54 7.05

Table 9. Comparison with state-of-the-art approaches on the test set

of TRANCOS [14] dataset. The best performance is boldfaced.

Method MAE MSE

GlobalReg [35] 19.7 23.3

DensityReg [18] 11.9 14.8

CCNN [25] 21.0 25.5

TasselNet [23] 6.6 9.6

S-DCNet 5.6 9.1

Table 10. Comparison with state-of-the-art approaches on the

test set of MTC [23] dataset. The best performance is boldfaced.

crowded scenes. The number of people within an im-

ages varies from 96 to 4633. We follow the 5-fold cross-

validation as in [15]. Results are shown in Table 7. Our

method surpasses the previous best method, DRSAN [22],

with a 6.8% relative improvement in MAE.

The UCF-QNRF Dataset UCF-QNRF [16] is a large

crowd counting dataset with 1535 high-resolution images

and 1.25 million head annotations. There are 1201 train-

ing images and 334 test images. It contains extremely con-

gested scenes where the maximum count of an image can

reach 12865. We follow the same image processing as

in [16] and report results in Table 8. Our method reaches

the state-of-the-art performance and surpasses the previ-

ous best method with a 20.9% boost in MAE. We surpris-

ingly notice that S-DCNet only learn from a closed set with

Cmax = 8.0, which is only 6% of the maximum count

131.5 according to Table 5. S-DCNet, however, generalizes

to large counts effectively and predicts accurate counts.

The TRANCOS Dataset Aside from crowd counting,

we also evaluate S-DCNet on a vehicle counting dataset,

TRANCOS [14], to see its generalization ability. TRAN-

COS contains 1244 images of congested traffic scenes in

various perspectives. It adopts the Grid Average Mean

Absolute Error (GAME) [14] as the evaluation metric.

GAME(L) divides an image into 2L×2L non-overlapping

sub-regions and accumulates of the MAE over sub-regions.

Larger L implies better local predictions. In particu-

lar, GAME(0) downgrades to MAE. Results are listed

in Table 9. S-DCNet surpasses other methods under all

GAME(L) metrics, and particularly, delivers a 22.5% rel-

ative improvement on GAME(3). This suggests S-DCNet

not only achieves accurate global predictions but also be-

haves well in local regions.

The MTC Dataset We further evaluate our method on a

plant counting dataset, i.e., the MTC dataset [23]. The MTC

dataset contains 361 high-resolution images of maize tas-

sels collected from 2010 to 2015 in the wild field. In con-

trast to people or vehicles that have similar physical sizes,

maize tassels are with heterogeneous physical sizes and are

self-changing over time. We think this dataset is suitable

for justifying the robustness of S-DCNet to object-size vari-

ations. We follow the same setting as in [23] and report

quantitative results in Table 10. Although the previous best

method, TasselNet [23], already exhibits accurate results,

S-DCNet still shows a certain degree of improvement.

6. Conclusion

Counting is an open-set problem in theory, but only a fi-

nite closed set can be observed in reality. This is particularly

true because any dataset is always a sampling of the real

world. Inspired by the decomposable property of counting,

we propose to transform the open-set counting into a closed-

set problem, and address the problem with the idea of S-

DC. We realize S-DC in a deep counting network termed

S-DCNet. We show through a toy experiment and exten-

sive evaluations on standard benchmarks that, even given a

closed training set, S-DCNet can effectively generalize to

open-set scenarios.

For future work, we will test the adaptability of S-DC on

other network architectures.
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