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Abstract

In this paper, we propose a novel top-down instance

segmentation framework based on explicit shape encod-

ing, named ESE-Seg. It largely reduces the computational

consumption of the instance segmentation by explicitly de-

coding the multiple object shapes with tensor operations,

thus performs the instance segmentation at almost the same

speed as the object detection. ESE-Seg is based on a novel

shape signature Inner-center Radius (IR), Chebyshev poly-

nomial fitting and the strong modern object detectors. ESE-

Seg with YOLOv3 outperforms the Mask R-CNN on Pascal

VOC 2012 at mAPr@0.5 while 7 times faster.

1. Introduction

Instance segmentation is a fundamental task in the com-

puter vision, which is important for many real-world ap-

plications such as autonomous driving, robot manipulation.

As the task seeks to predict both the object location and

the shape, the methods for the instance segmentation are

generally not as efficient as the object detection frame-

works. Forwarding each object instance through an upsam-

pling network to obtain the instance shape, as mainstream

instance segmentation frameworks do [12, 22, 3, 19], is

quite computation-consuming, especially when compared

with the object detection which only needs to regress the

bounding box, i.e. a 4D vector for each object. Thus, if the

network can also regress the object shape to a short vector,

and decode the vector to the shape (see Fig. 1) in a sim-

ple way just like the bounding box, it can make the instance

segmentation reach almost equal computational efficiency

to the object detection. To achieve this goal, we propose a

novel instance segmentation framework based on Explicit
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Figure 1. ESE-Seg learns to estimate the shapes of the detected

objects, it can be simutaneously obtained along with the bounding

boxes.

Shape Encoding and modern object detectors, named ESE-

Seg.

Shape encoding is originally developed for instance re-

trieval [39, 17, 37], which encodes the object to a shape

vector. Recently, a number of works encode the shape im-

plicitly [9, 29, 38], which is to project the shape content to

a latent vector, typically through a black-box design such

as deep CNN. Thus the decoding procedure under this ap-

proach should be also put through a network, which requires

several forwarding for multiple instances, and causes large

computation. In pursuit of fast decoding, we employ an

explicit shape encoding that involves only simple numeric

transformations.

However, designing a satisfactory explicit shape encod-

ing method is non-trivial. Concerning the CNN training,

as it is known to regress with uncertainties, a preferred

shape vector should be relatively short but contains suffi-

cient information, robust to the noise, and efficiently de-
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codable to reconstruct the shape. In this paper, we propose

a contour-based shape signature to meet these requirements.

A novel “Inner-center Radius” (IR) shape signature for in-

stance shape representation is introduced. The IR first lo-

cates an inner-center inside the object segment, and based

on this inner-center, it transforms the contour points to po-

lar coordinates. That is, we can form a function of radius

f(θ) along the contour with respect to angle θ. To make

the shape vector even shorter and more robust, we apply the

Chebyshev polynomials to conduct the function approxima-

tion on f(θ). As such, the IR signature is represented by

a small number of coefficients with small error, and these

coefficients are the shape vector to be predicted. Addition-

ally, we also in-depth discuss about the comparison with

other shape signature designs. Conventional object detec-

tor (e.g. YOLOv3 [31]) is used to regress the shape vector,

along with 4D bounding box vector. To note that our shape

decoding can be implemented by simple tensor operations

(multiplication and addition) which are extremely fast.

The ESE-Seg itself is independent of all the bounding

box-based object detection frameworks [32, 4, 8, 20, 23].

