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Abstract

Hand pose estimation from monocular RGB inputs is a

highly challenging task. Many previous works for monocu-

lar settings only used RGB information for training despite

the availability of corresponding data in other modalities

such as depth maps. In this work, we propose to learn a

joint latent representation that leverages other modalities

as weak labels to improve RGB-based hand pose estimation.

By design, our architecture is highly flexible in embedding

various diverse modalities such as heat maps, depth maps

and point clouds. In particular, we find that encoding and

decoding the point cloud of the hand surface can improve

the quality of the joint latent representations. Experiments

show that with the aid of other modalities during training,

our proposed method boosts the accuracy of RGB-based

hand pose estimation systems and significantly outperforms

state-of-the-art on two public benchmarks.

1. Introduction

Hand pose estimation plays an important role in areas

such as human activity analysis, human computer interac-

tion, and robotics. Depth-based 3D hand pose estimation

methods are now highly accurate [25, 10, 28] largely due

to advancements from deep learning. Despite commodity

depth sensors being more commonplace, high-quality depth

maps can still only be captured indoors, thereby limiting

the environments in which depth-based methods can be de-

ployed. Furthermore, simple RGB cameras, as well as ex-

isting RGB footage are still far more ubiquitous than depth

cameras and depth data. As such, there is still a need for

accurate RGB-based 3D hand pose estimation methods, es-

pecially from monocular viewpoints.

To tackle the ambiguities associated with monocular

RGB inputs, previous works have relied on large amounts of

training data [31, 12]. Gains from purely increasing dataset

size tend to saturate, because it is very difficult to obtain

accurate ground truth labels, i.e. 3D hand poses. Anno-

tating 3D hand joint positions accurately is a difficult task

Figure 1: Latent space interpolation. The far left and far right

columns (dashed boxes) are generated poses and point clouds from

monocular RGB images sampled from the training data. Other

columns are generated from linear interpolations on the latent

space. The smoothness and consistency imply that different cross-

modal latent spaces can be embedded and aligned into one shared

latent space.

and there is often little consensus between human annota-

tors [20]. While several methods have been developed to

generate RGB images [12], there still exists a large domain

gap between synthesized and real-world data, limiting the

utility of synthetic data.

Even though accurate ground truth for RGB data is hard

to collect, there exists plenty of unlabelled RGB-D hand

data which can be leveraged together with labelled depth

maps. Cai et al. [2] first proposed the use of labelled depth

maps as regularizers to boost RGB-based methods. Yang et

al. [27] introduced a disentangled representation so that

viewpoint can be used as a weak label. Inspired by these

works, we aim to leverage multiple modalities as weak la-

bels for enhancing RGB-based hand pose estimation.

In this paper, we consider different modalities of hand

data (e.g. RGB images, depth maps, point clouds, 3D poses,

heat maps and segmentation masks) and formulate RGB-

based hand pose estimation as a cross-modal inference

problem. In particular, we propose the use of a multi-

modal variational autoencoder (VAE). VAEs are an attrac-
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tive class of deep generative models which can be learned

on large-scale, high-dimensional datasets. They have been

shown to capture highly complex relationships across mul-

tiple modalities [21, 24, 26] and have also been applied to

RGB-based pose estimation in the past [19, 27]. However,

both [19] and [27] learn a single shared latent space and as

a result must compromise on pose reconstruction accuracy.

In this work, we propose to align latent space from in-

dividual modalities. More specifically, we derive different

objectives for three diverse modalities, namely 3D poses,

point clouds, and heat maps, and show two different ways

to aligning their associated hand latent spaces. While such

a solution may appear less elegant than learning one shared

latent space directly, it is has several practical advantages.

First and foremost, it is much faster to converge and re-

sults in a well-structured latent space; in comparison, the

multimodal shared latent space of [19] tends to fluctuate

as one draws data from the multiple modalities. Addition-

ally, the learning scheme through alignment offers more

flexibility in working with non-corresponding data and also

weak supervision. The resulting latent representation al-

lows for estimating highly accurate hand poses and synthe-

sizing realistic-looking point clouds of the hand surface, all

from monocular RGB images (See Fig. 1).

The main contributions of this paper are as follows:

• We formulate RGB-based hand pose estimation as a

multi-modal learning, cross-modal inference problem

and propose three strategies for learning from different

hand inputs of various modalities.

• We explore non-conventional inputs such as point

clouds and heat maps for learning the latent hand space

and show how they can be leveraged for improving the

accuracy of an RGB-based hand pose estimation sys-

tem. A side product of our framework is that we can

synthesize realistic-looking point clouds of the hand

from RGB images.

