
Resource Constrained Neural Network Architecture Search:

Will a Submodularity Assumption Help?

Yunyang Xiong Ronak Mehta Vikas Singh

University of Wisconsin Madison

yxiong43@wisc.edu ronakrm@cs.wisc.edu vsingh@biostat.wisc.edu

Abstract

The design of neural network architectures is frequently

either based on human expertise using trial/error and em-

pirical feedback or tackled via large scale reinforcement

learning strategies performed over distinct discrete archi-

tecture choices. In the latter case, the optimization is often

non-differentiable and also not very amenable to derivative-

free optimization methods. Most methods in use today re-

quire sizable computational resources. And if we want

networks that additionally satisfy resource constraints, the

above challenges are exacerbated because the search must

now balance accuracy with certain budget constraints on

resources. We formulate this problem as the optimization

of a set function – we find that the empirical behavior of

this set function often (but not always) satisfies marginal

gain and monotonicity principles – properties central to the

idea of submodularity. Based on this observation, we adapt

algorithms within discrete optimization to obtain heuristic

schemes for neural network architecture search, where we

have resource constraints on the architecture. This sim-

ple scheme when applied on CIFAR-100 and ImageNet,

identifies resource-constrained architectures with quantifi-

ably better performance than current state-of-the-art mod-

els designed for mobile devices. Specifically, we find high-

performing architectures with fewer parameters and com-

putations by a search method that is much faster.

1. Introduction

The design of state-of-the-art neural network architec-

tures for a given learning task typically involves exten-

sive effort: human expertise as well as significant compute

power. It is well accepted that the trial-and-error process

is tedious, often requiring iterative adjustment of models

based on empirical feedback – until one discovers the “best”

structure, often based on overall accuracy. In other cases it

may also be a function of the model’s memory footprint or

speed at test time. This architecture search process becomes

more challenging when we seek resource-constrained net-

works to eventually deploy on small form factor devices:

accuracy and resource-efficiency need to be carefully bal-

anced. Further, each type of mobile device has its own

hardware idiosyncrasies and may require different architec-

tures for the best accuracy-efficiency trade-off. Motivated

by these considerations, researchers are devoting effort into

the development of algorithms that automate the process

of architecture search and design. Many of the models

that have been identified via a judicious use of such archi-

tecture search schemes (often together with human exper-

tise) currently provide excellent performance in classifica-

tion [3, 31, 44] and object detection [31].

The superior performance of the architectures identified

via the above process notwithstanding, it is well known that

those search algorithms are time consuming and compute-

intensive. For reference, even for a smaller dataset such as

CIFAR-10, [44] requires 3150 GPU days for a reinforce-

ment learning (RL) model. A number of approaches have

been proposed to speed up architecture search algorithms.

Some of the strategies include adding a specific structure

to the search space to reduce search time [25, 36], sharing

weights across various architectures [5, 30], and imposing

weight or performance prediction constraints for each dis-

tinct architecture [3, 4, 26]. These ideas all help in various

specific cases, but the inherent issue of a large search space

and the associated difficulties of scalability still exists.

Notice that one reason why many search methods based

on RL, evolutionary schemes, MCTS [28], SMBO [25] or

Bayesian optimization [18] are compute intensive in gen-

eral is because architecture search is often set up as a black-

box optimization problem over a large discrete domain,

thus leading to a large number of architecture evaluations

during search. Further, many architecture search methods

[8, 25, 44] do not directly take into account certain resource

bounds (e.g., # of FLOPs) although the search space can be

pre-processed to filter out those regions of the search space.

As a result, few methods have been widely used for identi-

fying deployment-ready architectures for mobile/embedded

devices. When the resource of interest is memory, one

11901

choice is to first train a network and then squeeze or com-

press it for a target deployment device [2, 9, 12, 37, 40].

Key idea. Here, we take a slightly different line of attack

for this problem which is based loosely on ideas that were

widely used in computer vision in the early/mid 2000s [21].

First, we move away from black box optimization for archi-

tecture search, similar to strategies adopted in other recent

works [14, 18, 25, 28, 33]. Instead, we view the architecture

as being composed of primitive basic blocks. The “skele-

ton” or connectivity between the blocks is assumed fixed

whereas the actual functionality provided by each block is a

decision variable – this is precisely what our search will be

performed on. The goal then is to identify the assignment

of blocks so that the overall architecture satisfies two simple

properties: (a) it satisfies the user provided resource bounds

and (b) is accurate for the user’s task of interest.

While we will make the statement more formal shortly, it

is easy to see that the above problem can be easily viewed as

a set function. Each empty block can be assigned to a spe-

cific type of functional module. Once all blocks have been

assigned to some functional module, we have a “proposal”

network architecture whose accuracy can be evaluated —

either by training to completion or stopping early [24, 41].

A different assignment simply yields a different architec-

ture with a different performance profile. In this way, the

set function (where accuracy can be thought of as function

evaluation) can be queried/sampled. We find that empiri-

cally, when we evaluate the behavior of this set function,

it often exhibits nice marginal gain or diminishing returns

properties. Further, the performance (accuracy) typically

improves or stays nearly the same when adding functional

modules to a currently empty block (akin to adding an ele-

ment to a set). These properties are central to submodular-

ity, a key concept in many classical methods in computer

vision. Mathematically, of course, our set function is not

submodular. However, our empirical study suggests that the

set function generally behaves well. Therefore, similar to

heuristic application of convex optimization techniques to

nonconvex problems, we utilize submodular optimization

algorithms for architecture search algorithm design.

