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Abstract

We propose a new Group Feature Selection method for

Discriminative Correlation Filters (GFS-DCF) based vi-

sual object tracking. The key innovation of the proposed

method is to perform group feature selection across both

channel and spatial dimensions, thus to pinpoint the struc-

tural relevance of multi-channel features to the filtering sys-

tem. In contrast to the widely used spatial regularisation

or feature selection methods, to the best of our knowledge,

this is the first time that channel selection has been advo-

cated for DCF-based tracking. We demonstrate that our

GFS-DCF method is able to significantly improve the per-

formance of a DCF tracker equipped with deep neural net-

work features. In addition, our GFS-DCF enables joint fea-

ture selection and filter learning, achieving enhanced dis-

crimination and interpretability of the learned filters.

To further improve the performance, we adaptively in-

tegrate historical information by constraining filters to be

smooth across temporal frames, using an efficient low-

rank approximation. By design, specific temporal-spatial-

channel configurations are dynamically learned in the

tracking process, highlighting the relevant features, and

alleviating the performance degrading impact of less dis-

criminative representations and reducing information re-

dundancy. The experimental results obtained on OTB2013,

OTB2015, VOT2017, VOT2018 and TrackingNet demon-

strate the merits of our GFS-DCF and its superiority

over the state-of-the-art trackers. The code is publicly

available at https://github.com/XU-TIANYANG/

GFS-DCF.

1. Introduction

To consistently and accurately track an arbitrary object

in video sequences is a very challenging task. The diffi-

culties are posed by a wide spectrum of appearance varia-

tions of an object in unconstrained scenarios. Among ex-
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Figure 1. In contrast to the classical DCF paradigm, our GFS-

DCF performs channel and spatial group feature selection for the

learning of correlation filters. Group sparsity is enforced in the

channel and spatial dimensions to highlight relevant features with

enhanced discrimination and interpretability. Additionally, a low-

rank temporal smoothness constraint is employed across temporal

frames to improve the stability of the learned filters.

isting tracking algorithms, Discriminative Correlation Fil-

ters (DCF-) based trackers [27] have exhibited promising

results in recent benchmarks [81, 82, 53, 43] and com-

petitions such as the Visual Object Tracking (VOT) chal-

lenges [36, 32, 33, 34].

The success of high-performance DCF trackers is at-

tributed to three aspects: spatial regularisation, temporal

smoothness and robust image feature representation. Re-

garding the first point, as natural images and videos are

projections from a 3D space into a 2D plane, spatial reg-

ularisation directly improves the tracking accuracy by po-

tentially endowing the learned filters with a specific atten-

tion mechanism, enhancing the discrimination by focusing

on less ambiguous regions [15, 49, 31, 87]. Second, based

on the fact that video sequences are formed by discrete im-

age sampling of continuous dynamic scenes, reflecting the
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temporal smoothness of successive frames in the construc-

tion of appearance models has been shown to improve their

generalisation capacity [17, 40, 13, 51]. Third, with the de-

velopment of robust image feature extraction methods, e.g.

Histogram of Oriented Gradient (HOG) [12], Colour Names

(CN) [80] and Convolutional Neural Network (CNN) fea-

tures [37, 70, 47, 19], the performance of DCF-based track-

ers has been greatly improved [6, 34, 33]. It is indisputable

that recent advances in DCF-based tracking owe to a great

extent to the use of robust deep CNN features.

Despite the rapid progress in visual tracking by equip-

ping the trackers with robust image features, the structural

relevance of multi-channel features to the filtering system

has not been adequately investigated. In particular, due

to the limited number of training samples available for vi-

sual tracking, DCF-based trackers usually use a deep net-

work pre-trained on other computer vision tasks, such as

VGG [64] or ResNet [24] trained on ImageNet [63]. In such

a case, the extracted deep feature channels (maps) for an ar-

bitrary object, which may exceed thousands, may not be

compact. They may include irrelevant as well as redundant

descriptors and their presence may degrade the target detec-

tion performance. However, the tension between discrimi-

nation, information relevance, information redundancy and

high-dimensional feature representations has not been sys-

tematically studied in the existing DCF paradigm. We argue

it is absolutely crucial to perform dimensionality reduction

along the channel dimension to suppress irrelevant features

as well as redundancy for deep neural network features.