• By evaluating on two publicly available benchmarks,

we show that our proposed framework makes full

use of auxiliary modalities during training and boosts

the accuracy of RGB pose estimates. Our estimated

poses surpass state-of-the-art methods on monocu-

lar RGB-based hand pose estimation, including a

whopping 19% improvement on the challenging RHD

dataset [31]

2. Related Works

One way to categorize hand pose estimation approaches

is according to either generative or discriminative meth-

ods. Generative methods employ a hand model and use

optimization to fit the hand model to the observations

[17, 14, 22]. They usually require a good initialization; oth-

erwise they are susceptible to getting stuck in local minima.

Discriminative methods learn a direct mapping from visual

observations to hand poses [23, 27, 10, 13, 31, 2]. Thanks

to large-scale annotated datasets [31, 29, 23], deep learning-

based discriminative methods have shown very strong per-

formance in the hand pose estimation task.

In particular, works using depth or 3D data as input are

the most accurate. Oberweger et al. [13] use 2D CNNs

to regress the hand pose from depth images, using a bot-

tleneck layer to regularize the pose prediction to a certain

prior distribution. Moon et al. [11] use 3D voxels as in-

put and regress the hand pose with a 3D CNN. More recent

works [10, 5] apply 3D point clouds as input and can esti-

mate very accurate hand poses.

3D data is not always available either at training or at

testing. Some recent works have started to explore the use

of monocular RGB data. For example, Zimmermann et

al. [31] regress heatmaps for each hand keypoint from

RGB images and then regress the 3D hand pose from these

heatmaps with fully-connected layers. Mueller et al. [12]

follow a similar approach, but obtain the final 3D hand pose

by using a kinematic skeleton model to fit the probability

distribution of predicted heat maps.

More recent monocular RGB-based methods leverage

depth information for training [2, 19], even though testing is

done exclusively with RGB images. Our proposed method

also falls into this line of work. Cai et al. [2] propose an

additional decoder to render depth maps from correspond-

ing poses to regularize the learning of an RGB-based pose

estimation system. This architecture is essentially two in-

dependent networks with a shared hand pose layer. This

shared layer however cannot leverage data without pose an-

notations. Spurr et al. [19] propose a VAE-based method

that learns a shared latent space for hand poses from both

RGB and depth images. However, its alternating training

strategy from the different modalities ignores the availabil-

ity of corresponding data and leads to a slow convergence

speed.

3. Methodology

The aim of cross-modal methods is to capture relation-

ships between different modalities so that it is possible to

obtain information of target modalities given observations

of some other modalities. In this section, we first present

the cross modal VAE (CrossVAE) [15, 19] and our exten-

sions to handle inputs and outputs from multiple modalities

(Sec. 3.1). We then introduce two latent space alignment

operators strategies (Sec. 3.2) and how they can be applied

for RGB-based hand pose estimation (Sec. 3.3).
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3.1. Cross Modal VAE and its extension

Given data sample x from some input modality, the

cross modal VAE aims to estimate its corresponding target

value y in a target modality by maximizing the evidence

lower bound (ELBO) via a latent variable z.

log p(y) ≥ ELBOcVAE(x;y; θ, φ) (1)

= Ez∼qφ log pθ(y|z)− βDKL(qφ(z|x)||p(z)).

Here, DKL(·) is the Kullback-Leibler divergence. β is a

hyperparameter introduced by [8] to balance latent space

capacity and reconstruction accuracy. p(z) = N (0, I) is a

Gaussian prior on the latent variable z. The variational ap-

proximation qφ(z|x) is an encoder from x to z, and pθ(y|z)
is a decoder or inference network from z to y.

In addition to x and y, we assume that there are corre-

sponding data from N other modalities {w1, . . . ,wN} and

that these modalities are conditionally independent given la-

tent representation z. For clarity, we limit our derivation be-

low to N =1, though the theory generalizes to higher N as

well. To encode these additional modalities, we can extend

the ELBO from Eq. 1 as follow:

log p(y,w1) ≥ ELBOcVAE(x,w1;y,w1;φx,w1
, θy, θw1

)

=Ez∼φx,w1
log pθy(y|z) + λw1

Ez∼φx,w1
log pθw1

(w1|z)

−βDKL

(

qφx,w1
(z|x,w1)||p(z)

)

, (2)

where λw1
is a hyperparameter that regulates the recon-

struction accuracy between w1 and y. Graphical models

of the original cross modal VAE and its extension to more

modalities are shown in Fig 2a and Fig 2b.

We expect the z sampled from the variational approxi-

mation qφ(z|x,w1) in Eq. 2 to be more informative than the

one sampled from qφ(z|x) in Eq. 1, since it is conditioned

on both z and w1. Furthermore, the expectation term for the

decoder pθw1
can be regarded as a regularizer that prevents

the latent space from over-fitting to y’s modality. From here

onwards, ,we define zjoint as z from Eq. 2.