Main contributions and results. We adapt a simple

greedy algorithm with performance guarantees for submod-

ular optimization – in this case, we obtain a heuristic that is

used to optimize architecture search with respect to its vali-

dation set performance. This design choice actually enables

achieving very favorable performance relative to state-of-

the-art approaches using orders of magnitude less compu-

tation resources, while concurrently being competitive with

other recent efficient search methods, such as ENAS, Prox-

ylessNAS, DARTS and FBNet [6, 27, 30, 38]. This greedy

search is also far simpler to implement than many exist-

ing search methods: no controllers [3, 30, 43, 44], hyper-

networks [4], or performance predictors [25] are required.

It can be easily extended to a number of different resource

bounded architecture search applications.

Our contributions are: (1) We formulate Resource Con-

strained Architecture Search (RCAS) as a set function opti-

mization and design a heuristic based on ideas known to be

effective for constrained submodular optimization. (2) We

describe schemes by which the algorithm can easily sat-

isfy constraints imposed due to specific deployment plat-

forms (# of FLOPs, power/energy). (3) On the results side,

we achieve remarkable architecture search efficiency. On

CIFAR-100, our algorithm takes only two days on 2 GPUs

to obtain an architecture with similar complexity as Mo-

bileNetV2. On ImageNet, our algorithm runs in 8 days on

2 GPUs and identifies an architecture similar in complexity

and performance to MobileNetV2. (4) We show that the ar-

chitectures learned by RCAS on CIFAR-100 can be directly

transferred to ImageNet with good performance.

2. Preliminaries

2.1. Architecture Search

We aim to include computational constraints in the de-

sign of mobile Convolutional Neural Networks (MCNNs).

Consider a finite computational budget available for a spe-

cific prediction task, B. The problem of designing efficient

MCNNs can be viewed as seeking the most accurate CNN

model that fits within said budget B:

max
cnn

f(cnn) subject to Cost(cnn) ≤ B (1)

where f denotes a score function, typically the validation

accuracy on a held out set of samples Xvalid := (xi, yi)
m
i=1,

i.e., f(cnn) = 1
m

Pm

i=1 1[cnnw(xi)=yi]. The parameters w
are learned with a training set Xtrain, often with a surrogate

cross-entropy loss and stochastic gradient descent.

Resource constraints. Model cost is typically measured

[10] in two ways, analogous to algorithmic space and time

complexities: first by the number of parameters, and second

by the number of computations, multiply-adds (MAdds) or

floating point operations per second (FLOPs). With this in

mind, we can more concretely define the budget constraint.

For a budget B, assume there is a corresponding maximum

number of MAdds Bm and number of parameters Bp:

max
cnn

f(cnn) (2)

s.t. MAdds(cnn) ≤ Bm, Param(cnn) ≤ Bp

where MAdds(cnn) denotes the number of multiply-adds

and Param(cnn) denotes the number of parameters of the

model cnn. Typical hardware constraints are given in these

formats, either through physical memory specifications or

processor speeds and cache limits.

Modern CNNs are built by constructing a sequence of

various types of basic blocks. In network design, one may

1902

have a variety of options in types of basic blocks, block

order, and number of blocks. Examples include ResNet

blocks, 3x3 convolutional layers, batchnorm layers, etc.

[11]. Given a large set of various basic blocks, we would

like to find a subset S that leads to a well performing, low

cost CNN. Blocks may have different associated costs, both

in MAdds and in number of parameters.

2.2. Submodular Optimization

The search over the set of blocks that maximizes accu-

racy and remains within budget is NP-hard, even when the

cost of each block with respect to number of parameters and

computations is equal among all elements. However, using

ideas from submodular optimization we can derive heuris-

tics for architecture search.

Definition 1 A function F : 2V → R, where V is a finite

set and 2V denotes the power set of V , is submodular if for

every A ⊆ B ⊆ V and v ∈ V \ B it holds that

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B) (3)

Intuitively, submodular functions have a natural diminishing

returns property. Adding additional elements to an already

large set is not as valuable as adding elements when the set

is small. A subclass of submodular functions are mono-

tone, where for any A ⊆ B ⊆ V , F (A) ≤ F (B). Submod-

ular functions enjoy a number of other properties, including

being closed under nonnegative linear combinations.

Typical submodular optimization maxS✓V F (S) in-

volves finding a subset S ⊆ V given some constraints on

the chosen set: cardinality constraints |S| ≤ r being the

simplest. Formal optimization in these cases is NP-hard for

general forms of submodular functions F (S), and requires

complex and problem-specific algorithms to find good so-

lutions [19]. However, it has been shown that the greedy

algorithm can obtain good results in practice.

Starting with the empty set, the algorithm iteratively

adds an element vk to the set Sk�1 with the update:

vk = argmaxv2V\Sk−1
F (Sk�1 ∪ {v})− F (Sk�1), (4)

where F (Sk�1 ∪ {v})−F (Sk�1) is the marginal improve-

ment in F of adding v to the previous set Sk�1. Results

in [22] show that for a nonnegative monotone submodular

function, the greedy algorithm can find a set Sr such that

F (Sr) ≥ (1 − 1/e)max|S|r F (S). We use this result to

derive heuristics for finding good architectures.

