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Abstract

Multi-view shape descriptors obtained from various 2D

images are commonly adopted in 3D shape retrieval. One

major challenge is that significant shape information is dis-

carded during 2D view rendering through projection. In this

paper, we propose a convolutional neural network based

method, Neighbor-Center Enhanced Network, to enhance

each 2D view using its neighboring ones. By exploiting

cross-view correlations, Neighbor-Center Enhanced Net-

work learns how adjacent views can be maximally incor-

porated for an enhanced 2D representation to effectively

describe shapes. We observe that a very small amount

of, e.g., six, enhanced 2D views, are already sufficient for

panoramic shape description. Thus, by simply aggregating

features from six enhanced 2D views, we arrive at a highly

compact yet discriminative shape descriptor. The proposed

shape descriptor significantly outperforms state-of-the-art

3D shape retrieval methods on the ModelNet and ShapeNet-

Core55 benchmarks, and also exhibits robustness against

object occlusion.

1. Introduction

3D shape retrieval is widely applied in fields such as bi-

ological analysis, virtual reality, and medical imaging. Re-

cent years have witnessed significant progress in 3D shape

retrieval [25, 29, 6, 14]. By mimicking the human visual

perception of 3D shapes with 2D observations, 2D view-

based 3D shape retrieval methods have shown impressive

performance.

The state-of-the-art view-based methods adopt deep

learning. These methods first apply deep convolutional neu-

ral networks (CNNs) [12, 18] over rendered views from 3D

shapes to obtain a set of discriminative features, and then as-
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Figure 1. (a) The original 2D view shows ineffective in identifying

a shape. (b) This 2D view can be enhanced from a set of neighbor-

ing views by exploring cross-view correlations. (c) Our method

learns how adjacent views can be maximally incorporated for an

enhanced shape representation, and the intensity of the green line

indicates the value of the learned correlation attention.

semble multiple visual features across the spatial dimension

using methods such as the max-pooling operation [23] or an

active concatenation technique [10]. We note that the dis-

criminative visual representation of each projected view is

vital in existing methods. However, due to the information

deficiency in projection, certain views contain insufficient

shape information, as shown in Figure 1 (a), to effectively

identify a shape, restricting the discrimination of the fea-

tures. Moreover, this deleterious effect is even more signifi-

cant under object occlusion in real applications of 3D shape

recognition.
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To address the above challenges, we propose to describe

a 3D shape by incorporating in each single 2D view a set of

neighboring views, as shown in Figure 1 (a) and Figure 1

(b). It is observed that neighboring views can supply nec-

essary complementary geometry information to their cen-

ter view. Therefore, we seek for an efficient view-based

method that uses adjacent views to enhance the discrimina-

tion of shape representations at the feature level. We note

that different neighboring views have different effects on

the enhancement of the center view. On one hand, some

views are similar to the center view and provide limited ad-

ditional shape information to the center view. On the other

hand, certain views may be occluded, producing a negative

effect on the shape features in the presence of object oc-

clusion. Therefore, it is necessary to explore the content

relationship among neighboring views and center views in

the process of enhancement.

In this work, we propose a 3D shape retrieval framework,

named the Neighbor-Center Enhanced Network (NCENet),

to enhance the discrimination of each 2D view feature by

exploiting correlations across its adjacent views. In our net-

work, the visual feature of each 2D view is first extracted

from a CNN and then grouped with its neighboring view

features to conduct center feature enhancement. Note that

we refer to the 2D view to be enhanced as the center view

due to its central position relative to the adjacent views to

be exploited.

In our method, a correlation unit is designed to guide

the feature enhancement of the center view, and such mod-

ule takes into account both the discriminability and com-

plementarity of neighboring view features. Moreover, two

types of enhanced structures are presented to utilize the in-

herent topological order between the center view and its ad-

jacent views: The parallel structure considers all of the ad-

jacent features independently and simultaneously, and the

serial structure incorporates the adjacent features in sequen-

tial order.

In summary, our main contributions are as follows:

• We introduce a compact, discriminative and robust 2D

view-based 3D shape descriptor, by enhancing each

2D view with its neighboring ones through CNNs.

