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Abstract

In this work, we aim to generate long actions represented

as sequences of skeletons. The generated sequences must

demonstrate continuous, meaningful human actions, while

maintaining coherence among body parts. Instead of gen-

erating skeletons sequentially following an autoregressive

model, we propose a framework that generates the entire se-

quence altogether by transforming from a sequence of latent

vectors sampled from a Gaussian process (GP). This frame-

work, named Convolutional Sequence Generation Network

(CSGN) 1, jointly models structures in temporal and spatial

dimensions. It captures the temporal structure at multiple

scales through the GP prior and the temporal convolutions;

and establishes the spatial connection between the latent

vectors and the skeleton graphs via a novel graph refining

scheme. It is noteworthy that CSGN allows bidirectional

transforms between the latent and the observed spaces, thus

enabling semantic manipulation of the action sequences in

various forms. We conducted empirical studies on multiple

datasets, including a set of high-quality dancing sequences

collected by us. The results show that our framework can

produce long action sequences that are coherent across time

steps and among body parts.

1. Introduction

When the dancer is stepping, jumping and spinning on the

stage, attentions of all audiences are attracted by the stream

of the fluent and graceful movements. Building a model that

is capable of dancing is as fascinating a task as appreciating

the performance itself. In this paper, we aim to generate long-

duration human actions represented as skeleton sequences,

e.g. those that cover the entirety of a dance, with hundreds

of moves and countless possible combinations.

Skeleton-based action synthesis [2,5,6,9,17,29] is gaining

ground in recent years. It is used to aid human-centric video

∗The two authors contributed equally.
1Codes and data at https://github.com/yysijie/CSGN.

Figure 1. CSGN starts with latent signal sequences sampled from

Gaussian process prior and gradually constructs skeleton sequences

of the dance move via convolution and upsampling operations.

The blue skeleton and yellow skeleton share part of latent signals

(shown in green), resulting in a temporal dependency between them.

The relation for longer duration is brought by the Gaussian process.

generation [7] and sees potential applications in AR and 3D

character animations. Existing tools for generating skeleton

sequences [2, 5, 9, 17, 29] are mostly extended from frame-

works for action prediction, which aim at predicting short

sequences of near future given a few seen frames. There-

fore they are usually based on autoregressive models such

as LSTM [14], GRU [1] and Seq2seq [24]. When applied

to generating long-duration action sequences, two inherent

limitations of these methods emerge. First, they rely on the

assumption of Markovian dependency to model temporal

relations, i.e. the generation of a new frame at time step t
depends on the hidden states of a few preceding frames. This

makes it nontrivial to express structures at multiple temporal

scales. Second, the manner of generating frames one by one

along the time dimension creates a barrier for leveraging

backward dependencies. In particular, a frame generated at

a future time step cannot alter the ones in preceding steps.

We propose the Convolutional Sequence Generation Net-

work (CSGN), a new framework for skeleton-based action
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generation. Unlike autoregressive models, CSGN transforms

a sequence of latent vectors drawn from a fixed Gaussian

process to a sequence that follows the data random process.

Specifically, the sampled latent vectors are transformed into

a sequence of skeletons through a convolutional network in

a layer-by-layer manner. This network interleaves spatial-

temporal graph convolution layers with spatial-temporal

graph upsampling operators, thus incorporating temporal

and spatial relations in multiple scales gradually. As shown

in Figure 1, the resultant skeleton at each step depends upon

a sub-sequence of the input, and the corresponding sub-

sequences for neighboring skeletons overlap. This ensures

the generated sequence is temporally coherent across a short

range of time steps. Additionally, the relationships in long

temporal ranges is established by the Gaussian process.

To enable conditional sampling, we devise an encoding

network along with the generative network introduced above.

The encoding network transforms an observed sequence of

skeletons back into a sequence of latent vectors by reducing

the spatial resolution of the skeleton via graph coarsening.