3. Submodular Neural Architecture Search

Assume N block “positions” need to be filled for build-

ing an efficient CNN, and each block position has L types

that can be chosen from. Denote a block of type l ∈ L =

{1, . . . , L} at position n ∈ N = {1, . . . , N} as ln, V de-

note a finite set with N elements (blocks) and F a set func-

tion defined over the power set of V , F : LV → R.

Given a set of blocks, S ∈ LV (e.g., S = {32, 11}),

we build the model CNN cnn (e.g., the first block with

type 1 (11) and the second with type 3 (32)), and take

the validation accuracy of the CNN as the value of F (S),
F (S) = f(cnn). Then accuracy is exactly our map from

the set of blocks to reals, and for each S ∈ LV , a CNN is

built with the selected blocks based on S . Our total search

space size would be LN .

For each set of blocks S , the associated cost c(S) cannot

exceed the specified budget B. Using the above notions of

accuracy and cost, our goal is to solve the problem,

max
S✓V

F (S) subject to c(S) ≤ B (5)

The accuracy objective F (S) has an important prop-

erty, given we can find the best possible parameter setting

(global optimum) during SGD training. F is monotone, i.e.,

F (A) ≤ F (B) for any A ⊆ B ⊆ V . Intuitively, adding

blocks (making the network larger) can only improve accu-

racy in general. For each S , we can obtain its corresponding

number of parameters Param(S) or number of multiply-

adds MAdds(S). In practice, training by SGD may not

reach the global optimum: in this case adding blocks may

not improve accuracy. However, our own empirical results

and those in existing literature suggest that this nondecreas-

ing behavior is typically true, i.e., in ResNet [11].

Denote each cost-accuracy pair at global optimality as

(ci, fi), i = 1, . . . , LN , and add three virtual points, (0, 0),
(cLN , 0), (cLN ,max{f1, . . . , fLN }). This set can be seen

as a convex hull, where for each cost we assign its associ-

ated positive value on the convex hull. If F (S) can always

reach its convex hull point with respect to c(S), the accu-

racy objective satisfies both nonnegativity and nondecreas-

ing monotonicity. This is exactly the diminishing returns

property associated with submodularity: adding a block to

a small set of selected blocks A improves accuracy at least

as much as if adding it to a larger selected block B ⊇ A.

If we let the accuracy of the CNN be 0 when no blocks are

selected, F (∅) = 0, then we immediately have that,

Lemma 1 For any selected blocks A ⊆ B ⊆ V and blocks

v ∈ V \ B, it holds that

F (A) ≥ 0 (6)

F (A ∪ {v})− F (A) ≥ 0 (7)

F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B) (8)

where F reaches its convex hull point w.r.t. the cost.

Thus the neural architecture search problem can be solved

as the problem of maximizing a nonnegative nondecreas-

ing function, subject to parameter and computational budget

constraints.

1903

The simple greedy algorithm described in Section 2.2 (4)

assumes equal costs for all blocks. Naturally it can perform

arbitrarily badly in the case where c(S) =
P

v2S c(v), by

iteratively adding blocks until the budget is exhausted. A

block containing a very large number of parameters or ex-

pensive MAdds with accuracy fo will be preferred over a

cheaper block offering accuracy fo − ✏. To deal with these

knapsack constraints, the marginal gain update in (4) can be

modified to the marginal gain ratio,

vk = argmaxv2V\Sk−1

F (Sk�1 ∪ {v})− F (Sk�1)

c(v)
(9)

The modified greedy algorithm with marginal gain ratio rule

attempts to maximize the cost/benefit ratio, and stops when

the budget is exhausted. However, even with this modi-

fication, the greedy algorithm can still perform arbitrarily

poorly with respect to global optima. For example, con-

sider the parameter costs of picking between two blocks v1
and v2, Param(v1) = ✏, Param(v2) = p. If we compute the

accuracy of adding the blocks as F (v1) = 3✏, F (v2) =

2p, then the cost/benefit ratios are
F (v1)�F (;)
Param(v1)

= 3 and

F (v2)�F (;)
Param(v2)

= 2. The modified greedy algorithm will pick

block v1. If v1 is picked and added to current set, and we do

not have enough budget to next add v2, we only achieve ac-

curacy 3✏. However, the optimal solution is to pick v2 given

any budget less than p+ ✏.

Fortunately, the greedy algorithm can be further adapted.

We compute S̃APR using the accuracy parameter ratio

(APR) with rule (9) and cost Params(v), use the accuracy

MAdds ratio (AMR) with the same and cost MAdds(v)
to get S̃AMR, and take the uniform cost (UC) greedy al-

gorithm with rule Eq. (4) to get S̃UC . The new modified

Cost-Effective Greedy (CEG) algorithm returns the model

which achieves maximum accuracy. With these rules, CEG

can still achieve a constant ratio approximation.