To redress the above oversight, we propose a new Group

Feature Selection method for DCF-based visual object

tracking, namely GFS-DCF. To be more specific, we re-

duce the information redundancy and irrelevance of high-

dimensional multi-channel features by performing group

feature selection across both spatial and channel dimen-

sions, resulting in compact target representations. It should

be highlighted that our GFS-DCF differs significantly from

existing DCF-based trackers, in which only spatial regu-

larisation or selection is used. Additionally, as supervised

frame-to-frame data fitting may create excessive variability

in prediction, we constrain a learned predictor (filter) to be

smooth across the time dimension (frames).

Fig. 1 depicts the basic learning scheme of the proposed

GFS-DCF method. Given the predicted location of an ob-

ject in the tth frame, we first extract multi-channel features.

Then the extracted features and desired response map are

used to learn the correlation filters for the prediction of the

target in the next frame. In the filter learning stage, the com-

bination of channel-spatial group feature selection and low-

rank constraints adaptively identifies a specific temporal-

spatial-channel configuration for robust discriminative fil-

ter learning. As a result, relevant features are highlighted to

improve discrimination and decrease redundancy. The main

contributions of our GFS-DCF method include:

• A new group feature selection method for multi-

channel image representations, reducing the dimen-

sionality across both spatial and channel dimensions.

To the best of our knowledge, this is the first work that

considers feature compression along both spatial and

channel dimensions. According to our experiments,

the proposed group channel feature selection method

improves the performance of a DCF-based tracker sig-

nificantly when using deep CNN features.

• A temporal smoothness regularisation term used to

obtain highly correlated filters among successive

frames. To this end, we use an efficient low-rank

approximation, forcing the learned filters to lie in a

low-dimensional manifold with consistent temporal-

spatial-channel configurations.

• A comprehensive evaluation of GFS-DCF on a number

of well-known benchmarks, including OTB2013 [81],

OTB2015 [82], VOT2017 [33], VOT2018 [34], and

TrackingNet [55]. The results demonstrate the merits

of GFS-DCF, as well as its superiority over the state-

of-the-art trackers.

2. Related Work

Existing visual object tracking approaches include tem-

plate matching [48], statistical learning [2], particle fil-

ters [1], subspace learning [62], discriminative correlation

filters [27], deep neural networks [61] and Siamese net-

works [91, 77, 39]. In this section, we focus on DCF-based

approaches due to their outstanding performance as evi-

denced by recent tracking competitions such as VOT [32,

34]. For the other visual tracking approaches, readers are

referred to comprehensive reviews [65, 82, 32, 38] .

One of the seminal works in the development of DCF is

MOSSE [7], which formulates the tracking task as discrimi-

native filter learning [8] rather than template matching [10].

The concept of circulant matrix [21] is introduced to DCF

by CSK [26] with a padded search window, which generates

more background samples for the learning stage. Addition-

ally, spatial-temporal context [86] and kernel tricks [27] are

used to improve the learning formulation with the consid-

eration of local appearance and nonlinear metric, respec-

tively. The DCF paradigm has further been extended by ex-

ploiting scale detection [41, 14, 16], structural patch analy-

sis [42, 46, 45], multi-clue fusion [71, 50, 28, 4, 72], sparse

representation [88, 90], support vector machine [75, 92], en-

hanced sampling mechanisms [89, 54] and end-to-end deep

neural networks [73, 67].

Despite the great success of DCF in visual object track-

ing, it is still a very challenging task to achieve high-

performance tracking for an arbitrary object in uncon-
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strained scenarios. The main obstacles include: spatial

boundary effect, limited feature representation capacity and

temporal filter degeneration.

To alleviate the boundary effect problem caused by the

circulant structure, SRDCF [15] stimulates the interest in

spatial regularisation [17, 51, 13, 40], which allocates more

energy for the central region of a filter using a predefined

spatial weighting function. A similar idea has been pur-

sued by means of pruning the training samples or learned

filters with a predefined mask [20, 49, 31, 40]. Differ-

ent from those approaches, to achieve spatial regularisa-

tion, LSART forces the output to focus on a specific re-

gion of a target [69]. A common characterisation of the

above approaches is that they are all based on a fixed spa-

tial regularisation pattern, for example, a predefined mask

or weighting function. To achieve adaptive spatial regular-

isation, LADCF [83] embeds dynamic spatial feature se-

lection in the filter learning stage. Thanks to this innova-

tion it has achieved the best results in the public VOT2018

dataset [34]. The above spatial regularisation methods de-

crease the ambiguity emanating from the background and

enable a relatively large search window for tracking. Nev-

ertheless, these approaches only consider information com-

pression along the spatial dimension. In contrast, our GFS-

DCF method performs group feature selection along both

the channel and spatial dimensions, resulting in more com-

pact object appearance descriptions.