This two-way transformation allows CSGN to manipulate

action sequences in various ways, e.g. complementing, fore-

casting, and semantic editing.

CSGN is evaluated on two datasets: NTU-RGB+D [22], a

real-world action dataset, and MikuDance, a new dataset col-

lected by us. The former comprises short action sequences

obtained from Kinect sensors [28]. The latter contains 201
pieces of long dancing sequences. Each piece lasts for 3–5
minutes, summing up to 10 hours in total. We conducted

quantitative and qualitative assessments of the CSGN in

tasks of generating action sequences and performing action

manipulations. Experiments show that CSGN overcomes the

limitation of existing autoregressive approaches and is able

to generates long action sequences in high quality.

2. Related Work

Action prediction. Previous work on action prediction

mostly relies on autoregressive models. Fragkiadaki et al. [9]

propose the Encoder-Recurrent-Decoder (ERD) model, in-

corporating encoder and decoder networks before and after

recurrent units. The accumulation of errors is diminished

by its denoising component. Martinez et al. [17] propose a

framework based on Seq2seq [24], which predicts velocities

rather than positions of joints. Li et al. [29] propose the

Ac-LSTM, which mixes synthesized frames with observed

frames in training, thus enhancing the model’s capability

for error correction. Butepage et al. [5] propose to encode

a series of previous frames to a latent representation, and

decode future sequences therefrom. For all these methods,

frames are generated step by step, with new ones depending

on previously generated frames. Our framework, instead,

generates the entire sequence directly by convolution, which

naturally captures the temporal structure at multiple scales.

Action synthesis. Generative Adversarial Network [10], a

popular paradigm for generative models, has been applied

to human action generation [2]. HP-GAN [2] combines

the Seq2seq framework with GAN for motion prediction,

where a Seq2Seq model is used as the generator and a fully

connected network is used as the discriminator. Unlike HP-

GAN, we formulate both the generator and the discriminator

as graph convolutional networks. Cai et al. [6] propose a

two-stage GAN for skeleton motion generation, where the

first stage learns to generate spatial signals of pose, and the

second stage generates temporal signals represented as latent

vector sequences. Our model jointly models spatial-temporal

signals using spatial-temporal graph convolutions.

Graph convolution. Graph neural networks have received

increasing attention [16, 27]. There are two major types of

graph convolutions. Spectral graph convolution utilizes the

convolution theorem and operates on the spectral domain

via graph Laplacians [4, 8, 12]. Spatial graph convolution

directly operates on the vertices and their neighbors [18, 27].

Graph convolution was used for action recognition in [27].

In this work, we use graph convolution to capture the spatial

structure of skeletons. Moreover, to allow the computation

at different resolutions of a graph, we introduce the graph

coarsening and refining operations.

3. Convolutional Sequence Generation

Inspired by the observation that an action is continuously

composed of short elemental motions, e.g. jumping, turning,

kicking, we propose Convolutional Sequence Generation

Network (CSGN), a network architecture that generates an

action sequence by transforming a sequence of latent vectors.

As shown in Figure 2, to generate an action sequence of

length T , CSGN first samples a sequence of latent vectors

from a Gaussian process, which is expected to contain the

abstract and slowly changing motion signals. This latent

sequence can be represented by a tensor of shape (C0, 1, T0)
which contains T0 latent vectors of dimension C0. As each

latent vector is assumed to contain information over multiple

time steps, we let T0 < T . Subsequently, it hierarchically

decodes the latent sequence via a series of blocks, each

comprised of spatial-temporal graph convolutions, into an

action sequence. The action sequence is a spatial-temporal

graph of shape (C, V, T ), where T is the number of time

steps, V is the number of vertices of the skeleton graph with

each corresponds to a joint, and C is the dimension of the

data vector associated with each vertex, which may include

information like positions, orientations and rotations.