We demonstrate the generality on Faster R-CNN [32], Reti-

naNet [20], YOLO [30] and YOLOv3-tiny [31] and evalu-

ate our ESE-Seg on standard public datasets, namely Pascal

VOC [6] and COCO [21]. Our method achieves 69.3 mAPr,

48.7 mAP respectively with IOU threshold 0.5. The score is

better than Mask R-CNN [12] on Pascal VOC 2012, and is

competitive to the performance on COCO. It is decent con-

sidering it is 7 times faster than Mask R-CNN with the same

backbone ResNet-50 [13]. The speed can be even faster at

∼130fps on GTX 1080Ti when the base detector changes

to YOLOv3-tiny, while the mAPr@0.5 remains 53.2% on

the Pascal VOC. It is noteworthy, ESE-Seg speeds up the

instance segmentation not depending on the model acceler-

ation techniques [15, 40], but relying on a new mechanism

that cut down shape prediction after object detection.

Contributions. We propose an explicit shape encoding

based instance segmentation framework, ESE-Seg. It is a

top-down approach but reconstructs the shapes for multi-

ple instances in one pass, thus greatly reduces the compu-

tational consumption, and makes the instance segmentation

reach the speed of the object detection with no model accel-

eration techniques involved.

2. Related Work

Explicit v.s Implicit Shape Representation A previous

work with similar ideology has been done by Jetley et al.

[16]. They took the implicit shape representation path by

first training an autoencoder on object binary mask. The

encoded shape vector is decoded to shape mask through the

decoder component. In the implementation, they adopted

the YOLO [30] to regress the bounding box and the shape

vector for each detected object. The YOLO structure can

thus be viewed as both detector and encoder. The encoded

vector from YOLO is then decoded by the pre-trained de-

noising autoencoder. The major differences between our

work and theirs:

• Explicit shape representation is typically based on the

contour, while implicit shape representation is typi-

cally based on the mask.

• Explicit shape representation requires no additional

decoder network training. Parallelizing the decoding

process for all objects in the images, which is hard for

network structured decoder, can be easily achieved by

the explicit shape encoding. As a matter of fact, im-

plicit decoding requires multiple passes for multiple

objects, one for each, while explicit decoding can ob-

tain all the shapes in one pass.

• The input for training autoencoder and training YOLO

(viewed as an encoder) is quite different (object scales,

color pattern), which may cause trouble for the de-

coder, since the decoder is not further optimized with

YOLO training. Such an issue does not exist for ex-

plicit shape representation.

In addition to our proposed IR shape signature, there ex-

ist various methods to represent the shape, to name a

few, centroid radius, complex coordinates, cumulative an-

gle [5, 34, 39] etc. While such methods sample the shape

related feature along the contour, only a few of them can be

decoded to reconstruct the shape.

Object detection Object detection is a richly studied

field. Object detection frameworks with CNN can be

roughly divided into two categories, one-stage and multi-

stage. Two-stage detection scheme is a classic multi-stage

scheme, which typically learns an RPN to sample region

proposals and then refine the detection with roi pooling or

its variations, the representative works are Faster R-CNN

[32], R-FCN [4]. Recently, some works extend the two-

stage to multi-stage in a cascade form [1]. On the other

hand, one-stage detectors divide the input image to size-

fixed grid cells and parallelize the detection on each cell

with fully convolutional operations, the representative net-

works are SSD [23], YOLO [30], RetinaNet [20]. Recently,

point-based detections are proposed, CornerNet [18] di-

rectly detects the upper-left and bottom-right points, which

is a one-stage detector. Grid R-CNN [24] regresses 9 points

to construct the bounding box, which is a two-stage detec-

tor. Our method is compatible with all the bounding box-

based detection networks. We experiment with Faster R-

CNN, YOLO, YOLOv3, and RetinaNet to prove the gener-

ality. See Table 4. However, it is not compatible with the

point-based detector, as the shape (bounding box) in this

setting is not parametrized.
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a). CNN encoding

b). Parallelized decoding

Figure 2. The pipeline of the shape detection, regression and reconstruction.