Theorem 1 If F is a nondecreasing set function satisfying

diminishing return property and F (∅) = 0, then the CEG

algorithm achieves a constant ratio 1
2 (1−

1
e
) of the optima:

max{F (S̃UC), F (S̃APR), F (S̃AMR)} (10)

≥
1

2
(1−

1

e
) max
MAdds(S)BmParam(S)Bp

F (S)

The proof is in the supplement. If we consider the time-

cost of the accuracy function evaluation as O(T) (T is the

time to train the network by SGD), then the running time

of CEG is O(|V|ΦT), where |V| = LN is the total number

of blocks, Φ = max1kLN{ Bp

Param(ek)
, Bm

MAdds(ek)
}. The

CEG algorithm is at most O(T |V|2). While this is a sizable

improvement over our initial combinatorial approach, sim-

ple technical/empirical observations allow us to scale and

speed up the CEG algorithm by early stopping during train-

ing and with lazy function evaluation.

Algorithm 1 Cost-Effective Greedy CNN Search (CEG)

function CEG(V , F , B, c(·))

S ← argmaxv2V
F (v)
c(v)

while c(S) ≤ B do

v? = argmaxv2V\S
F (S[{v})�F (S)

c(v)

S ← S ∪ {v?}
end while

return S
end function

Input Output

0.05 0.2 0.1

…

0.05 0.3 0.1

…
…

…

…

…

…

0.12 0.1 0.11 0.4 0.1 0.09 0.1 0.15 0.19

0.12 0.1 0.11 0.1 0.15 0.19

0.12 0.1 0.11 0.1 0.15 0.1

Figure 1: An overview of our Lazy Cost-Effective Greedy Search. Col-

ors correspond to different basic block types, and empty boxes represent

positions in the network to be considered for filling block. Numbers be-

low blocks indicate marginal benefit of the block filled at that position.

Step 1 searches over all blocks. Step 2 selects the block with highest

marginal benefit, 13, for filling in position 3. Step 3 updates the next

highest marginal benefit with 13 added. Step 4 picks the highest marginal

benefit block, 21, for filling in position 1. Step 5 updates the next highest

marginal benefit with {13, 21} added, 3N . However, the marginal bene-

fit of 3N is not the highest, so we did not pick this block and the search

continues. The final architecture is obtained once the budget is exhausted

(unfilled blocks are replaced with identity operations).

3.1. Early Stop Training

The running time is linear with respect to function eval-

uation time. This time includes the full training time to

learn network weights by SGD in order to achieve test set

accuracy close to the global optimum. This is expensive,

and so even the “low” number of O(|V|2) number of CNNs

to search is prohibitive in practical situations in which one

may not have access to large GPU clusters or months of

training time. In this case, to reduce the time to learn the

weights of CNNs for accuracy function evaluation, we re-

duce the number of epochs and train the network with early

stopping. Our experiments indicate this leads to learned ar-

chitectures similar to those when trained to optimality.

1904

3.2. Lazy Function Evaluation

With early stopping and caching, while we can quickly

evaluate the accuracy function F (S) when adding any

block, we still need to make a large number of function

evaluations in order to run CEG. The running time is at least

linear in the total number of blocks, and in the worst case

quadratic if the number of selected blocks can be as high

as total number of blocks LN . If we select K blocks for

building our CNN among |V| blocks, O(K|V|) evaluations

are needed. The submodularity property can be exploited

further to perform far fewer function evaluations.

The marginal benefit of adding any one block can be

written as, for all v ∈ V \S , ∆(v|S) = F (S∪{v})−F (S).
The key idea of exploiting submodularity is that, as the set

of our selected blocks grows, the marginal benefit can never

increase, which means that if A ⊆ B ⊆ V , it holds that

∆(v|A) ≥ ∆(v|B). Therefore we do not need to update

∆(v|S) for every network after adding a new block v0 and

we can perform lazy evaluation. This Lazy Cost Effective

Greedy algorithm (LCEG), Alg. 2, can be described as fol-

lows: 1. Apply rule Eq. 4 to search all LN blocks and

keep an ordered list of all marginal benefits with decreasing

order by priority queue. 2. Select the top element of the pri-

ority queue as the first selected block at the first iteration.

3. Reevaluate ∆(v|S) for the top element v in the prior-

ity queue. 4. If adding block v, ∆(v|S) is larger than the

top element in priority queue, so pick block v. Otherwise,

insert it with the updated ∆(v|S) back in the queue. 5. Re-

peat steps 2-4 until the budget is exhausted. An overview of

LCEG can be seen in Figure 1.

In many cases, the reevaluation of ∆(v|S) will result in

a new but not much smaller value, and the top element will

often stay at the top. In this way, we can often find the

next block to add without having to recompute all blocks.

This lazy evaluation thus leads to far fewer evaluations of

F and means we need to train much fewer networks when

trying to add one block. The final algorithm includes taking

advantage of our LCEG procedure. Resource Constrained

Architecture Search, RCAS is defined in Algorithm 3.