Each block of the transformation above takes as input a

spatial-temporal graph with shape (Ck, Vk, Tk), denoted by

Fk, and outputs a feature graph Fk+1 at the next level,

Fk+1 = h (Convst(Upst(Fk))) . (1)
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Figure 2. The overall pipeline of CSGN. Starting with a latent vector sequence sampled from Gaussian processes, CSGN gradually increases

the spatial and temporal resolutions of the graph. In the end, the latent signals are transformed into a sequence of human skeletons.

This block carries out the computation in three steps: Fk

is first upsampled by a spatial-temporal graph upsampling

operator Upst, which is introduced in Section 3.2, and then

transformed by a spatial-temporal graph convolution Convst.
Finally, a nonlinear activation function h is applied. Here,

the upsampling operator increases both the spatial and the

temporal resolution with Vk+1 ≥ Vk and Tk+1 = 2Tk. The

subsequent convolution fuses the features over a spatial-

temporal neighborhood into the output. The last block of

the network outputs the 3D locations of the human skeleton

joints at every time step, thus forming an action sequence.

3.1. Latent Vector Sequence Generation

The CSGN model starts by sampling a sequence of T0

latent vectors F0 = (zt)
T0

t=0. As mentioned, these vectors

will be gradually upsampled to a sequence of skeletons of

T frames, with Tk+1 = 2Tk for each upsampling operation.

For a CSGN with K levels of upsampling, we have T =
T0 · 2

K . We use the Gaussian process [20] prior to generate

the latent vector sequences, where the zero-mean Gaussian

process with Radial Basis Function kernel (RBF) is adopted

to enforce long-term temporal correlations. Particularly, the

Gaussian process has the form of (z
(c)
t )t ∼ GP (0, κ), where

the covariance function κ is defined as

κ(t, t′) = exp

(

−
|t− t′|2

2σ2
c

)

. (2)

Here, z
(c)
t is the c-th component of zt. The intuition is that

latent variables closer in time are more correlated than those

faraway. We assume that different channels of the latent

space are independent, and thus they respectively constitute

independent Gaussian processes. The parameter σc defines

the characteristic length-scale for each channel.

Figure 3 shows several sequences sampled from Gaussian

processes of different σc. It shows that a larger σc allows

latent vectors at distant time steps to be strongly correlated,

while a smaller σc yields signals with frequent fluctuations.

To simultaneously model a variety of temporal interaction

of different scales, we set σc = (c/C0)σ̄ to span a spectrum

of values. Here, σ̄ is a hyperparameter that defines the base

scale, which will be determined empirically in Section 6.

Figure 3. Gaussian processes with different characteristic length-

scale σc. Larger σc correlates distant latent variables stronger.

Block Operations MikuDance NTU RGB+D

In Noise from Gaussian process (1024, 1, T

16
) (1024, 1, T

16
)

0 LR ◦ BN ◦ Convst ( 512, 5, T

16
) ( 512, 5, T

16
)

1 LR ◦ BN ◦ Convst ◦Upt ( 256, 5, T

8
) ( 256, 5, T

8
)

2 LR ◦ BN ◦ Convst ◦Upst ( 128, 20, T

4
) ( 128, 11, T

4
)

3 LR ◦ BN ◦ Convst ◦Upt ( 64, 20, T

2
) ( 64, 11, T

2
)

4 LR ◦ BN ◦ Convst ◦Upst ( 32, 46, T ) ( 32, 25, T )

Out tanh ◦ Convst ( 4, 46, T ) ( 3, 25, T )

Table 1. Design of the generator network, where LR is shorthand

for LeakyReLU, operator Convst is the graph convolution, operator

Up
st

is the upsampling operator, and operator Up
t

only upsamples

the temporal dimension and keep graphical dimension intact.