• We design network modules and structures to exploit

the discriminability and complementarity of neighbor-

ing views for optimized 2D view enhancement.

• Our enhanced 2D views show both discriminative for

shape description and robust to object occlusion, sig-

nificantly outperforming the state-of-the-art methods

on both ModelNet and ShapeNetCore55 benchmarks.

2. Related Work

Our method is related to prior work on 3D shape repre-

sentation learning for 3D shape retrieval. There has been

much insightful research on developing 3D shape represen-

tation learning methods [8, 24]. These approaches can be

classified into two categories: model-based methods that

directly extract the features from the raw 3D representa-

tions of 3D objects, such as polygon meshes, point clouds,

geometric-based shape distributions, or graph-based topo-

logical structures, and view-based methods that leverage the

shape information in a collection of rendered views.

Many model-based shape descriptors have been pro-

posed for 3D shapes. Previously, model-based shape de-

scriptors were largely constructed by hand, which was time-

consuming. For instance, 3D shapes can be represented

with a heat kernel signature with heat diffusion on polygon

meshes [1] or a sequence of radii of the maximal balls at the

skeleton points [13]. The recently developed deep learning

techniques fall into this category, and shape descriptors can

be learned from a volumetric occupancy grid representation

with a convolutional neural network [16], a “geometry im-

age” transformed from a 3D shape using CNNs [22], point

sets [17], and the probability distribution of HKS through

a deep auto-encoder [28]. Although model-based shape

descriptors can effectively capture the discriminative geo-

metric characteristics, they face several serious challenges.

First, model-based shape descriptors tend to be very high-

dimensional, imposing a high computational burden of the

distance measurement computation between different 3D

shapes. Second, naive 3D representations of recently orga-

nized 3D object datasets face many obstacles, such as noise,

incompleteness or occlusions, severely hindering the devel-

opment of model-based algorithms.

Regarding view-based shape representation learning, a

3D model is represented by a set of rendered views. These

have many desirable properties: they are convenient for ap-

plying deep learning models to regular structures and vertex

topologies and are efficient in computing and robust in han-

dling naive 3D shape representation, such as holes, ambigu-

ous orientation on surfaces and numerical noise. The vi-

sual similarity between the views of two models is regarded

as the model difference. A typical example of a view-

based technique is the LightField descriptor [3] that ex-

tracts the representations of 3D shapes by utilizing geomet-

ric and Fourier descriptors from rendered images. [2] ex-

tracted visual features using GPU acceleration and adopted

an efficient context-based re-ranking technique. Compared

to a single image, a multi-view image sequence provides

a much richer capacity for 3D shape retrieval. In recent

years, CNN architectures have been extended to play an

important role in retrieval and recognition from image se-

quences by transforming a 3D shape into a panoramic view

and max pooling across each row [20], max pooling across
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all viewpoints [23], or utilizing the spatial correlation in-

formation among multiple views with RNN [4]. However,

these methods ignore the intrinsic content relationship be-

tween the views and fail to make full use of the informa-

tion of all of the views. In our method, the content cor-

relation among views is leveraged to enhance all 2D view

features. Recently, Feng et al. [6] propose a similar frame-

work (GVCNN) to learn the relationship among views using

a group strategy. However, our method comes from a very

different motivation, that [6] is motivated by exploiting the

group-level relationship, while our inspiration comes from

each 2D view and its neighboring views.

3. Method

In this section, we introduce the proposed neighbor-

center enhanced network (NCENet) in detail. To produce

discriminative 3D shape representation, NCENet enhances

the discrimination of each 2D view feature via exploring the

intrinsic correlation across its adjacent views. Specifically,

multiple 2D view features are firstly extracted from a CNN.

Then, the feature of each 2D view image is combined with

the features of its neighboring views, and inputted into the

center feature enhanced module. In this step, the present

view to be enhanced is referred to as the center view be-

cause of its central position relative to the adjacent views.

We take the following two issues into consideration

while designing the enhanced module. First, even though

adjacent views are complementary to the center view, they

can be redundant due to cross-view similarity. We present

a correlation unit, modeling the intrinsic correlation be-

tween views, to help the center view effectively capture

adjacent discriminative information. Second, the adjacent

views present a specific and inherent order, according to

their positions relative to the center view. We adopt two

strategies to address the order of the neighboring views in

our network, i.e., the parallel and serial structures, and then

we compare their retrieval performances.