Note that Eq. 2 assumes that corresponding data from

modalities x, w1 are always available. While this is a rea-

sonable assumption for training, i.e. having corresponding

Algorithm 1 Extended cross modal with one encoder.

Require: x,y,w1, T
Ensure: φx, θy, θw1

1: Initialize φx, θy, θw1

2: for t = 1, . . . , T epochs do

3: Encode x to qφx
(zx|x)

4: Decode zx to pθx(y|zx), pθw1
(w1|zx)

5: Update φx, θy, θw1
via gradient ascent of

ELBOcVAE(x;y,w1;φx, θy, θw1
)

6: end for
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Figure 2: Graphical models. (a) Cross modal; (b) Extended cross

modal; (c) Latent alignment with a KL divergence loss; (d) La-

tent alignment with the product of Gaussian experts. The shaded

nodes represent observed variables while un-shaded nodes are la-

tent. The red and black solid lines denote variational approxima-

tions qφ or encoders, and the generative models pθ or decoders

respectively. The dashed lines denote the operation that embed-

ding cross-modal latent spaces into a joint shared latent space; it

is a KL divergence optimization for (c) and product of Gaussian

experts for (d). Figure best viewed in colour.

data samples from multiple modalities, this severely limits

the applicability.

One possibility is to simplify the encoder to take

only inputs from x, so that Eq. 2 simplifies to

ELBOcVAE(x;y,w1;φx, θy, θw1
). The associated algo-

rithm is shown in Alg. 1. Note that this reduces the richness

of the latent space and thereby the decoding capabilities.

3.2. Latent Space Alignment

An alternative solution is to learn qφx,w1
(z|x,w1) and

qφx(z|x) jointly and ensure that they correspond, i.e. are

equivalent, by aligning the two distributions together. Note

that equivalence between the two distributions follows natu-

rally from our originally assumption that x, y and wi are all

conditionally independent given z. Inspired by multimodal

learning work of [1], we propose joint training objectives to

align the latent spaces learned from single modalities to the

one learned with joint modalities to improve inference ca-

pabilities. More specifically, we would like to align zx (the

latent representation learned only from x), with the joint la-

tent representation zjoint learned from both x and w so as

to leverage the modalities of w. One can also regard this

as bringing together qφx,w1
(z|x,w1) and qφx(z|x) as close as

possible.

KL divergence Loss. An intuitive way of aligning one

latent space with another is to incorporate an additional loss

term to reduce the divergence between qφx,w1
(z|x,w1) and

qφx(z|x). This was first proposed by [21] for handling miss-

ing data from input modalities in multimodal setting. While

we have no missing data in our cross-modal setting, we

introduce a similar KL-divergence term DKL with hyper-
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parameter β′ to align the latent spaces.

L(φx,w1
,φx, θy, θw1

) (3)

= ELBOcVAE(x,w1;y,w1;φx,w1
, θy, θw1

)

+ ELBOcVAE(x;y,w1;φx, θy, θw1
)

− β′DKL

(

qφx,w1
(zjoint|x,w1)||qφx

(zx|x
)

).

Note that the decoders θy, θw1
are shared in the above EL-

BOs in Eq. 3. This implicitly forces zjoint and zx to be em-

bedded to the same space (see Fig. 2c and Alg. 2).

The above formulation suffers from two major draw-

backs on the encoding side. Firstly, as the number of modal-

ities or N increases, the joint encoder qφx,w1
becomes dif-

ficult to learn. Secondly, with only the two encoders qφx

and qφx,w1
, we are not able to leverage data pairs (w1,y).

To overcome these weaknesses, we introduce the product

of experts (PoE) as an alternative form of alignment.

Product of Gaussian Experts. It was proven in [26]

that the joint posterior is proportional to the product of in-

dividual posteriors, i.e. q(z|x,w1) ∝ p(z)q(z|x)q(z|w1).
To that end, we can estimate the joint latent representation

from unimodal latent representations. Recall that in the for-

mulation of the VAE, both p(z) and q(z|·) are Gaussian; as

such, we arrive at q(z|x,w1) through a simple product of

Gaussian experts, q(z|x) and q(z|w1) [3, 26] (see model in

Fig. 2d). With the help of shared decoders, we arrive at a

joint latent representation through the following objective:

L(φx, φw1
, θy, θw1

) = ELBOcVAE(x;y,w1;φx, θy, θw1
)

+ ELBOcVAE(w1;y,w1;φw1
, θy, θw1

) (4)

+ ELBOcVAE(x,w1;y,w1;φx, φw1
, θy, θw1

)

= Ezx∼qφx
log pθ(y,w1|zx) + Ezw1

∼qφw1

log pθ(y,w1|zw1
)

+ Ezjoint∼GProd(zx,zw1
) log pθ(y,w1|zjoint)