3.2. Sequence Generation from Latent Vectors

Starting with a sampled latent vector sequence, CSGN

gradually increases the resolutions in spatial and temporal

dimensions with its generator network. The architecture of

the generator is outlined in Table 1, where the sizes of spatial-

temporal graphs are denoted as (C, V, T ). To generate high-

quality skeletons, we introduce two graph operations: graph

upsampling and spatially-varying graph convolution, which

will be illustrated in the following.
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Figure 4. Graph pyramid for the NTU-RGB+D dataset. G0 is the

original skeleton graph. Graph pyramids provide a unambiguous

guidance for performing graph upsampling and downsampling.

Graph upsampling/downsampling via graph pyramid.

When building the generation model, we need to transform

the latent vector sequence, which has no spatial extent, into

the final output of spatial-temporal graph. One proven idea

in image generation is to perform gradual upsampling [19],

which increases the resolution and adds details in a layer-by-

layer manner. However, as skeleton graphs are not regular

grids, it is nontrivial to devise a path which we can follow to

perform gradual upsampling. We solve this problem by intro-

ducing graph pyramids. A graph pyramid is constructed from

a full resolution skeleton graph with V0 = V vertices. We

perform graph subsampling by removing vertices as many

as possible, and simultaneously ensuring that each removed

vertex has at least one neighbor staying in the graph. We

repeat this operation until there is only one vertex left. The

result is a graph pyramid, where the i-th level of graph Gi is

the output of the i-th iteration of subsampling. An example

graph pyramid built on the skeleton graph of NTU-RGB+D

is shown in Figure 4. By retracing the path from the top of

the pyramid, the single vertex graph, to the bottom, the full

skeleton graph, we now can easily obtain a path to perform

gradual upsampling. To implement one graph upsampling

operation, we first embed the coarser graph into the finer

graph according to the pyramid and then assign values to

any new vertex by averaging the values of its neighboring

vertices. We further integrate the graph upsampling with the

temporal upsampling to complete the operator Upst. Like-

wise, the discriminator model or the inverse mapping model

which need to transform skeleton graphs back to scalers or

latent vectors can follow the pyramid from the bottom to the

top as a path to perform gradual downsampling.

Spatially-varying graph convolution. Among the many

variants of graph convolutions, spatial graph convolution

groups neighboring vertices into different partitions and

shares weights for vertices in the same partition. When com-

bined with the temporal convolution jointly, the resultant

spatial-temporal graph convolution forms an effective tool to

model spatial-temporal information in skeleton-based action

recognition [27]. In this work, we adopt this architecture in

action sequence generation. As an extension of spatial graph

convolution, the spatially-varying graph convolution further

exploits the topology of the graph via localized operations.

Compared to standard graph convolutions, the parameters of

locally connected networks are not shared across vertices.

The extra degree of freedom better respects the heterogeneity

of different body parts in the skeleton graph.

3.3. Generative Adversarial Training of CSGN

The CSGN is trained via generative adversarial learning

as in [10, 11]. Specifically, the generator G of the CSGN

transforms a sequence of latent vectors into a sequence of

skeleton graphs. Here the input to G is a vector sequence

sampled from a Gaussian process instead of a random vector

with independent components like in standard GANs. The

training also involves a discriminator D, which is used to

discriminate between the generated sequences from the real

ones, thus providing feedbacks to the generator. Like G, the

discriminator D also consists of a series of core blocks. It

incorporates a spatial-temporal graph convolution Convst, a

coarsening operator Coarst, and a nonlinear activation h, as

Fk+1 = h(Coarst(Convst(Fk))). (3)

The coarsening on the graph aspect follow the downsampling

path described in Section 3.2. With the use of the coarsening

operation, the temporal and spatial resolution is gradually

reduced. The output of the last block will be fed to a fully-

connected classifier, to produce a probability score. Some

examples of generation is shown in Figure 6.

4. Action Manipulation

In practice, users often desire to control the generation

process by setting certain conditions. One can a) provide an

initial segment; b) give a series of disconnected segments

at certain time-steps, and ask the system to fill in the rest.