Figure 2 illustrates the detailed flowchart of our proposed

method. NCENet employs GoogLeNet with batch normal-

ization [9] as the base architecture. The “CNN” denotes

the whole GoogLeNet architecture. Softmax loss and cen-

ter loss [26] are adopted to jointly supervise the NCENet.

Center loss can give effective supervision of NCENet, and

the analysis of the impact of the center loss on NCENet is

given in the experiment.

3.1. Neighboring Views and Center View

We use the Phong reflection model [15] to render

the views of 3D shapes in a unit spherical coordinate

system, as shown in the left of Figure 3. The images

are projected in the depth buffer at each combination

of latitude θla and longitude θlo. Consider a shape X ,

where Ii denotes the projected image assigned to the

CNN
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Center view
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feature

Middle 

representation

CNN extraction Enhancement of center feature

Figure 2. Neighbor-center enhanced network (NCENet). NCENet

extracts the feature of each 2D view using a CNN architecture and

enhances each view representation with neighboring ones. Red:

Center view. Green: Neighboring views. For better visualiza-

tion, only four neighboring views (up, down, left and right) are

displayed (Best viewed in color).

Longitude

Latitude

ngitude

Viewpoints

Figure 3. Left: views are rendered in a unit spherical coordinate

system. Right: a present view to be enhanced (red circle) and its

neighboring views (green circle). Since this view is at the center of

the adjacent views, we refer to it as the center view in our network.

i-th view of shape X , and we can find its neighboring

view set Neighbor(Ii) = {Ii→j}j∈Pos, where Pos =
{up, down, left, right, upper left, upper right, bottom
left, bottom right}, denoting the eight adjacent directions

relative to Ii. The right side of Figure 3 shows Ii and its

neighboring set Neighbor(Ii). It is observed that Ii is in

the center of the adjacent views. Again, we denote Ii as the

center view in the enhancement process. Note that each

view is enhanced as the center view with its neighboring

views in the training stage. Since some viewpoints are on

the boundary of the projection system, these views can have

missing adjacent views in certain directions. And we use

the feature of the center view to replace missing adjacent

features.

3.2. Correlation Unit

The correlation unit aims to describe the relationship be-

tween neighboring views and the center view to assist in

maximizing the enhancement of the center feature. Specif-

ically, the correlation unit learns to generate a correlation

weight for each neighboring feature, and then, the weighted

neighboring feature is used as an auxiliary feature to en-
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Figure 4. Two enhanced feature structures in NCENet. Left: parallel enhanced structure. Right: serial enhanced structure. They contain

correlation units for modeling the correlation among the views, and the computation of the correlation unit is given in the blue box. Not all

of the neighboring features are shown between the input and parallel (serial) structure for clarity. The figure is best viewed in color.

hance the center feature. The correlation weight of each

neighboring feature is determined based on two criteria: (1)

the discriminability of the neighboring view and (2) the

information redundancy between the center view and its

neighboring view, i.e., certain neighboring views similar to

the center can contain limited auxiliary information.

We now describe the correlation unit computation.

Given a set of views from a 3D shape S = {I1, I2, ..., IN},

the extracted middle features of the views are denoted as

F = {f1, f2, ..., fN}, and the visual feature dimension is

K. In our experiment, fi is a 1024-dimensional feature vec-

tor. For each view feature fi, its neighboring view feature

set is denoted as Neighbor(fi) = {fi→j}j∈Pos. The out-

put auxiliary feature of the correlation unit fA
i→j with re-

spect to the neighboring feature fi→j is computed as

fA
i→j = wi→j · (Wf · fi→j). (1)

The output is a weighted neighboring feature linearly

transformed by Wf ∈ R
K×K which is implemented as a

fully connected layer. The correlation weight wi→j indi-

cates the impact of a neighboring feature on the center fea-

ture, which can be computed as

wi→j = abs(tanh(Ww · (fi − fi→j))), (2)

where Ww ∈ R
K×1 is the parameter of the fully connected

layer. The function abs(tanh(·)) constrains the correlation

weight to be in the range between 0 and 1. Eq. (2) de-

scribes the information difference between the neighboring

feature and the center view. For example, the generated cor-

relation weight is 0 when a neighboring view is identical to

the center view, as this neighboring view provides no ad-

ditional shape information to the center feature. Note that

some common weight normalization ways, such as sigmoid

and softmax operations, are inappropriate to construct cor-

relation weight. First, if the neighbor feature is identical

to center feature, sig(fi − fi→j) = 0.5. Second, softmax

operation cannot be used in the following serial structure

because weights are generated sequentially.