Instance Segmentation Instance segmentation requires

not only to locate the object instance but also to delineate

the shape. The mainstream methods can be roughly divided

to top-down [12, 22, 3, 19, 28, 27, 2] or bottom-up [26, 35]

approaches. Ours belongs to the top-down line. The top-

down approaches such as MNC [3], FCIS [19], Mask R-

CNN [12] are generally slowed down when the object num-

ber in an image is large, as they predict the instance mask

in sequence. On the contrary, our ESE-Seg alleviates the

cumbersome computation by regressing the object shapes to

short vectors and decoding them simultaneously. It is also

the first top-down instance segmentation framework which

is not affected by the instance number in the images with re-

spect to the inference time. Besides, the works on augment-

ing the performance of instance segmentation frameworks

through data augmentation [7, 36], scale normalization [33]

can be easily integrated to our system.

3. Method

3.1. Overview

We propose an explicit shape encoding based detection

to solve the instance segmentation. It predicts all the in-

stance segments in one forwarding pass, which can reach

equal efficiency as object detection solver. Given an object

instance segment, we parametrize the contour with a novel

shape signature “Inner-center Radius” (IR) (Sec. 3.2.1).

The Chebyshev polynomials are used to approximate the

shape signature vector with a small number of coefficients

(Sec. 3.2.2). Those coefficients are served as the shape de-

scriptor, and the network will learn to regress it. (Sec. 3.3).

Finally, we describe how to decode the shape descriptor un-

der the ordinary object detection framework by simple ten-

sor operations. (Sec. 3.4). The overall pipeline is shown in

Fig. 2.

The Advantage of Explicit Shape Encoding In object

detection system (e.g. YOLOv3), the network regresses the

bounding boxes (i.e. 4D vectors) and the bounding box

is decoded by tensor operations, which is light to process

and easy to parallelize. By contrast, conventional instance

segmentation (e.g. Mask R-CNN) requires an add-on net-

work structure to compute the object shape. The decod-

ing/upsampling forwarding involves a large number of pa-

rameters, which is heavy to load in parallel for multiple

instances. This is why instance segmentation is normally

much slower than object detection. Therefore, if we also

regress the object shape into short vectors directly, the in-

stance shape decoding can be achieved by fast tensor oper-

ations (multiplication and addition) in a similar way. Thus

the instance segmentation can reach the speed of object de-

tection.

3.2. Shape Signature

3.2.1 Inner-center Radius Shape Signature

In this section, we will describe the design of the “inner-

center radius” shape signature and compare it to previously

proposed shape signatures.

The construction of the “inner-center radius” contains

two steps: First, locate an Inner center point inside the ob-

ject segment as the origin point to build the polar coordinate

system. Second, sampling the contour points according to

the angle θ. This signature is translation-invariant and scale-

invariant after normalized.
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Inner center The inner-center point is defined by the

most far-way point from the contour, which can be obtained

through distance transform [25]. To note, some commonly

used center such as the center of mass, the center of the

bounding box cannot guarantee to be inside the object. See

Fig. 3.

bbox center

center of mass

inner center

Figure 3. The center points of an object. As we can see, bounding

box center and the center of mass cannot guarantee to be inside an

object.

In a few cases, an object is separated into disconnected

regions, resulting in multiple inner centers. To deal with

such situations, we dilate the broken areas to a single one

and then find the contour of the dilated shape. Of course the

contour is very rough, however, it can help to reorder the

contour points of the outline points. The whole process is

depicted in Fig. 4. Thus inner center is computed from the

completed contour.

Dense Contour Sampling We sample the contour points

according to the angles at the interval of τ around inner-

center point, thus a contour will result in N = [2π/τ ]
points. In practice, τ = π/180 and thus N = 360 points

are sampled from an object contour. If the ray casting from

the inner-center intersects more than once to the contour.

We collect the point with the largest radius only. The func-

tion f(θ) is denoted as radius at different angles θ. To note,

we are aware that the contour sampling in this way will not

be perfect, however, after extensive experiments in Pascal

VOC, and COCO, we find it suitable for natural objects (see

Table 2). A further discussion is in the next Sec. 3.2.3.