CSGN enables this by introducing a two-way transformation

between the latent vectors and the skeleton sequences. For-

mally, it is formulated as conditional sampling (Figure 5).

We first transform the conditioning sequences into latent vec-

tors using an inverse mapping network. We then sample the

missing time steps in the space of latent vectors. The filled

latent vector sequence is finally transformed back to skeleton

sequence via generator. According to different use cases,

we describe two tasks: a) probabilistic prediction, where a

skeleton sequence of the first few time steps is provided as

condition, and b) action completion, where a few disjoint

time ranges are provided as conditions.

Suppose that the data sequence F is partially observed.

Denote the observed parts by FK and the rest by FU , where

K and U are subsets of time steps. Then the conditional

sampling process can be expressed as

F = G(F0), where F0 ∼ p(F0|F
K). (4)
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Figure 5. The pipeline of three tasks. Blue color denotes the conditional frames or latent vectors, while orange color denotes the sampled

frames or latent vectors. Generator G and inverse mapping network H build a bridge between skeleton sequences and latent variables.

As G involves multiple layers of nonlinear computation, it is

difficult to give the posterior distribution p(F0|F
K) exactly.

Here, we resort to an approximated factorization, where

p(F0|F
K) ≈ p(FU

0 |FK
0 ) · p(FK

0 |FK). (5)

Accordingly, the conditional sampling can be carried out

in three steps: (1) First sample the corresponding part in

the latent space FK
0 conditioned on the partial observation.

This step is done via an inverse mapping network H . The

architecture of H is designed to be an opposite of G, where

the core blocks have the form as in Equation (3). Following

the practice of Cycle-GAN, we train the inverse mapping

H using the cycle consistency loss. (2) Then derive the

remaining part of the latent sequence by drawing FU
0 ∼

p(FU
0 |FK

0 ). (3) Finally generate the sequence of skeletons

by FU = G(FU
0 ). Examples of applying this process to

action completion are shown in Figure 7.

5. MikuDance Dataset

Our goal is to generate long-duration action sequences,

However, there lacks a large-scale, high-quality skeleton-

based dataset with abundant long motions. For example, the

CMU Graphics Lab Motion Capture Database [25] has 88

short dance clips ranging from several seconds to tens of

seconds; and the Panoptic dataset [15] contains 25 minutes

of dancing data from two actresses. We collected a new

large-scale dancing action dataset named the MikuDance.

MikuDance is built from handcrafted dancing performances

from the MikuMikuDance (MMD) [26] animation program.

MMD allows users to import 3D models into a virtual space

that can be animated. Each piece contains the full animation

of a song dance, with an average length of 4823 frames

at 30 fps. We collected 201 distinct dances, totaling 10
hours with 1M frames. The skeleton data contains 46 joints,

including joints of the ten fingers. In addition, the rotational

information of bones are provided in the form of quaternions.

With all these, the data is capable of driving a full-fledged

3D character model. We use this dataset to evaluate the

capability of CSGN in generating long action sequences.

6. Experiment

In this section, we evaluate the performance of CSGN for

human action generation. First we describe the quantitative

metrics for measuring the generation quality and diversity.

Then we compare CSGN with baseline models on two bench-

mark datasets: NTU-RGB-D and the newly built MikuDance

dataset. Finally we provide ablation study of the components

in CSGN to investigate their strengths and limitations.

NTU-RGB+D [23] is a daily action dataset with plenty

of short-term skeleton sequences. Data are represented by

3D locations (X,Y, Z) of 25 body joints. It contains 56000
clips from 60 action categories. The coordinate data are

captured by the Kinect [28] depth sensor. It is worth to note

that the noisy depth signals set an unreasonable upper bound

on the generation quality. To circumvent this problem, we

preprocess the skeleton data by removing outlier values and

smoothing the data along the time dimension with Savitzky-

Golay [21] and median filters. The training and evaluation

are then performed on this cleaned version of the dataset.