Second, as feature representation is the most essential

factor from the point of view of high-performance visual

tracking [76], combinations of hand-crafted and deep fea-

tures have widely been used in DCF-based trackers [18,

27, 6]. However, the structural relevance of multi-channel

features in the filter learning system has not been con-

sidered. The redundancy and interference from the high-

dimensional representations impede the effectiveness of

learning dense filters. To unify the process of informa-

tion selection across the spatial and channel dimensions, our

GFS-DCF performs group feature selection and discrimina-

tive filter learning jointly.

Last, to mitigate temporal filter degeneration, historical

clues are reflected in SRDCFdecon [17] and C-COT [51],

with enhanced robustness and temporal smoothness, by

gathering multiple previous frames in the filter learning

stage. To alleviate the computational burden, ECO [13]

manages the inherent computational complexity by cluster-

ing historical frames and employing projection matrix for

multi-channel features. Our GFS-DCF, on the other hand,

is robust to temporal appearance variations by constraining

the learned filters to be smooth across frames using an ef-

ficient low-rank approximation. Consequently, the relevant

spatial-channel features are consistently highlighted in a dy-

namic low-dimensional subspace.

3. DCF-based Visual Object Tracking

Given the initial location of an object in a video, the aim

of visual object tracking is to localise the object in the suc-

cessive video frames. Assume we have the estimated loca-

tion of the object in the tth frame. To localise the object

in the t + 1th frame, DCF [27] learns multi-channel filters,

Wt ∈ R
N×N×C , using a pair of training samples {Xt,Y},

where Xt ∈ R
N×N×C is a tensor consisting of C-channel

features extracted from the tth frame and Y ∈ R
N×N is the

desired response map identifying the object location. To ob-

tain Wt, DCF formulates the objective as a regularised least

square problem:

W̃t = argmin
Wt

∥∥∥∥∥

C∑

k=1

Wk
t ⊛Xk

t −Y

∥∥∥∥∥

2

F

+R (Wt) , (1)

where ⊛ is the circular convolution operator [26], Xk
t ∈

R
N×N is the k-th channel feature representation, Wk

t ∈
R

N×N is the corresponding discriminative filter and

R (Wt) = λ
∑C

k=1
‖Wk

t ‖
2
F is a regularisation term. A

closed-form solution to the above optimisation task can ef-

ficiently be obtained in the frequency domain [27].

In the tracking stage, the filters learned from the first

frame are directly used to localise the object in the second

frame. For the other frames, the filers are updated as:

Wt = αW̃t + (1− α)Wt−1, (2)

where α ∈ [0, 1] is a pre-defined updating rate. Given a

search window in the (t+1)st frame, we first extract multi-

channel features, Xt+1. Then the learned correlation filters,

Wt, from the tth frame are used to estimate the response

map in the frequency domain efficiently:

R̂ =
C∑

k=1

X̂k
t+1 ⊙ Ŵk

t , (3)

where ·̂ denotes Discrete Fourier Transform (DFT) and ⊙
denotes element-wise multiplication. The element with the

maximal value in the original response map, obtained by

inverse DFT, corresponds to the predicted target location.

4. Group Feature Selection for DCF

4.1. GFSDCF

In DCF-based visual object tracking, multi-channel fea-

tures are extracted from a large search window, in which

only a small region is of interest. In such a case, multi-

channel image features are usually redundant and may bring

uncertainty in the prediction stage. To address this issue,

spatial feature selection or regularisation has been widely

used in existing DCF-based trackers, such as the use of fixed
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spatial masks [31, 49, 40, 13]. More recently, a learning-

based adaptive mask [83] has been proposed to inject spa-

tial regularisation to DCF-based visual tracking, achieving

the best performance on the VOT2018 public dataset [34].

However, investigations aiming at reducing the information

redundancy and noise across feature channels, especially

as it applies to hundreds or thousands of deep CNN fea-

ture maps, are missing from the existing literature. To close

this gap, in this paper, we advocate a new feature selection

method, namely Group Feature Selection (GFS), for DCF-

based visual object tracking.