4. Experiments

It is expensive to search directly for CNN models on

ImageNet and it can take several days to find a network

architecture (even without resource constraints). Previous

works [31, 44] suggest that we can perform our architec-

ture search experiments on a smaller proxy task and then

transfer the top-performing architecture discovered during

search to the target task. However, [36] shows that it is not-

trivial to find a good proxy task under constraints. Exper-

iments on CIFAR-10 [23] and the Standford Dogs Dataset

[20] demonstrate these datasets are not good proxy tasks

for ImageNet when a budget constraint is taken into ac-

Algorithm 2 Lazy Cost-Effective Greedy Search

function LAZY-CEG(V , F , Bp, Bm, c(·))
S ← ∅

PriorityQueue Q ← PriorityQueue()
for all v ∈ V do . First iteration

if Param(v) ≤ Bp AND MAdds(v) ≤ Bm then

Q.push({v, F (v)
c(v) })

end if

end for

S ← S ∪ {Q.pop()}
while ∃v ∈ Q :Param(S ∪ {v}) ≤ Bp AND

MAdds(S ∪ {v}) ≤ Bm do . Lazy update

v? ← Q.pop()
if v? ∈ V \ S then

if
F (S[{v?})�F (S)

c(v?) ≥
F (S[{Q.top()})�F (S)

c(v)
then

S ← S ∪ {v?}
else

Q.push({v?, F (S[{v?})�F (S)
c(v?) })

end if

end if

end while

return S
end function

Algorithm 3 Resource Constrained Architecture Search

(RCAS)

function RCAS(V , F , Bp, Bm)

S̃UC ← LAZY-CEG(V , F , Bp, Bm, const(·))

S̃APR ← LAZY-CEG(V , F , Bp, Bm, Param(·))

S̃AMR ← LAZY-CEG(V , F , Bp, Bm, MAdds(·))

return argmax{S̃UC , S̃APR, S̃AMR}
end function

count. RCAS shines in this problem setting, allowing us

to perform our architecture search on a much larger dataset,

CIFAR-100. Indeed, we also can directly perform our ar-

chitecture search on the ImageNet training set, to directly

evaluate and compare the architectures learned. In these

large scale cases, we train for fewer steps on CIFAR-100

and ImageNet.

Our experiments on CIFAR-100 and ImageNet have two

steps: architecture search and architecture evaluation. In

the first step, we search for block architectures using RCAS

and pick the best blocks based on their validation perfor-

mance. In the second step, the picked blocks are used to

build CNN models, which we train from scratch and evalu-

ate the performance on the test set. Finally, we extend the

network architecture learned from CIFAR-100 and evaluate

the performance on ImageNet, comparing with the architec-

ture learned through RCAS applied directly to ImageNet.

1905

Layer Input Operator Output

Group-wise expansion layer H ×W × C1 1x1 gconv2d group= ge, ReLU6 H ×W × (C1 × t)
Depthwise layer H ×W × (C1 × t) 3x3 dwise stride = s, ReLU6 H/s×W/s× (C1 × t)

Group-wise projection layer H/s×W/s× (C1 × t) linear 1x1 gconv2d group = gp H/s×W/s× C2

Table 1: Parameter and performance efficient depth-wise based basic blocks used in Resource Constrained Architecture Search. The structure of basic

blocks derive from depth-wise based MobileNetV2 blocks, changing the expansion factor t and using group convolutions. Basic blocks transform from C1

to C2 channels with expansion factor t, expansion group ge and projection group gp with stride s.

4.1. Architecture Search

As our main purpose is to look for low cost mobile neural

networks, the following basic blocks (using depthwise con-

volution extensively) are included for architecture search,

varying from MobileNetV2 blocks by using different ex-

pansion ratios and group convolutions for expansion and

projection (see Table 1). Each type of block is shown in

Figure 2 and consists of different types of layers. We have

L = 6 different basic blocks to pick from and N = 36
number of positions can be filled for building networks un-

der parameter and MAdds constraints for our low cost ar-

chitecture search. An overview of picking basic blocks to

fill positions can be seen in Figure 1. During architecture

search, only one basic block can be picked to fill a position,

otherwise the procedure will not insert any block. The input

Gconv 1 × 1

ge = 1

H × W × C

Depthwise

Conv 3 × 3

H × W × 3C

Gconv 1 × 1

gp = 1

H × W × 3C

+

Gconv 1 × 1

ge = 1

H × W × C

Depthwise

Conv 3 × 3

H × W × 3C

Gconv 1 × 1

gp = 2

H × W × 3C

+

Gconv 1 × 1

ge = 2

H × W × C

Depthwise

Conv 3 × 3

H × W × 6C

Gconv 1 × 1

gp = 2

H × W × 6C

+

Type 1 Type 2 Type 3

Gconv 1 × 1

ge = 1

H × W × C

Depthwise

Conv 3 × 3

H × W × 6C

Gconv 1 × 1

gp = 2

H × W × 6C

+

Gconv 1 × 1

ge = 1

H × W × C

Depthwise

Conv 3 × 3

H × W × 6C

Gconv 1 × 1

gp = 1

H × W × 6C

+

Gconv 1 × 1

ge = 2

H × W × C

Depthwise

Conv 3 × 3

H × W × 12C

Gconv 1 × 1

gp = 4

H × W × 12C

+

Type 4 Type 5 Type 6

Figure 2: The 6 types depthwise-based basic blocks used in RCAS.

for the kth picked block is the output of the (k−1)th picked

block, naturally stacking and forming the network.