MikuDance is built by us using hand-crafted dancing data.

It features very long action sequences with 201 dancing

pieces and 1M frames. Quaternions are used to record the

relative rotation of each bone w.r.t. its parent joint.

Implementation detail. All our models, both for NTU-

RGB-D and MikuDance, and unless specified otherwise, are

trained by WGAN-GP [11], using the Adam optimizer with

betas (0.5, 0.999) and learning rate 0.0002. The gradient

penalty is 10, and we let the gradient norm regress to 0.1.

Base scale σ̄ is 100. Models for NTU-RGB-D are trained

with 50 epochs, and those for MikuDance have 500 epochs.

6.1. Evaluation Metrics

Long-duration skeleton action generation is a relatively

new task. It is important to have well-defined quantitative

assessments for the generation quality of models. Two well-

known metrics in image generation are the Inception Score

(IS) [3], which feeds generated samples to a classification
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Figure 6. Generation. The skeleton sequences synthesized by CSGN on MikuDance. The duration of three rows from top to bottom are 1s,

15s and 60s. Our model has both smoothness in short-term synthesis and diversity in the long-duration generation.

Figure 7. (a) Probabilistic prediction and (b) completion of daily actions on NTU-RGB+D. Gray poses are the given conditional sequences,

while the blue skeleton sequences are the synthesized frames conditioned on the inputs.

model and analyze their output probabilities over all classes;

and Fréchet Inception Distance (FID) [13], which measures

the distance between the statistics of real and synthesized

data on feature space. We extend these two basic metrics

to evaluate on the spatial-temporal sequences. We use ST-

GCN [27] to build action classifiers and train them on a

different data splits w.r.t. generators. In MikuDance, each

dance is cut into two halves for generation and classification

respectively. In NTU-RGB+D, we use the train set of cross-

subject benchmark for generation, and the validation set for

classification. The top-1 and top-5 classification accuracies

for MikuDance are 51.76% and 75.44%, and those for NTU-

RGB+D are 60.52% and 86.83%, respectively. The input

to the classification model is fixed to 32 frames. Below

we describe three extensions to IS and FID. To compute

them, we would generate N = 1000 long-duration skeleton

sequences Fn, n = 1, . . . , N , and cut each sequence into

M = 1000 short snippets Fnm of length 32.
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Mean ensemble FID/IS evaluates the overall generation

quality and diversity across different sequences, which is

inspired by the ensemble average in stochastic processes.

Fix an index m ∈ {1, 2, . . . ,M}, we can compute FID/IS

on the set of snippets at the m-th position of all sequences.

Mean ensemble FID/IS is then obtained by averaging the

above FID/IS values over all position indices. Take the mean

ensemble FID, denoted as FIDe, as an example, we have

FIDe =
1

M

∑

m

FID
(

{Fnm}n=1,...,N

)

. (6)

Mean time FID/IS. The generation quality and diversity

within each sequence is also critical for applications. If the

generated sequence is static poses or just looping a simple

action, it is hard for ensemble scores to detect them because

different samples may still have different poses or motions.

Inspired by the time average technique in stochastic process,

we introduce the mean time FID/IS scores to characterize the

generation quality within each generated sequence. We first

obtain the time FID/IS scores for each generated sequence

by computing the basic metrics on all snippets within each

sequence. Then we average the scores across all sequences.