In contrast to previous studies, our GFS-DCF incorpo-

rates group feature selection, in both spatial and channel

dimensions, in the original DCF optimisation task. Addi-

tionally, a low-rank regularisation term is used to achieve

temporal smoothness of the learned filters during the track-

ing process. We assume that the learning of correlation fil-

ters is conducted for the tth frame and omit the subscript ‘t’

for simplicity. The objective function of our GFS-DCF is:

W̃ =argmin
W

∥∥∥∥∥

C∑

k=1

Wk
⊛Xk −Y

∥∥∥∥∥

2

F

+ λ1RS(W) + λ2RC(W) + λ3RT (W),

(4)

where RS(W) is the spatial group regularisation term for

spatial feature selection, RC(W) is the group regularisation

term for channel selection, RT (W) is the temporal regular-

isation term and each λi is a balancing parameter. These

regularisation terms are introduced in detail in the remain-

ing part of this section and a solution of the above optimi-

sation task is given in Section 4.4.

4.2. Group SpatialChannel Regularisation

Grouping is introduced into the model with the aim of

exploiting prior knowledge that is scientifically meaning-

ful [30]. Considering the current nature of feature repre-

sentations that are invariably multi-channel, and the spatial

coherence of a tracked object, the grouping information is

employed in RS and RC to achieve spatial-channel selec-

tion by allocating individual variables into specific groups

with certain visual meaning (spatial location and channel

attributes). This strategy has been demonstrated to be effec-

tive in visual data science [57, 3, 85, 29, 22, 78, 79].

To perform group feature selection for the spatial do-

main, we define the spatial regularisation term as:

RS(W) =

N∑

i=1

N∑

j=1

‖wij:‖2 , (5)

in which we use ℓ2 norm to obtain the grouping attribute

of each spatial location, calculated across all the feature

channels. To be more specific, we concatenate all the el-

ements at the ith location of the first order and the jth loca-

tion of the second order of the multi-channel feature tensor,
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Figure 2. A comparison of spatial and channel group feature selec-

tion on OTB2015 using either (a) hand-crafted or (b) deep CNN

features, parameterised by selection ratio.

W ∈ R
N×N×C , into a vector wij: = [wij1, ..., wijC ]

⊤, as

illustrated in Fig. 1. The grouping attribute is obtained by

the ℓ2 norm and then the implicit ℓ1 norm of all the spatial

grouping attributes is used to regularise the optimisation of

correlation filters. This naturally injects sparsity into the

spatial domain by grouping all the elements across chan-

nels. Such structured spatial sparsity enables robust group

feature selection that reflects the joint contribution of fea-

tures in the spatial domain.

In our preliminary experiments, we found that the pro-

posed group feature selection in spatial domain is able to

improve the performance of a DCF tracker when using

hand-crafted features. However, the improvement is mi-

nor when we tried to impose spatial feature selection into

deep CNN features. We argue that the main reason is that

an element in deep CNN feature maps stands for higher-

level concepts thus performing spatial feature selection on

such features cannot achieve fine-grained selection of the

target region from the background. For example we use the

feature maps at the ‘res4x’ layer of ResNet50 [24] in the

proposed method. Each deep CNN feature map has the res-

olution of 13 × 13, in which each pixel corresponds to a

16× 16 region in the original input image. To perform spa-

tial selection on such a small resolution feature map can-

not achieve very accurate spatial feature selection results.

But deep CNN features usually have many channels, with

the cosequence of injecting information redundancy. To ad-

dress this issue, we propose channel selection by defining a

group regularisation term in the channel dimension:

RC(W) =

C∑

k=1

∥∥Wk
∥∥
F
, (6)

where we use the Frobenius norm to obtain the grouping at-

tributes for feature channels {Wk}Ck=1
. Note again that im-

plicitly the constraint in (6) is a sparsity inducing ℓ1 norm.

In practice, to perform spatial/channel feature selection,

we use the measures in Equ. (5) and Equ. (6). Specifically,
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we first calculate the group attributes in spatial/channel do-

main and then eliminate the features across channel/spatial

dimensions corresponding to a pre-defined proportion with

the lowest grouping attributes. This selection strategy has

been commonly used in many previous studies [84, 59, 66].

Additionally, the proposed feature selection method is ap-

plied to each individual feature type separately.

To evaluate the effectiveness of the proposed spatial and

channel group feature selection methods, we compare the

proposed GFS-DCF with the classical DCF formulation on

the OTB2015 dataset. The results are shown in Fig. 2.

It should be noted that the bar at the selection ratio of

100% stands for the original DCF tracker without feature

selection, using either hand-crafted features or deep CNN

features. We use Colour Names, Intensity Channels and

HOG for hand-crafted features, and ResNet50 for deep fea-

tures. Detailed experimental settings are introduced in Sec-

tion 5.1. As reported in the figure, for hand-crafted fea-

tures, impressive improvements are achieved with the spa-

tial selection ratios ranging from 5% ∼ 40%. But channel

selection cannot improve the performance for hand-crafted

features. The only merit of performing channel selection

on hand-crafted features is that we can maintain the per-

formance when compressing the features to 60% in size.