Standard practice in architecture search [31] suggests a

separate validation set be used to measure accuracy: we ran-

domly select 10 images per class from the training set as the

fixed validation set. During architecture search by RCAS,

we train each possible model (adding one basic block with

different options at every position) on 10 epochs of the

proxy training set using an aggressive learning rate sched-

ule, evaluating the model through the accuracy set function

F (S) on the fixed validation set. We use stocastic gradi-

ent descent (SGD) to train each possible model for training

with nesterov momentum set to 0.9. We employ a multi-

step learning rate schedule with initial learning rate 0.1 and

multiplicative decay rate g = 0.1 at epochs 4, 7 and 9 for

fast learning. We set the regularization parameter for weight

decay to 4.0e�5, following InceptionNet [34].

4.2. Architecture Evaluation

Applying our RCAS, we obtain a selected architecture

under the given parameter and MAdds budget. To evaluate

the selected architecture, we train it from scratch and evalu-

ate the computational efficiency and accuracy on the test set.

Given mobile budget constraints, we compare our selected

architecture with mobile baselines, MobileNetV2 and Shuf-

fleNet [13, 32]. We take the parameter number and MAdds

as the computational efficiency and report the latency and

model size on a typical mobile platform (iPhone 5s). We

evaluate the performance of our selected architecture on

both the CIFAR-100 dataset and ImageNet dataset. Follow-

ing prior work [34], we use the validation dataset as a proxy

for test set ImageNet classification accuracy. Our RCAS al-

gorithm and subsequent Resource Constrained CNN (RC-

Net) are implemented using PyTorch [29]. We use built-in

ShuffleNet

MobileNetV2RCNet

ShuffleNet

MobileNetV2

RCNet

Parameters MAdds

1.25M 1.50M 1.75M 2.00M 2.25M 2.50M 60M 70M 80M 90M 100M 110M

70 %

72 %

74 %

76 %

A
c
c
u
ra

c
y

Figure 3: Architectures along the search path over constraints are stored.

RCAS uses (∼ 45%) fewer parameters and (∼ 35%) fewer MAdds to

achieve similar accuracy.

1906

Architecture Top-1 Accuracy Top-5 Accuracy Parameters MAdds Search Method Cost (GPU Days)

MobileNetv2 74.2 93.3 2.4M 91.1M manual -

ShuffleNet(1.5) 70.0 90.8 2.3M 91.0M manual -

NASNet-A 70.0 86.0 3.61M 132.0M RL 1800

DARTS (searched on CIFAR-10) 75.9 93.8 3.40M 198.0M gradient-based 4

RCNet (searched on CIFAR-100) 76.1 94.0 1.92M 87.3M RCAS 2

Table 2: Comparison with state-of-the-art image classifiers on CIFAR-100. Our searched model performs significantly better than other manual methods.

Given MobileNetV2 parameter and MAdds constraints, our model still outperforms DARTS with ∼ 44% fewer parameters and ∼ 50% fewer MAdds.

Additionally, both RCAS and RCNet run on CIFAR-100 much faster than DARTS.

24

26

28

30

0.0 0.2 1.1 1.7 2.00.0 0.2 1.1 1.7 2.00.0 0.2 1.1 1.7 2.0

GPU Time (Days)

E
rr

o
r

(%
)

Method

RCNet

MobileNet

DARTS

Figure 4: Search progress of RCAS on CIFAR-100. We keep track of

the most recent architecture over time, with MobileNetV2 and the final

DARTS architecture as reference.

1 × 1 convolution and group convolution implementations.

The methods are easy to reproduce in other deep learning

frameworks such as Caffe [17] and TensorFlow [1], using

built-in layers as long as 1 × 1 standard convolutions and

group convolutions are available. For CIFAR-100, we use

similar parameter settings as during search, with the excep-

tion of a maximum number of epochs of 200 and a learn-

ing rate schedule updating at epochs 60, 120, and 180. For

ImageNet, we use an initial learning rate 0.01, and decay

at epochs 200 and 300 with maximum training epoch 400.

We use the same default data augmentation module as in

ResNet for fair comparisons. Random cropping and hori-

zontal flipping are used for training images, and images are

resized or cropped to 224 × 224 pixels for ImageNet and

32 × 32 pixels for CIFAR-100. At test time, the trained

model is evaluated on center crops.

4.3. CIFAR-100

The CIFAR-100 dataset [23] consists of 50, 000 training

RGB images and 10, 000 test RGB images with 100 classes.

The image size is 32 × 32. We take the state-of-the-art

mobile network architecture MobileNetV2 as our baseline.

All the hyperparameters and preprocessing are set to be the

same in order to make a fair comparison. The 32 × 32 im-

ages are converted to 40×40 with zero-padding by 4 pixels

and then randomly cropped to 32× 32. Horizontal flipping

and RGB mean value substraction are applied as well.

We evaluate the top-1 and top-5 accuracy and compare

MAdds and the number of parameters for benchmarking.

The performance comparison between baseline models and

our RCNet is shown in Table 2. RCNet achieves signifi-

cant improvements over MobileNetV2 and ShuffleNet with

fewer computations and fewer parameters. Our RCNet

achieves similar accuracy with MobileNetV2 with ∼ 45%
parameter reduction and ∼ 35% computation reduction (see

Figure 3). With ∼ 20% fewer parameters, RCNet achieves

a 1.9% accuracy improvement. Search progress on CIFAR-

100 can be seen in Figure 4.

Does submodular property with early stopping hold?