3.2.2 Fitting the Signature to Coefficients

The IR makes shape representation into a vector. But, it

is still too long for the network to train. Besides, the shape

signature is very sensitive to the noise (see Fig. 7). Thus, we

take a further step to shorten shape vector and resist noise

through Chebyshev polynomial fitting.

(a) (b) (c)

(d)(e)

Figure 4. The process to complete the separated areas. An oc-

cluded object (a) has many separated areas (b), we split the contour

points of each area into outline and inner points with the help of

the bounding box (c), then we dilate the broken area into one, and

reorder the outline points according to the dilated shape contour

(d), finally, we complete the instance (e).

Chebyshev polynomials The Chebyshev polynomial is

defined in recurrence:

T0(x) = 1, (1)

T1(x) = x, (2)

Tn+1(x) = 2xTn(x)− Tn−1(x), (3)

which is also known as The Chebyshev polynomials of

the first kind. It can effectively minimize the problem of

Runge’s phenomenon and provides a near-optimal approxi-

mation under the maximum norm1.

Given the IR shape signature, the Chebyshev approxima-

tion is to find the coefficients in

f(θ) ∼

∞∑

i=0

ciTi(θ)

Truncating the function with n terms, we have the approx-

imation function f̃(θ) =
∑n

i=0
ciTi(θ). k = (c0, . . . , cn)

are the shape signature vector to represent the object.

3.2.3 Discussion

Comparison with Other Shape Signatures The angle-

based sampling for shape signature such as proposed IR is

rarely adopted before, because it cannot perfectly fit shape

segment. Actually, we compare and in-depth analyze other

shape signatures and finally choose this solution. For ex-

ample, a quite straight-forward design is to sample along the

1https://en.wikipedia.org/wiki/Chebyshev polynomials
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contour. The contour is represented by a set of contour poly-

gon vertex coordinates. This method can nearly perfectly

fit the object segment, especially non-convex shape. How-

ever, we find the performance of this design drops about 10
mAP and more results are reported in Table 2. The possible

reason is that our angle-based sampling produces 1D sam-

ple sequence, yet, contour vertices sequence is a 2D sample

sequence which is more sensitive to noise. We report the

reconstruction error of these two shape signatures on Pascal

VOC 2012 training in Fig. 5 (denoted as “IR” and “XY”

respectively). Admittedly, the XY has less reconstruction

error when sampling the same points on the contour, but

when compared with the same dimension of the vector, IR

is more accurate. For example, the dimension of the vector

of IR at N = 20 is the same as XY at N = 10, the IR has a

significantly less reconstruction error. Though when the N
gets larger, the difference gets smaller, a large N will make

training unstable as presented in Table 2.

Other classic shape signatures such as centroid radius,

cumulative angle cannot reconstruct the shape.

Figure 5. The reconstruction error Erecon of IR and XY with dif-

ferent sampling number points.

Comparison with Other Fitting Methods Other com-

monly used function approximation methods, namely poly-

nomial regression and Fourier series fitting are also consid-

ered.

For polynomial regression, the goal is to fit shape vec-

tor k = (v0, . . . , vn), which is the coefficients of n degree

polynomials, f̃(θ) =
∑n

i=0
vix

i. For Fourier series fitting,

the shape vector is k = (ω, a0, a1, . . . , an, b1, . . . , bn),
the truncated n degree Fourier series is f̃(θ) = a0/2 +∑n

i=1
[ai cos(iωθ) + bi sin(iωθ)]. As the dimension of k

can be determined in advance, denoted as l. Thus we com-

pare the methods from three aspects, i.e. the reconstruction

error Erecon, sensitivity to the noises, and the numeric dis-

tribution of the coefficients.