For deep features, the use of spatial feature selection only

improves the performance marginally. But, deep features

benefit significantly from the channel selection regularisa-

tion, with the AUC increasing from 55.49% to 63.07% even

when we only use 5% of the original channels. These results

demonstrate that deep features are highly redundant across

channels, and exhibit undesirable interference. The evalu-

ation validates the proposed spatial-channel group feature

selection strategy.

As such, the proposed method offers a scope for dimen-

sionality reduction by the proposed group spatial-channel

regularisation, leading to performance boosting. While

hand-crafted features are extracted in a fixed manner with

relatively high resolutions compared to deep features, dif-

ferent attributes are considered for different channels, with

more redundancy and ambiguity in the spatial dimension.

The results support the conclusion that the tracking per-

formance can be improved by using the proposed group-

feature-selection-embedded filter learning scheme.

4.3. Temporal Smoothness

Despite the success of feature selection in many com-

puter vision and pattern recognition tasks, it suffers from the

instability of solutions, especially in the presence of infor-

mation redundancy [52]. To mitigate this problem and take

appearance variation into consideration [62], we improve

the robustness of learned correlation filters by injecting tem-

poral smoothness. Specifically, a low-rank constraint is en-

forced on the estimates across video frames, so that the tem-

poral coherence in the filter design is promoted. We define

the constraint as minimising:

rank (Wt)− rank (Wt−1) , (7)

where Wt = [vec(W1), ..., vec(Wt)] ∈ R
N2C×t is a ma-

trix, with each column storing the vectorised correlation fil-

ters, W .

Here, the constraint (7) imposes a low-rank property

across frames because it impacts on the selection process

since the second frame. However, it is inefficient to calcu-

late rank (Wt), especially in long-term videos with many

frames. Therefore, we use its sufficient condition as a sub-

stitute:

d (Wt − Ut−1) , (8)

where Ut−1 =
∑t−1

k=1
Wk/(t − 1) is the mean over all the

previous learned filters and d is a distance metric. The brief

proof of sufficiency is provided as follows.

Proof: Given Wt−1 and Ut−1, the mean vector

of Wt is influenced by Wt. We denote w̌t =

vec
(√

t−1

t
(Wt − Ut−1)

)
. Expressing Wt−1 in terms of

its SVD as Wt−1 = Ut−1Σt−1W⊤

t−1, we have,

Wt =
[
Ut−1, vec (Wt)⊥

]
R

[
W⊤

t−1 0
0 1

]
, (9)

and

R =

[
Σt−1 Σ⊤

t−1vec (Wt)

0 w̌⊤
t

(
I − Ut−1U⊤

t−1

)
w̌t

]
, (10)

where I ∈ R
N2Ct×N2Ct is the identity matrix and ⊥ per-

forms orthogonalisation of the vector, vec (Wt), to the ma-

trix, Ut−1. If Wt = Ut−1, then Σt−1 dominates the eigen-

values of R. Consequently, R shares the same eigenvalues

as Wt. �

Therefore, we propose to adaptively enforce the tempo-

ral low-rank property with the regularisation term:

RT (W) = λ3

C∑

k=1

∥∥Wk
t −Wk

t−1

∥∥2
F
. (11)

4.4. Solution

Due to the convexity of the proposed formulation, we

apply the augmented Lagrange method [44] to optimise

Equ. (4). Concretely, we introduce slack variable W ′ = W
and construct the following Lagrange function:

L =

∥∥∥∥∥

C∑

k=1

Wk
t ⊛Xk

t −Y

∥∥∥∥∥

2

F

+ λ1

C∑

k=1

∥∥W′k
t

∥∥
F

+λ2

N∑

i=1

N∑

j=1

∥∥w′

ijt

∥∥
2
+ λ3

C∑

k=1

∥∥Wk
t −Wk

t−1

∥∥2
F

+
µ

2

C∑

k=1

∥∥∥∥W
k
t −W′k

t +
Γk

µ

∥∥∥∥
F

,

(12)
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where Γ is the Lagrange multiplier sharing the same size

as X , Γk is its k-th channel, and µ is the corresponding

penalty. Then the Alternating Direction Method of Multi-

pliers [9] is employed to perform iterative optimisation with

guaranteed convergence as follows [60]:

ŵijt =

(
I−

x̂ijt x̂
H
ijt

(λ3 + µ/2)N2 + x̂H
ijt
x̂ijt

)
q, (13a)

w′k
ijt

= max

(
0, 1−

λ1

µ ‖Pk‖F
−

λ2

µ ‖pij‖2

)
pkij , (13b)

Γ = Γ + µ (Wt −W ′

t) , (13c)

where q = (x̂ijt ŷij/N
2+µŵ′

ijt
−µγ̂ij+λ3ŵijt−1

)/(λ3+

µ) and pkij = wk
ij + γk

ij/µ.