Take the mean time FID, denoted as FIDt, as an example,

FIDt =
1

N

∑

n

FID
(

{Fnm}m=1,...,M

)

. (7)

Short FID/IS is defined as the ensemble FID/IS at snippet

index m = 1. Some baseline methods were designed for

short-duration generation/prediction tasks, so we explicitly

use this metric to measure the quality of the starting part of

the generated sequences. It has the following form,

FIDs = FID
(

{Fn1}n=1,...,N

)

. (8)

6.2. Comparing Generation Quality

We compare the generation qualities of CSGN and other

baseline models on the MikuDance and NTU-RGB+D [22]

datasets. The compared methods include two autoregressive

models: ERD [9] and acLSTM [29], and two GAN-based

models: HP-GAN [2] and Two-Stage [6]. Except for the

Two-Stage [6], all compared methods are built upon RNN

modules, which can generate arbitrarily long sequences. The

quantitative results, measured by mean ensemble FID/IS and

mean time FID/IS, are summarized in Table 2.

Short sequence generation. Since most existing action

generative models were designed for short-term generation,

we first examine the short sequence generative ability of

them before diving into the analysis of long-duration action

generation. The results are shown in the Short columns in

Table 2. CSGN outperforms other baselines on both two

Figure 8. (a) Failed case in ERD. The top skeleton gradually freezes

to a contemplation posture. The bottom skeleton waves its hands

ceaselessly. (b) Unnatural pose in CSGN. Skeletons on the left

twist their bodies in physically impossible ways. The right ones

demonstrate arms piercing through heads and bodies.

datasets, even though it is not specifically tuned for short

sequence generation.

Long-duration generation. The long-duration generation

quality is indicated by the Ensemble and Time columns in

Table 2. CSGN outperforms baselines on most benchmarks

with a large margin. There are three notable observations.

First, the gap between CSGN and two autoregressive models,

i.e. ERD [9] and acLSTM [29], is significantly enlarged in

the mean time FID/IS. This implies that similar contents

may arise repeatedly in a sequence from the autoregressive

models. As shown in Figure 8(a), ERD may lose creativity

once it generate a static or reciprocating action. Second, the

mean ensemble FID/IS of CSGN, the average of ensemble

scores over time, is very close to short-term FID/IS scores.

This suggests that CSGN can stably synthesize along the

time dimension. Third, of all methods, the mean ensemble

FID/IS scores are always better than mean temporal FID/IS.

One possible explanation is the temporal dependency within

a generated sequence. Snippets in a same sequence tend

to have correlations rather than being independent, which

disadvantages the within sequence diversity metric.

Note that although CSGN achieves remarkable improve-

ments in generation quality in quantitative evaluation, it may

sometimes generate unnatural poses as shown in Figure 8 (b).

Similar cases happen in other GAN-based baselines.

6.3. Ablation Study

Effectiveness of Gaussian processes. To study the impact

of the Gaussian process, we begin with two special cases.

According to Equation (2), when the length scale σc = 0, the

Gaussian process degrades to independent Gaussian noises,

and there is no connection between two time positions in a

latent sequence. In comparison, when σc = ∞, the latent

vectors are constant over time, where temporal variations are

being suppressed. Results in Table 3 show that these two
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NTU-RGB+D MikuDance

FID IS FID IS

Short Ensemble Time Short Ensemble Time Short Ensemble Time Short Ensemble Time

ERD 46.24 41.60 94.90 5.11 5.48 1.18 54.37 47.49 352.1 15.70 22.32 1.06

acLSTM 69.86 78.41 82.00 3.41 3.24 3.08 46.31 50.96 229.5 15.28 16.69 3.09

HP-GAN 46.31 46.31 112.2 4.97 4.97 1.09 422.0 422.0 282.3 3.58 3.58 1.36

Two-Stage 87.91 — — 1.06 — — 420.4 — — 2.42 — —

CSGN 6.03 5.86 8.80 15.40 15.39 12.71 22.60 23.49 34.74 20.71 20.32 18.78

Table 2. Human action generation on MikuDance and NTU-RGB+D. We compare the FID (lower is better) and IS (higher is better) score of

our CSGN with baseline models. The Short scores estimate the short-term generative ability; the Ensemble scores measure the quality and

diversity between generated samples; while the Time scores evaluate the variance of short snippets within a single long sequence.