The correlation unit has the same input and output di-

mensions, and we use the correlation unit as a basic block

in our NCENet architecture.

3.3. Parallel & Serial Structure

To address the order of adjacent views according to their

locations relative to the center view, we propose to ac-

cess two different structures in our network: the parallel

enhanced structure (Figure 4 left) and the serial enhanced

structure (Figure 4 right). In this subsection, we will intro-

duce these two enhanced structures.

Parallel structure. As shown in the left of Figure 4, we

adopt a parallel order to conduct the enhancement, where

all adjacent features are inputted into the network indepen-

dently. The auxiliary features of the neighboring features

{fA
i→j} are generated from different correlation units. To

make different weighted neighboring features comparable,

the different correlation units are forced to share the same

weight. Then, different auxiliary features of the neighbor-

ing views and the center feature are aggregated via addition

and are then learned by a fully connected layer to produce

the K-dimensional final enhanced feature vector fe
i , which
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can be computed as

fe
i = We · (fi +

∑

j

fA
i→j). (3)

Serial structure. In this structure, neighboring features

are arranged to enhance the center feature sequentially, and

we use a fixed order of the neighboring views: up, down,

left, right, upper left, upper right, bottom left and bottom

right. The entire enhancement procedure can be divided

into several blocks corresponding to different adjacent fea-

tures. Considering the k-th block, the center input ok−1 and

neighboring feature fi→k are inputted into the correlation

unit to produce the auxiliary feature fA
i→k. The output of

the k-th enhanced block is computed as

ok = Wo · (o
k−1 + fA

i→k), (4)

where Wo ∈ R
K×K and o0 is initialized as the feature

of the center view. The produced K- dimensional feature

vector ok is used as the center input for the subsequent en-

hanced block. We can express the serial enhanced structure

as a sequence of enhanced blocks, and the output of the se-

quence varies with the order of the enhanced blocks.

3.4. Objective Function

NCENet adopts the softmax loss regularized with the

center loss [26], which can be represented as

L = LS + λLC , (5)

where λ is a hyper-parameter used to balance the softmax

loss and center loss. In our case, λ is set to 0.01. Softmax

loss LS is used for the classification task for the discrimi-

nation of visual features. The center loss LC is adopted to

guide the feature enhancement by optimizing the category

center, which is expressed as

LC =
1

2

s∑

i=1

||fe
i − cyi

||2
2
, (6)

where fe
i denotes the enhanced center representation. cyi

denotes the center representation of the yi-th class, which is

computed as the average of all view features from the yi-th
class, and cyi

is updated independently. The mini-batch size

is s.

4. Experiments

In this section, we first evaluate the NCENet on differ-

ent kinds of 3D shape retrieval tasks. Then, we evaluate

the discriminative capacity of our method for poor quality

views, and the robustness of NCENet in the case of object

occlusion. In the last part, we further discuss the effect of

the number of center views, the number of neighbor views,

the learned correlation weights among the views and center

views, and the center loss on NCENet.

4.1. Implementation Details

Each 3D shape is rendered to yield 224 × 224 depth im-

ages from 36 virtual cameras.

Training. Center views are randomly selected from 36

views of each shape. Then, the center views with their ad-

jacent views in 8 directions are inputted into the network.

For the multi-view feature extraction procedure, the CNN

is fine-tuned on a specific 3D dataset, with pre-training

conducted on the ImageNet 1k dataset [5]. For the fea-

ture enhancement, we use features from the pooling layer

Pool5/7×7 s1 as the visual representation for the enhance-

ment, for which the feature dimension is 1024.