5. Evaluation

5.1. Implementation and Evaluation Settings

We implement our GFS-DCF using MATLAB 2018a.

The speed of GFS-DCF is 8 frames per second (fps) on

a platform with one Intel Xeon E5-2637 v3 CPU and

NVIDIA GeForce GTX TITAN X GPU. We set λ1 = 10
and λ2 = 1 for group feature selection. In order to guaran-

tee a fixed number of the selected channels and spatial units,

we set up the channel selection ratio rc and spatial selec-

tion ratio rs to truncate the remaining channels and spatial

units. We extract hand-crafted features using Colour Names

(CN), HOG, Intensity Channels (IC), and deep CNN fea-

tures using ResNet-50 [24, 74]. For hand-crafted features,

we set the parameters as rc = 90%, rs = 10%, λ3 = 16
and α = 0.6. For deep features, we set the parameters as

rc = 7.5%, rs = 90%, λ3 = 12 and α = 0.05.

We evaluated the proposed method on several well-

known benchmarks, including OTB2013/OTB2015 [81,

82], VOT2017/VOT2018 [33, 34] and TrackingNet Test

dataset [55], and compared it with a number of state-of-the-

art trackers, such as VITAL [68], MetaT [58], ECO [13],

MCPF [89], CREST [67], BACF [31], CFNet [73],

CACF [54], ACFN [11], CSRDCF [49], C-COT [51], Sta-

ple [4], SiamFC [5], SRDCF [15], KCF [27], SAMF [41],

DSST [16] and other advanced trackers in VOT challenges,

i.e., CFCF [23], CFWCR [25], LSART [69], UPDT [6],

SiamRPN [91], MFT [34] and LADCF [83].

To measure the tracking performance, we follow the cor-

responding protocols [82, 32, 35]. We use precision plot

and success plot [81] for OTB2013 and OTB2015. Four

numerical values, i.e. centre location error (CLE), distance

precision (DP), overlap precision (OP) and area under curve

(AUC), are further employed to measure the performance.

For VOT2017 and VOT2018, we employ expected average

overlap (EAO), accuracy value and robustness to evaluate

the performance [32]. For TrackingNet, we adopt success
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Figure 3. A comparison of different regularisation terms in GFS-

DCF, evaluated on OTB2013. The precision plots with DP and the

success plots with AUC in the legends are presented.

Table 1. A comparison of different methods on different videos of

OTB2015, in terms of the rank of the matrix formed by stacking

all the vectorised filters of all the frames in a video. (The best three

results are highlighted by red, blue and brown.)

Video [#frames] KCF CACF ECO C-COT GFS-DCF

Deer [71] 71 14 4 3 2

Basketball [725] 526 134 23 10 9

Boy [602] 274 63 19 8 4

David3 [252] 252 53 8 3 6

Girl [500] 267 57 18 8 5

Suv [945] 701 49 16 4 6

Skater [160] 160 38 19 3 5

Woman [597] 384 111 15 6 7

score, precision score and normalised precision to analyse

the results [55].

5.2. Ablation Study

We first evaluate the effect of each innovative compo-

nent in GFS-DCF, including the spatial selection term RS

(SS), channel selection term RC (CS) and low-rank tem-

poral smooth term RT (LR). The baseline is the original

DCF tracker equipped with the same features (both hand-

crafted and deep features) and updating rate as our GFS-

DCF. We construct 5 trackers, i.e., BaseLine, BaseLine SS,

BaseLine CS, BaseLine LR and BaseLine ALL, to analyse

internal effectiveness. The results evaluated on OTB2013

are reported in Fig. 3.