NTU-RGB+D MikuDance

Length Scale FIDe FIDt FIDe FIDt

Singular
0 12.60 13.35 1016.87 1013.23

∞ 74.65 102.64 652.48 756.85

Single

1 11.77 12.36 57.70 58.55

10 14.64 16.16 31.97 32.45

100 427.06 427.65 1552.46 1525.24

1000 114.38 215.51 1546.10 1526.41

Spectrum

0 ∼ 1 10.65 11.43 1017.67 997.78

0 ∼ 10 7.16 8.04 30.63 31.96

0 ∼ 100 5.86 8.80 23.49 34.74

0 ∼ 1000 6.19 18.73 26.00 73.89

Table 3. The FID scores (lower the better) on two datasets with

different length-scale values and varied spectrum ranges.

special cases lead to poor generation qualities, especially on

the MikuDance dataset, where the action sequences are much

longer. Further, we fix the length scales σc to one single

value between the two extreme cases, which is shown at the

Single entry in Table 3. In NTU-RGB+D, small length scale

(σc = 1) achieves smaller FID; while in MikuDance, larger

length scale (σc = 10) performs better. If the value (σc ≥
100) is too large, the model fails to train. Finally, we test

the spectrum of length scales, as mentioned in Section 3.1.

The entry Spectrum in Table 3 compares different variation

ranges of length scales. We observe that using a spectrum of

Gaussian processes brings considerable improvements to the

model. According to this study, we choose the varied length

scale version with base scale σ̄ = 100 for other experiments.

Graph operations. In Table 4, we started with a baseline

of 1D temporal convolution, which outputs a vector of size

3V representing the concatenated joint coordinates. This

model performs fully-connected operations on the spatial

dimension and ignores the body part connectivity between

joints. We denote it as Temp-Conv. Then we add the graph

convolution to the model by directly upsamples the latent

vectors to the full resolution of skeleton graphs. This setting

is denoted as ST-GCN and ST-SGCN according to whether

they are using spatially varying graph convolution. Then

we add the upsampling operators described in Section 3.2.

NTU-RGB+D MikuDance

GC UP SV Param FIDe FIDt Param FIDe FIDt

Temp-Conv 27.2M 22.25 23.60 27.3M 43.19 50.30

ST-GCN X 20.1M 8.72 11.73 36.6M 35.83 42.98

ST-SGCN X X 26.2M 101.2 102.1 48.2M 1194 1192

CSGN-GC X X 9.4M 31.51 33.71 9.4M 31.20 38.21

CSGN X X X 14.8M 5.86 8.80 17.3M 23.49 34.74

CSGN-Narrow X X X 5.7M 5.13 7.75 6.3M 26.58 36.89

Table 4. Design decisions in graph modeling. Graph convolu-

tion/upsampling is denoted as GC/UP, and spatially varying graph

convolution is denoted as SV. The number of parameters is shown

in column Param. CSGN-Narrow halves the channels of CSGN.

From the results we can observe that the graph convolution

and gradual upsampling is important for generating high

quality samples. Furthermore, the spatially varying graph

convolution is powerful only when used together with the

gradual upsampling, leading to the best generation quality.

We also halve the channels of CSGN. With less parameters,

CSGN still outperforms other baselines.

7. Conclusion

In this work, we propose a convolution based approach

to tackle the problem of human action synthesis. The model

directly transforms a sequence of noises from a Gaussian

process to a data sequence that follows some unknown data

random process. Gaussian processes enforce long-term tem-

poral correlations and spatial-temporal graph convolutions

construct fine motions. It overcomes the major limitations

of previous models. To evaluate the model, we design two

quantitative metrics for the sequence generation task and

provide a new dataset with 10 hours of dance animation data.

On the two large scale skeleton-based human action datasets,

we observe a remarkable improvement of generation quality

in both quantitative and qualitative evaluations.
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