The reconstruction errors Erecon is calculated by 1 −
mIOU under the same dimension l and point number N in

Fig. 6. Then we set l = 8 as an example to conduct the

sensitivity analysis as shown in Fig. 7. For each coefficient,

it is interrupted by the noise ε ∼ N(0, αk̄), k̄ is the mean

of the corresponding coefficient. As we can see, the ω of

Fourier series is extremely sensitive, which may cause the

Fourier fitting not suitable for the CNN training, as the CNN

is known to regression with uncertainties. If we fix ω = 1,

it becomes less sensitive, but has considerably larger recon-

struction error. Besides, considering the difficulty for the

network to learn, we also investigate the statistic on the dis-

tribution of the fitted coefficients. See Fig. 8, Fig. 9 and

Fig. 10. Chebyshev polynomials are better for shape signa-

ture fitting as it has less reconstruction error, less sensitivity

to noise, better numeric distribution of coefficients.

( = 1)

Length 

(1
 –

m
IO

U
%

)

Cheby

Fourier

Fourier 

Poly

on COCO 2017 Training

Figure 6. Comparison of Erecon on COCO 2017 training.

Relation on COCO 2017 Training

Cheby

Fourier

Fourier 

Poly

= 1)

Figure 7. Comparison of the sensitivity on COCO 2017 training.
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Distribution of Polynomial Regression coefficients 

Figure 8. The overall mean of the coefficients is , and the variance

is for Polynomial regression.

Distribution of Fourier Fitting coefficients 

Figure 9. Coefficients distribution of Fourier series fitting on

COCO training 2017.

3.3. Regression Under Object Detection Frame
work

Our network will learn to predict the inner center p̂, the

shape vector k̂, along with the object bounding box. The

loss function for bounding boxes regression, classification

stays the same to the original object detection frameworks.

For YOLOv3, the loss function for bounding box Lbbox and

classification Lcls can be referred to [31]. As for the loss

function for the shape learning:

Lshape = 1
obj ||(p̂− p) + (k̂ − k)||22,

Distribution of Chebyshev Fitting coefficients 

Figure 10. Coefficients distribution of Chebyshev polynomial fit-

ting on COCO training 2017.

where 1
obj indicates the grid cells with objects for the one-

stage detectors, and the proposals for the two-stage detec-

tors. Thus the overall objective function is:

L = λclsLcls + λbboxLbbox + λshapeLshape

3.4. Decoding Shape Vector to Shape

Given the shape vector dimension l, the predicted shape

vector k̂ = (k̂0, . . . , k̂l−1)
⊤, the fitted Chebyshev polyno-

mial is f̂(θ) =
∑l−1

i=0
k̂iTi(θ). And the polar coordinate

transform factor u(θ) = (cos θ, sin θ).Thus the shape can

be recovered by traversing the θ ∈ [0, 2π)

p̂i = p̂c + f̂(θ)⊙ u(θ).

⊙ is the Hadamard product. This calculation can be writ-

ten in tensor operation form. Given the batch size bs, the

corresponding tensor version are Θ ∈ R
bs×1×N for an-

gles sampled, Ĉ ∈ R
bs×1×l for the predicted shape vec-

tor, P̂c ∈ R
bs×2×N for the predicted inner centers and

P̂ ∈ R
bs×2×N represents the decoded contour points. As

expressed:

P̂ = P̂c + ĈT (Θ)⊙ u⊤(Θ).

In the GPU setting, the computation cost of such tensor

operation is very minor. Due to this extremely fast shape

decoding, our instance segmentation can achieve the same

speed with object detection.

4. Experiment

We conduct extensive experiments to justify the descrip-

tor choice and the efficacy of proposed methods. If not spec-
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ified, the base detector is YOLOv3 implemented by Glu-

onCV [14], the input image is 416 × 416. λcls = λbbox =
λshape = 1. Other hyper-parameters stays the same as the

YOLOv3 implementation. We trained 300 epochs and re-

port the performance with the best evaluation results. For

the model name with a bracket and a number in it, the num-

ber is the dimension of the shape vector.