Testing. Each shape selects 6 views from fixed viewpoints

as the center views to conduct the enhancement, and we find

that the retrieval results no longer improve when the number

of the center views exceeds 6. The 6 enhanced features are

average pooled into a compact feature as the final 3D shape

representation. We adopt the cosine distance to measure the

similarity between the shapes.

4.2. Retrieval on ModelNet

We evaluate the performance of the NCENet on the

Princeton ModelNet dataset [21]. ModelNet is composed of

127,915 3D CAD models from 662 categories. We use two

subsets, ModelNet40 and ModelNet10, for evaluation. The

first subset contains 12,311 models, and the second con-

tains 4,899 models. We follow [27, 2] to conduct the train-

ing/testing split, where 100 unique shapes are randomly se-

lected per category from the subset and the first 80 shapes

are used for training and the rest for testing.

Our NCENet is compared against the DeepPano [20],

MVCNN [23], GIFT [2], CNN-BiLSTM [4], GVCNN [6]

and TCL [7] methods. We also set two baseline methods

NCENet Max and NCENet Ave. NCENet Ave denotes ad-

jacent features are directly average pooled to enhance the

center view. NCENet Max denotes adjacent features are di-

rectly max pooled to enhance the center view.

The performances of different methods are shown in Ta-

ble 1. Although TCL assisted by softmax loss achieves

higher MAP, TCL is more sensitive to the margin design and

it is difficult to search an ideal margin. Compared to TCL,

our method utilizes natural adjacent information and is easy

to implement. Moreover, our method outperforms by 0.35%
mAP over using only TCL loss, referring to 86.7% mAP

in [7]. Compared to GVCNN, Our-Serial gains 1.35% im-

provement of mAP on ModelNet40.

Note that NCENet employs GoogLeNet-bn as the base

architecture, which differs from MVCNN. To maintain a

fair comparison, we further implement MVCNN with 36
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Table 1. Comparison of performance on ModelNet40 with state-

of-the-art methods

Method
ModelNet40

AUC mAP

DeepPano [20] 77.63% 76.81%

MVCNN [23] - 80.20%

GIFT [2] 83.10% 81.90%

CNN-BiLSTM [4] - 83.30%

GVCNN [6] - 85.70%

TCL+softmax [7] 89.00% 88.00%

MVCNN (GoogLeNet) 86.58% 85.49%

NCENet Max 85.23% 84.12%

NCENet Ave 82.50% 81.29%

Our-Parallel 87.28% 86.27%

Our-Serial 88.04% 87.05%

views based on GoogLeNet-bn and the low-rank Maha-

lanobis metric learning is also adopted, corresponding to

MVCNN (GoogLeNet) in Table 1. It is shown that the use

of GoogLeNet can improve the retrieval performance. Us-

ing the same base network, NCENet-Serial gained of 1.56%
mAP on ModelNet40 compared to MVCNN (GoogLeNet).

Furthermore, since GoogLeNet has fewer parameters and

higher discrimination, we use GoogLeNet as the basic net-

work of our method in all of the subsequent experiments.

Compared with basic aggregation mechanisms, our

enhanced structure shows better performance than

NCENet Max and NCENet Ave. The superior perfor-

mance of our method is attributed to the following.

NCENet contains a correlation unit that identifies the

relationship between the neighboring view and the center

view. The correlation unit generates a weight for each

neighboring view to identify whether it is significant for

the center view. Thus, all of the features of the views are

effectively improved by exploiting the intrinsic correlation

between the views. The maximum aggregation operation

in MVCNN is limited by treating all views equally, and

the correlation between the views cannot be well-exploited.

Compared to GIFT, our method can be regarded as a

feature-level enhancement that is better than the re-ranking

method in GIFT, which can be regarded as enhancement on

the metric level.