According to the figure, the proposed channel selection,

spatial selection and low-rank smoothness terms improve

the performance of the classical DCF (BaseLine). Com-

pared with the classical DCF, the grouping channel/spatial

selection terms RC /RS (BaseLine CS/BaseLine SS) sig-

nificantly improve the performance in terms of DP and AUC

by 10.1%/6.1% and 10.6%/6.7%. The results are consis-

tent with Fig. 2, demonstrating the redundancy and noise in

the multi-channel representations and the advantage of per-

forming group feature selection to achieve parsimony. On

the other hand, the low-rank temporal smoothness term RT
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Input KCF CACF ECO C-COT GFS-DCF

Figure 4. Visualisation of filters using David3 in OTB2015. We

visualise the corresponding filters in frame #50 (the 1st row) and

#200 (the 2nd row). To better visualise the sparsity, we present

the heat-maps of the obtained filters by gathering the energy across

all the channels.
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Figure 5. Impact of λ1, λ2 and λ3, evaluated on OTB2015.

(BaseLine LR) also leads to improvement in the tracking

performance. Intuitively explained, a low-rank constraint

across temporal frames enables the learned filters to become

more invariant to appearance variations. To verify the prac-

tical low-rank property, we further collect the filters of each

frame, concatenate them together, and calculate the rank. To

guarantee the quality of the collected filters, we only con-

sider some simple sequences where all the involved trackers

can successfully track the target across the entire frames,

i.e. the filters are effective in distinguishing the target from

surroundings. The results are presented in Table 1, which

show that our simplified regularisation term, Equ. (11), can

achieve the low-rank property by only considering the fil-

ter model. Note, C-COT and ECO also share the low-rank

property, achieved by taking into account historical appear-

ance in the learning stage, but at the expense of increased

complexity and storage.

We further visualise the filters of 5 different trackers in

Fig. 4. Note that ECO and C-COT achieve sparsity by

spatial regularisation, with more energy concentrating in

the centre region. In contrast, our GFS-DCF realises spar-

sity without a pre-defined mask or weighting. The filters

are adaptively shrunk to specific groups (channels/spatial

units). Therefore, our GFS-DCF may shrink the elements

even within the centre region.

In addition, we perform the sensitivity analysis of λ1, λ2

and λ3. As shown in Fig. 5, our GFS-DCF achieves stable

performance with λ1, λ2 ∈ [0.01, 100] and λ3 ∈ [10, 100].
Though we have to set 7 parameters, the selection ratios

are most essential, as shown in Fig. 2. We employ thresh-

old pruning operators to fix the ratio of selected spatial units

and channels, enabling robustness against regularisation pa-
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Figure 6. The experimental results on OTB2013, and OTB2015.

The precision plots with DP reported in the figure legend (first

column) and the success plots with AUC reported in the figure

legend (second column) are presented.

Table 2. Tracking results with different features on OTB2015.

Feature Method OP DP

HOG

BACF 77.6% 82.4%

CSRDCF 70.5% 79.4%

SRDCF 71.1% 76.7%

LADCF 78.5% 83.1%

GFS-DCF 78.2% 85.2%

HOG+CN

ECO 78.0% 85.1%

C-COT 75.7% 84.1%

GFS-DCF 81.5% 86.3%

HOG+CN+VGG-M

ECO 84.9% 91.0%

C-COT 82.3% 90.3%

GFS-DCF 85.5% 91.2%

rameters.

Finally, the combination of all the components (Base-

Line ALL) becomes our GFS-DCF tracker (Fig. 3), which

achieves the best performance compared with individual

components. The results demonstrate the effectiveness of

the proposed grouping and low-rank formulations.

5.3. Comparison with the Stateoftheart

OTB We report the precision and success plots for

OTB2013 and OTB2015 in Fig. 6. Overall, our GFS-DCF

outperforms all the other state-of-the-art trackers in terms

of DP and AUC. Compared with the second best tracker,

GFS-DCF achieves the improvements by 1.5%/1.2% and

1.4%/0.2% (in DP/AUC) on OTB2013 and OTB2015, re-

spectively.

To achieve a fair comparison of mathematical formula-
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Table 3. The OP and CLE results on OTB2013, TB50 and OTB2015. (The best three results are highlighted by red, blue and brown.)

KCF SAMF DSST SRDCF SiamFC Staple C-COT CSRDCF ACFN

OP/CLE

(%/pixels)

OTB2013 60.8/36.3 69.6/29.0 59.7/39.2 76.0/36.8 77.9/29.7 73.8/31.4 83.7/15.6 74.4/31.9 75.0/18.7

TB50 47.7/54.3 59.3/40.5 45.9/59.5 66.1/42.7 68.0/36.8 66.5/32.3 80.9/12.3 66.4/30.3 63.2/32.1

OTB2015 54.4/45.1 64.6/34.6 53.0/49.1 71.1/39.7 73.0/33.2 70.2/31.8 82.3/14.0 70.5/31.1 69.2/25.3

SPEED (fps) 82.7 11.5 15.6 2.7 12.6 23.8 2.2 4.6 13.8

CACF CFNet BACF CREST MCPF ECO MetaT VITAL GFS-DCF

OP/CLE

(%/pixels)