4.1. Explicit v.s. Implicit

We first compare the explicit shape encoding with the

implicit shape encoding. As the previous work [16] pro-

vides a baseline for implicit shape representation with

YOLO [30] as the base detector, to be fairly compared, we

also trained the ESE-Seg with YOLO base detector, the di-

mension of the shape vector is also the same. We denote the

model as “YOLO-Cheby (50)” and “YOLO-Cheby (20)”.

The experiments are on Pascal SBD 2012 val [10].

To note, the mainstream instance segmentation based on

mask, namely SDS [11], MNC [3], FCIS [19], Mask RCNN

[12], can also be viewed as implicit shape encoding. We

compare them with “YOLOv3-Cheby (20)” on Pascal VOC

2012 without SBD and COCO with their reported scores,

which outperforms the Mask R-CNN (with ResNet50) at

mAPr@0.5 on Pascal VOC and close to it on COCO. To

note, the input image size is 800 on the shorter side for Mask

R-CNN with ResNet50-FPN, which is almost 4 times to our

416× 416. All results are reported in Table 1.

4.2. On explicit descriptors

In this section, we will compare the object shape sig-

natures and the function approximation methods quantita-

tively.

On Different Shape Signatures For object shape signa-

tures, we compare our proposed IR with a straightforward

2D vertices representation on Pascal VOC 2012. (See Table

2) We adopt the squared boxes, i.e. the bounding box, as

the baseline. To note, the squared boxes baseline is not the

object detection scores, as the baseline computes the IoU

between the bounding box and the instance mask.

For each shape signature, we compare regressing directly

and regressing after Chebyshev polynomial fitting. For di-

rect regression, we control the length of the shape signature

by adjusting the τ for each shape. We select 20 and 40
points to regress. We denote model trained on 2D vertices

“XY”, the shape vector has a dimension of 40 and 80 re-

spectively. As for the Chebyshev fitting on these signatures,

we fit the x coordinates and y coordinates respectively. De-

noted as “XY-Cheby (10+10)” means each fitted function

has 10 coefficients.

On Different Function Approximation Techniques We

have already compared the function approximation tech-

SBD (5732 val images)

model

mAPr

0.5 0.7 vol Time (ms)

BinaryMask[16] 32.3 12.0 28.6 26.3

Radial[16] 30.0 6.5 29.0 27.1

Embedding (50) [16] 32.6 14.8 28.9 30.5

Embedding (20) [16] 34.6 15.0 31.5 28.0

YOLO-Cheby (50) 39.1 10.5 32.6 24.2

YOLO-Cheby (20) 40.7 12.1 35.3 24.0

Pascal VOC 2012 val

model

mAPr

0.5 0.7 vol Time (ms)

SDS 49.7 25.3 41.4 48k

MNC 59.1 36.0 - 360

FCIS 65.7 52.1 - 160

Mask R-CNN 68.5 40.2 - 180

YOLOv3-Cheby (20) 62.6 32.4 52.0 26.0

+ COCO pretrained 69.3 36.7 54.2 26.0

COCO 2017 val

model

mAP
0.5 0.75 all Time (ms)

FCIS 49.5 - 29.2 160

Mask R-CNN 51.2 31.5 30.3 180

YOLOv3-Cheby (20) 48.7 22.4 21.6 26.0

Table 1. Comparison of ESE-Seg to the previous methods on Pas-

cal SBD 2012 val, Pascal VOC 2012 without SBD val, and COCO

2017 val.

model

mAPr

0.5 0.7

Squared Boxes 42.3 8.6

XY (20) 46.1 10.7

XY (40) 43.5 11.2

XY-Cheby (10+10) 48.3 16.4

XY-Cheby (20+20) 53.1 20.9

IR (20) 48.8 13.5

IR (40) 52.6 19.3

IR (60) 51.7 16.4

IR-Cheby (20) 62.6 32.4

Table 2. We compare different choice of the shape signatures on

Pascal VOC 2012.

niques through off-line analysis. However, it is still inter-

esting to know performance of the neural network on the

coefficients obtained by these methods.