4.3. Retrieval on ShapeNetCore55

To test the scalability of NCENet, we choose large-scale

3D Shape Retrieval from the ShapeNetCore55 track [19] for

a comprehensive evaluation. This dataset contains 51,190

3D shapes over 55 common categories. In our experiment,

we adopt the official training and testing split method [19]

and split the database into three parts, with 70% of shapes

used for training, 10% of shapes used as validation data and

the remaining 20% used for testing. Additionally, to test the

Table 2. Comparison of performance (%) on the ShapeNetCore55

perturbed dataset

Method
Micro Macro

F1 mAP NCDG F1 mAP NCDG

Wang [19] 24.6 60.0 77.6 16.3 47.8 69.5
Li [19] 53.4 74.9 86.5 18.2 57.9 76.7
Kd-network [11] 45.1 61.7 81.4 24.1 48.4 72.6
MVCNN [23] 61.2 73.4 84.3 41.6 66.2 79.3
GIFT [2] 66.1 81.1 88.9 42.3 73.0 84.3
TCL [7] 67.9 84.0 89.5 43.9 79.3 86.9
Our-Parallel 73.3 89.6 92.1 51.3 85.6 90.5
Our-Serial 70.8 89.0 92.0 50.6 85.3 90.6
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Figure 5. The performance of NCENet on poor views of 3D

shapes. In (a), poor views are rendered from Bed, Chair and Door

objects. (b) denotes the distance comparison between the extracted

features (green line) and the enhanced features (red line) of poor

views in (a). The dashed line corresponds to groundtruth label

index of each poor view. It is shown that the enhanced feature

of poor view clearly decreases the distance between different cat-

egories and maintain high cosine distance in the same category.

The figure is best viewed in color.

robustness of our method, we choose the more challenging

perturbed dataset where all of the shapes are randomly ro-

tated.

Table 2 presents a comprehensive comparison between

NCENet and various state-of-the-art methods, for a fair

comparison, two types of results are adopted, namely,

macro and micro as defined in [19]. Macro aims to provide

an unweighted average for the entire database, and micro

addresses the influence of different model category sizes

by offering a representative performance metric averaged

across categories. An examination of the data presented in

Table 2 shows that NCENet-Parallel and NCENet-Serial ex-

hibit encouraging scalability and rotation invariance in the

large-scale 3D competition, achieving state-of-the-art per-

formances consistently for all evaluation metrics.

4.4. Discriminative Capacity for Poor Quality Views

In this experiment, we evaluate the discriminative capac-

ity of NCENet on poor quality views of 3D shapes. We

pick up some poor views, which contain little shape in-
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Figure 6. (a) is some examples of synthetic occluded neighboring

views under different occlusion level. (b) is the performance com-

parison of different occlusion levels on ModelNet40 dataset.

formation and are difficult to identify, from ModelNet40.

Then we compute the cosine distance between each poor

view and other 3D shapes utilizing their representations.

To keep comparison, both extracted features from CNN

and our enhanced features from NCENet are adopted. We

choose some views as examples, which are shown in Fig-

ure 5. As we can see, extracted features fail to identify the

poor view because the distances between the poor view and

shapes of 40 categories are relatively close. However, our

enhanced feature of the poor view exhibits high similarity

with its ground-truth category and the cosine distance with

other categories is significantly decreased. It is shown that

NCENet achieves better discriminative capacity for poor

views utilizing the information of adjacent views to enrich

the representation of center view, making it more suitable

for retrieval tasks.

4.5. Robust Enhancement for Object Occlusion

In this section, we investigate the enhancement of the

center view when neighboring views are occluded, which

often occurs in real-world indoor scenes. In order to imi-

tate the object occlusion, we use fixed size image patches

to randomly cover the neighboring views, and the content

of image patches comes from views of other shapes. We

note that all of the methods are trained with clean projected

views and are directly tested with noisy views. During the

testing, each center view is clean and all its adjacent views

are occluded in order to clearly analyze the robustness of

the central view to the adjacent occlusion information. We

compare different methods under multiple occlusion levels,

the size of the occluded image patch ranging from 10% to

90% of the view, and the occlusion is added to all adja-

cent views. As shown in Figure 6, NCENet obtains the

best performances, especially Our-parallel. Compared to

the clean adjacent views, the mAP decreases slightly by

2.55% for the parallel structure when the occlusion level is

80%, demonstrating the robustness of our center enhance-

ment. Our-serial shows worse robustness than Our-parallel

because of its sequential structure, where the later the view

is entered the enhancement, the greater the impact on the

final output representation. More object occlusion experi-

ments are shown in supplementary material.