OTB2013 77.6/29.8 78.3/35.2 84.0/26.2 86.0/10.2 85.8/11.2 88.7/16.2 85.6/11.5 91.4/7.4 95.0/5.92

TB50 68.1/36.3 68.8/36.7 70.9/30.3 68.8/32.6 69.9/30.9 81.0/13.2 73.7/17.0 81.3/12.5 82.8/12.4

OTB2015 73.0/33.1 73.6/36.0 77.6/28.2 77.6/21.2 78.0/20.9 84.9/14.8 79.8/14.2 86.5/9.9 89.0/10.3

SPEED (fps) 18.1 8.7 16.3 10.1 0.5 12.5 0.8 1.3 7.8

Table 4. Tracking results on VOT2017/VOT2018. (The best three results are highlighted by red, blue and brown.)

ECO [13] CFCF [23] CFWCR [25] LSART [69] UPDT [6] SiamRPN [91] MFT [34] LADCF [83] GFS-DCF

EAO 0.280 0.286 0.303 0.323 0.378 0.383 0.385 0.389 0.397

Accuracy 0.483 0.509 0.484 0.493 0.536 0.586 0.505 0.503 0.511

Robustness 0.276 0.281 0.267 0.218 0.184 0.276 0.140 0.159 0.143

tions, we also compared our method with the state-of-the-

art trackers using the same features on OTB2015. As shown

in Table 2, our GFS-DCF performs better than almost all the

other approaches regardless of the features used, demon-

strating the advantage of the proposed method.

We also present the detailed OP, CLE and speed (fps) of

all the involved trackers on OTB2013, TB50 and OTB2015

in Table 3. On OTB2013, our GFS-DCF tracker achieves

the OP of 95.0% and CLE of 5.92 pixels. Compared

with the recent VITAL and MetaT trackers based on end-

to-end deep neural networks, our performance gain is

3.6%/1.48 pixel and 8.4%/5.58 pixels in terms of OP

and CLE, respectively. On TB50, GFS-DCF performs

better than C-COT (by 1.9%) in terms of OP but with a

lower CLE (by 0.1 pixel). In addition, on OTB2015, our

tracker outperforms many recent trackers, i.e. CSRDCF (by

18.5%/20.8 pixels), CACF (by 16.0%/22.8 pixels), C-

COT (by 6.7%/3.7 pixels), BACF (by 11.4%/17.9 pixels)

and ECO (by 4.1%/4.5 pixels) in terms of OP/CLE.

VOT Table 4 presents the results obtained on

VOT2017/VOT2018 dataset [34]. Our method achieves

the best EAO score, 0.397, outperforming recent advanced

trackers, e.g., LADCF, UPDT and SiamRPN. In addition,

the reported Accuracy (0.511) and Robustness (0.143)

results of GFS-DCF are also within the top three, demon-

strating the effectiveness of the proposed group selection

framework.

TrackingNet We also report the results generated by the

TrackingNet [55] evaluation server (511 test sequences) in

Table 5. Our GFS-DCF achieves 71.97% in normalised pre-

cision, demonstrating its advantages as compared with the

other state-of-the-art methods.

In conclusion, the proposed GFS-DCF tracking method

achieves advanced performance, as compared to the state-

Table 5. Evaluation on the TrackingNet test set.

Method Success Precision Normalised Precision

CACF [54] 53.59% 46.72% 60.84%

ECO [13] 56.13% 48.86% 62.14%

MDNet [56] 61.35% 55.53% 71.00%

GFS-DCF 60.90% 56.57% 71.79%

of-the-art trackers, with favourable speed.

6. Conclusion

We proposed an effective appearance model with out-

standing performance by learning spatial-channel group-

sparse discriminative correlation filters, constrained by low-

rank approximation across successive frames. By reformu-

lating the appearance learning model so as to incorporate

group-sparse regularisation and a temporal smoothness con-

straint, we achieved adaptive temporal-spatial-channel filter

learning on a low dimensional manifold with enhanced in-

terpretability of the learned model. The extensive experi-

mental results on visual object tracking benchmarks demon-

strate the effectiveness and robustness of our method, com-

pared with the state-of-the-art trackers. The diversity of

hand-crafted and deep features in terms of spatial and chan-

nel dimensions is examined to support the conclusion that

different selection strategies should be performed on differ-

ent feature categories.
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