All the function approximations are carried out on IR

f(θ). The polynomial regression is denoted as “Poly”,

while “Fourier” for Fourier series fitting and “Cheby” for

Chebyshev polynomial fitting. All models have tested on

Pascal VOC 2012 val. See Table 3.
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Samples Selectied from COCO 2017

Samples Selectied from VOC 2012

pp

Figure 11. Qualitative results generated by our methods.

model

mAPr

0.5 0.7

Poly (20) 26.3 5.4

Fourier (20) 37.5 9.1

Fourier (40) 36.1 8.5

Cheby (20) 62.6 32.4

Cheby (40) 60.7 31.5

Table 3. Comparison of the performance of different shape signa-

tures on Pascal VOC 2012 val.

4.3. On base object detector

To show the generality of the object shape detection,

we also conduct the shape learning on Faster R-CNN

(“Faster-Cheby (20)”), RetinaNet (“Retina-Cheby (20)”)

and YOLOv3-tiny (“YOLOv3-tiny-Cheby (20)”). Not only

the performance is stable for all these bounding box-based

detectors, but the speed boost due to the detector can be en-

joyed. As shown in Table 4.

4.4. Qualitative Results

Qualitative results are shown in Fig. 11. Obviously, the

predicted shape vectors indeed capture the characteristics of

the contours, not produce the random noise.

model

mAPr

0.5 0.7 vol Tims (ms)

YOLOv3-Cheby (20) 62.6 32.4 52.0 26

Faster-Cheby (20) 63.4 32.8 54.2 180

Retina-Cheby (20) 65.9 36.5 56.7 73

YOLOv3-tiny-Cheby (20) 53.2 15.8 42.5 8

Table 4. Comparison of different base object detectors with IR

shape signature and Chebyshev fitting on Pascal VOC 2012 val.

5. Limitations and Future Works

Our proposed ESE-Seg can achieve the instance segmen-

tation with minor time-consumption, with a decent perfor-

mance at IoU threshold 0.5. However, due to the inaccuracy

Erecon of the shape vector, and the noise comes with the

CNN regression, performance at larger IoU threshold like

0.7 drop a large margin. In the future, better ways to explic-

itly represent the shape, and better ways to train the CNN

regression which will contribute to higher performance at

high IOU threshold are of high interest.

Acknowledgement This work is supported in part

by the National Key R&D Program of China, No.

2017YFA0700800, National Natural Science Foundation of

China under Grants 61772332.

5175



References

[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. In CVPR, 2018.

[2] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaox-

iao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi,

Wanli Ouyang, et al. Hybrid task cascade for instance seg-

mentation. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 4974–4983,

2019.

[3] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware se-

mantic segmentation via multi-task network cascades. In

CVPR, 2016.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

Advances in neural information processing systems, pages

379–387, 2016.

[5] Edward Roy Davies. Machine vision: Theory, algorithms

and practicalities. 1990, 1997.

[6] Mark. Everingham, Luc. Van Gool, Christopher Williams,

John. Winn, and Andrew. Zisserman. The pascal visual ob-

ject classes (voc) challenge. International Journal of Com-

puter Vision, 88(2):303–338, June 2010.

[7] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, , Minghao

Gou, Yonglu Li, and Cewu Lu. Instaboost: Boosting instance

segmentation via probability map guidedcopy-pasting. In

The IEEE International Conference on Computer Vision

(ICCV), Oct 2019.

[8] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015.

[9] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Lar-

lus. Deep image retrieval: Learning global representations

for image search. In European conference on computer vi-

sion, pages 241–257. Springer, 2016.

[10] Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev,

Subhransu Maji, and Jitendra Malik. Semantic contours from

inverse detectors. In International Conference on Computer

Vision (ICCV), 2011.

[11] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
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