Table 3. The retrieval mAP of different numbers of center views

on ModelNet40 dataset.

Methods
The number of center view

1 2 4 6 8 10

Our-Parallel 0.819 0.849 0.867 0.863 0.863 0.861
Our-Serial 0.838 0.862 0.868 0.871 0.870 0.868

Table 4. The retrieval mAP of different numbers of neighbor views

on ModelNet40 dataset.

Methods
The number of neighbor view

1 2 4 6 8

Our-Parallel 0.852 0.856 0.861 0.863 0.863
Our-Serial 0.853 0.860 0.867 0.868 0.871

4.6. Discussion & Analysis

Number of center views. To investigate the effect of the

number of center views, we test Our-Parallel and Our-Serial

on the ModelNet40 with different numbers of center views.

The results are shown in Table 3. As we can see, the perfor-

mance converges in general as the number of center views

increases and the performance does not have much differ-
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ence when the number of center views exceeds 6. There-

fore, we use 6 center views for each shape in the testing.

Number of neighbor views. To evaluate the performance

of our methods with different numbers of neighboring

views, we train and test Our-Parallel and Our-Serial with

one, two, four, six and eight neighboring views. Table 4

presents the results for the performance in terms of MAP

on the ModelNet40 dataset. The performance gradually im-

proves as the number of neighboring views increases. It is

shown that more adjacent complementary information can

significantly enhance the center feature. Therefore, we use

the nearest eight neighboring views in our method.

Correlation weight visualization To investigate the pro-

posed correlation unit, we have visualized some examples

in Figure 7. The task of the correlation unit is to identify

the neighbor views for which the content is significant for

improving the center feature. It is expected that the neigh-

boring view with a higher discriminability and a greater in-

formation difference between it and the center feature will

have a higher correlation weight.

The correlation unit evaluates the discrimination of the

views. For example, in Figure 7 (a), compared to other

neighbor views, the upper left adjacent views has lower

weights equal to 0.26, which may be because this view con-

tains less shape information and it can not provide efficient

discriminative information for center view to identify the

target 3D shape.

Another important property of the correlation unit is the

measurement of the information difference between neigh-

boring views and the center view. In Figure 7 (d), the left

and right neighboring views have lower weights equal to

0.02 and 0.15, respectively. Their appearances are similar

to that of the center view, and thus, they fail to provide ad-

ditional shape information to the center feature.

Effect of the center loss on NCENet We give an ab-

lation study on center loss by evaluating the performance

of NCENet with and without center loss on ModelNet40,

which is shown in Table 5. NCENet-Parallel and NCENet-

Serial obtain the improvements of 2.80% and 4.01%, re-

spectively, in mAP with center loss. We further investigate

the learned correlation weights without center loss, and they

fail to distinguish the content of different views compared

to more distinguishable weights learned with the center loss.

It is shown that center loss can enable the correlation unit

to effectively filter the information from neighboring views

to decrease intra-distance and increase inter-class distance,

while softmax loss does not provide such strong distance

monitoring signals.
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Figure 7. In this figure, four groups of correlation weights between

the center view and its neighboring views are given. The red image

is the center view, which is surrounded by its neighboring views

from 8 directions. The intensity of the green line indicates the

value of the corresponding weight. The correlation weight of the

view is also shown in the upper part of each neighboring view. The

figure is best viewed in color.

Table 5. Comparison of retrieval results in terms of center loss.

Method
Softmax loss + Center loss

AUC mAP AUC mAP

Our-Parallel 84.57% 83.47% 87.28% 86.27%
Our-serial 84.17% 83.04% 88.04% 87.05%

5. Conclusion

In this paper, we proposed NCENet with two enhanced

structures, named the parallel and serial enhanced struc-

tures, to learn a powerful representation for each view.

More importantly, the correlation unit is proposed to de-

termine the content correlation between adjacent views and

their center view. Final experiments show that NCENet out-

performs state-of-the-art methods for two 3D shape datasets

and such enhancement for center view is highly robust

against object occlusion in neighboring views. Our future

work will explore how to optimize the center view to auto-

matically select a specific set of views for the best enhance-

ment.
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