On CIFAR-100, we find that our procedure displays mono-

tonicity and diminishing returns over accuracy averaged

over 500 networks built on random block additions (out of

our 6 types) with early stopping: 56.96%, 57.98%, 58.81%,

59.47%, 59.94%, 60.35%, 60.70%, 60.72%. It may be the

case that with early stopping we may not be identifying the

absolute best block at a given step in the algorithm, but as

demonstrated, empirically we find that the final architecture

identified is competitive with state-of-the-art.

Does block diversity help? To show the gains from

block diversity, we use our method to search only with block

type 5. On CIFAR-100, we obtain a top-1 accuracy of

75.8%, worse than the original searched model with 76.1%,

under the same constraints. This points to the importance

of block diversity in resource constrained CNN models.

Does our search procedure help? To show the gains

from our search procedure, we use the searched solution and

replace the last several blocks with random blocks. With

∼ 1.8M parameters and ∼ 73.0M MAdds, the random-

block solution only yields 74.9% top-1 accuracy on CIFAR-

100, as opposed to the original searched solution, 76.1%.

Randomly adding one more block only gives 75.1% top-1

accuracy with ∼ 2.9M parameters and ∼ 88M MAdds.

4.4. ImageNet

There are 1.28M training images and 50K validation

images from 1, 000 classes in the ImageNet dataset [7]. Fol-

lowing the procedure for CIFAR-100, we learn the RCNet

architecture on the training set and report top-1 and top-5

validation accuracy with the corresponding parameters and

MAdds of the model. The details of our learned RCNet ar-

chitecture can be seen in the supplement. We compare our

models with other low cost models (e.g. ∼ 3.4M parame-

ters and ∼ 300M MAdds) in Table 3. RCNet achieves con-

1907

Architecture Top-1 Accuracy Top-5 Accuracy Parameters MAdds Search Method Cost (GPU Days)

InceptionV1 [35] 69.8 89.9 6.6M 1448M manual -

MobileNetV1 [15] 70.6 88.2 4.2M 575M manual -

ShuffleNet(1.5) [42] 71.5 - 3.4M 292M manual -

CondenseNet(G=C=4) [16] 71.0 90.0 2.9M 274M manual -

MobileNetV2 [32] 72.0 91.0 3.4M 300M manual -

ANTNet [39] 73.2 91.2 3.7M 322M manual -

NASNet-A [44] 74.0 91.6 5.3M 564M RL 1800

AmoebaNet-A [31] 74.5 92 5.1M 555M RL 1800

MNasNet-92 (searched on ImageNet) [36] 74.8 92.1 4.4M 388M RL -

Proxyless-R [6] 74.6 92.2 - - RL 9

PNASNet [25] 74.2 91.9 5.1M 588M SMBO ∼255

DPP-Net-Panaca (searched on CIFAR-10) [8] 74.0 91.8 4.8M 523M SMBO 8†

DARTS (searched on CIFAR-10) [27] 73.1 91.0 4.9M 595M gradient-based 4†

FBNet-C [38] 74.9 - 5.5M 375M gradient-based 9

RCNet (searched on ImageNet) 72.2 91.0 3.4M 294M RCAS 8

RCNet-B (searched on ImageNet) 74.7 92.0 4.7M 471M RCAS 9

Table 3: Performance Results on ImageNet Classification. Given 3.4M parameters and 300M MAdds constraints, RCAS finds a model searching on

ImageNet using 8 GPU days, much faster than other automated methods and RCNet performs better than “manual” methods with similar complexity. With

5M parameters and 500M MAdds constraints, RCNet-B achieves comparable accuracy to MNasNet-92 with fewer computation resources. RCNet-B

outperforms DPP-Net-Panaca by 0.7% and DARTS by 1.6% with similar computation resources (The methods marked by † are searched on CIFAR-10,

while our method is searched on ImageNet directly).

sistent improvement over MobileNetV2 by 0.2% Top-1 ac-

curacy and ShuffleNet (1.5%) by 0.7%. Compared with the

most resource-efficient model, CondenseNet (G = C = 4),

our RCNet performs better with 1.2% accuracy gain.

Using the model found with CIFAR-100, we retrain the

same model with ImageNet. Performance is comparable to

MobileNetV2 with similar complexity, indicating that our

procedure can effectively transfer to new and challenging

datasets. Here, the adapted RCNet obtains favorable results

compared with state-of-the-art RL search methods, with

three orders of magnitude fewer computational resources.

More details can be found in the supplement. The final

model constructed by RCAS includes 18 basic blocks with

6 types in the following sequence:

[5, 1, 4, 5, 1, 5, 2, 4, 1, 6, 4, 6, 5, 3, 3, 6, 3, 6]

Remarks. There are a few interesting observations to be

made here. First, given the limited parameter and MAdds

budget, RCAS picks very few blocks with higher cost. Ad-

ditionally, picking too many high dimensional blocks de-

creases the performance of the model compared to select-

ing fewer more low dimensional blocks. Additional details

regarding the search path is in the supplement. Second,

with a specified maximum cost set to approximately the size

of MobileNetV2, we identify a similar number of blocks.

However, the blocks identified are diverse. Common mo-

bile architectures consist of replications of the same type of

block, e.g., MobileNetV2. This may suggest that block di-

Model MAdds CoreML Model Size Inference Time

MobileNetV2 300 M 14.7 MB 197.2 ms

RCNet 294 M 14.6 MB 183.5 ms

Table 4: Inference time running on an actual device, iPhone 5s. As

expected, our searched model, RCNet, use similar average inference time

as MobileNetV2 per image.

versity is a valuable component of designing resource con-

strained mobile neural networks.

4.5. Inference Time

We test the actual inference speed on an iOS-based

phone, iPhone 5s (1.3 GHz dual-core Apple A7 processor

and 1GB RAM), and compare with baseline model Mo-

bileNetV2. To run the models, we convert our trained model

to a CoreML model and deploy it using Apple’s machine

learning platform. We report the inference time of our mod-

els in Table 4 (average over 10 runs). As expected, RCNet

and MobileNetV2 have similar inference times.

5. Conclusion

Mobile architecture search is becoming an important

topic in computer vision, where algorithms are increasingly

being integrated and deployed on heterogenous small de-

vices. Borrowing ideas from submodularity, we propose

algorithms for resource constrained architecture search.

With resource constraints defined by model size and com-

plexity, we show that we can efficiently search for neu-

ral network architectures that perform quite well. On

CIFAR-100 and ImageNet, we identify mobile architec-

tures that match or outperform existing methods, but with

far fewer parameters and computations. Our algorithms

are easy to implement and can be directly extended to

identify efficient network architectures in other resource-

constrained applications. Code/supplement is available at

https://github.com/yyxiongzju/RCNet.

Acknowledgments. This work was supported by NSF CA-

REER award RI 1252725, UW CPCP (U54AI117924) and

a NIH predoctoral fellowship to RM via T32 LM012413.

We thank Jen Birstler for their help with figures and plots,

and Karu Sankaralingam for introducing us to this topic.

1908

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-

tion ({OSDI} 16), pages 265–283, 2016.

[2] Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and

Kris M Kitani. N2n learning: Network to network com-

pression via policy gradient reinforcement learning. arXiv

preprint arXiv:1709.06030, 2017.

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. arXiv preprint arXiv:1611.02167, 2016.

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

[5] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun

Wang. Efficient architecture search by network transforma-

tion. AAAI, 2018.

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[8] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,

and Min Sun. Dpp-net: Device-aware progressive search for

pareto-optimal neural architectures. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

517–531, 2018.

[9] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & simple

resource-constrained structure learning of deep networks.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[12] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and ac-

celeration on mobile devices. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 784–

800, 2018.

[13] Michael G Hluchyj and Mark J Karol. Shuffle net: An appli-

cation of generalized perfect shuffles to multihop lightwave

networks. Journal of Lightwave Technology, 9(10):1386–

1397, 1991.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. arXiv preprint arXiv:1905.02244, 2019.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In CVPR, volume 1, page 3, 2017.

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,

and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. In Proceedings of the 22nd ACM inter-

national conference on Multimedia, pages 675–678. ACM,

2014.

[18] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,

Barnabas Poczos, and Eric Xing. Neural architecture search

with bayesian optimisation and optimal transport. arXiv

preprint arXiv:1802.07191, 2018.

[19] Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, and

Jeff A Bilmes. Submodularity cuts and applications. In

Advances in Neural Information Processing Systems, pages

916–924, 2009.

[20] Aditya Khosla, Nepali Jayadevaprakash, Bangpeng Yao, and

Fei-Fei Li. Novel dataset for fine-grained image categoriza-

tion: Stanford dogs.

[21] Vladimir Kolmogorov and Ramin Zabih. What energy func-

tions can be minimized via graph cuts? In Proceedings of

the 7th European Conference on Computer Vision, ECCV

’02, pages 65–81, 2002.

[22] Andreas Krause and Carlos Guestrin. Near-optimal obser-

vation selection using submodular functions. In AAAI, vol-

ume 7, pages 1650–1654, 2007.

[23] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009.

[24] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-

tamizadeh, and Ameet Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimization. The

Journal of Machine Learning Research, 18(1):6765–6816,

2017.

[25] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 19–34, 2018.

[26] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical repre-

sentations for efficient architecture search. arXiv preprint

arXiv:1711.00436, 2017.

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[28] Renato Negrinho and Geoff Gordon. Deeparchitect: Auto-

matically designing and training deep architectures. arXiv

preprint arXiv:1704.08792, 2017.

[29] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory

Chanan. Pytorch. Computer software. Vers. 0.3, 1, 2017.

1909

[30] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018.

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. arXiv preprint arXiv:1802.01548, 2018.

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[33] Richard Shin*, Charles Packer*, and Dawn Song. Differen-

tiable neural network architecture search, 2018.

[34] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In AAAI, vol-

ume 4, page 12, 2017.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[36] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,

2018.

[37] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization with mixed

precision. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 8612–8620,

2019.

[38] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10734–10742, 2019.

[39] Yunyang Xiong, Hyunwoo J Kim, and Varsha Hedau.

Antnets: Mobile convolutional neural networks for re-

source efficient image classification. arXiv preprint

arXiv:1904.03775, 2019.

[40] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec

Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-

tadapt: Platform-aware neural network adaptation for mobile

applications. Energy, 41:46.

[41] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learn-

ing requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

[42] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018.

[43] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

[44] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017.

1910