− β(DKL (qφ(zx|x)||p(z)) +DKL (qφ(zw1
|w1)||p(z))),

where the GProd(·) is the product of Gaussian experts. Note

in this formulation, we do not need a joint encoder φx,w1

for x and w1 as was the case for alignment with KL diver-

gence in Eq. 3. Instead, we use q(z|x) and q(z|w1) as two

Gaussian experts. Suppose that q(z|x) = N (µ1,Σ1) and

q(z|w1) = N (µ2,Σ2). The product of two Gaussian ex-

perts is also Gaussian with mean µ and covariance Σ, where

µ = (µ1T1 + µ2T2)/(T1 + T2), and (5)

σ = 1/(T1 + T2), where T1 = 1/Σ1, T2 = 1/Σ2. (6)

All operations in the product of Gaussian experts are

element-wise. In this way, we can build a connection be-

tween zjoint and zx, zw1
, forcing them all into one shared

latent space. This alignment strategy is more flexible than

Alg. 2, because the encoders of different modalities can be

trained individually, even from different datasets, while for

Alg. 2, the joint encoder must be trained on the complete

x,w1 pairs. The learning algorithm can be found in Alg. 3.

3.3. Application Towards Hand Pose Estimation

In the context of RGB-based hand pose estimation, x

represents RGB images and y 3D hand poses. Other modal-

ities like heatmaps, depth maps, point clouds and segmen-

tation masks can be used as w during training to improve

the learning of the latent space and thereby leading to more

accurate hand pose estimates from RGB inputs. In this pa-

per, we use point clouds (C) and heat maps (H) as additional

modalities w to improve the cross modal inference of RGB

(R) to 3D poses (P). In the rest of paper, we use the for-

mat “A2B” to represent the estimation of target modality

“B” from input modality “A” during training. For example,

R2CHP represents the estimation of point clouds, heat maps

and 3D poses from RGB input. Note that unless indicated

otherwise, the test settings use RGB images as the source

modality or input and 3D hand poses as the target modality

or output.

4. Implementation Details

4.1. Data PreProcessing and Augmentation

From the RGB image, the region containing hand is

cropped from ground truth masks and resized to 256×256.

The corresponding region in the depth image is converted

Algorithm 2 Latent alignment with Eq. 3.

Require: x,y,w1, T
Ensure: φx, φx,w1

, θy, θw1

1: Initialize φx, φx,w1
, θy, θw1

2: for t = 1, . . . , T epochs do

3: Encode x to qφx
(zx|x)

4: Encode x,w1 to qφx,w1
(zjoint|x,w1)

5: Decode zx to pθx(y|zx), pθw1
(w1|zx)

6: Decode zjoint to pθx(y|zjoint), pθw1
(w1|zjoint)

7: Construct DKL(qφx,w1
(zjoint|x,w1)||qφx

(zx|x))
8: Update φx, φx,w1

, θy, θw1
via gradient ascent of

Eq. 3

9: end for

Algorithm 3 Latent alignment with Eq. 4.

Require: x,y,w1, T
Ensure: φx, φw1

, θy, θw1

1: Initialize φx, φw1
, θy, θw1

2: for t = 1, . . . , T epochs do

3: Encode x to qφx
(zx|x)

4: Encode w1 to qφw1
(zw1

|w1)
5: Construct zjoint = GProd(zx, zw1

)
6: Decode zx, zw1

, zjoint to pθx(y|·), pθw1
(w1|·) re-

spectively

7: Update φx, φw1
, θy, θw1

via gradient ascent of Eq. 4

8: end for
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to point clouds using the provided camera intrinsic parame-

ters. For each training step, a different set of 256 points are

randomly sampled as training input.

Viewpoint correction. After cropping the hand from the

RGB image, the center of the hand in the image moves from

some arbitrary coordinates to the center of the image. As

such, the 3D hand pose and associated point cloud must be

rotated such that the viewing angle towards the hand aligns

with the optical axis. As indicated in [10], this correction

is necessary to remove the many-to-one observation-pose

pairings. We follow the approach given in [10]. Detailed

equations on view correction can be found in the supple-

mentary material.

Data augmentation was performed online during train-

ing. The images are scaled randomly between [1, 1.2],
translated [−20, 20] pixels and rotated [−π, π] around the

camera view axis. Furthermore, the hue of the image is ran-

domly adjusted by [-0.1, 0.1]. The point clouds are rotated

randomly around the camera view axis and the 3D pose la-

bels are also rotated accordingly.

4.2. Encoder and Decoder Modules

Our proposed method is highly flexible and can inte-

grate many different modalities to construct a common la-

tent space. In the current work, we learn encoders for RGB

images and point clouds and decoders for 3D hand poses,

point clouds and heat maps of the 2D hand key points on

the RGB image. We choose to convert the 2.5D depth infor-

mation as 3D point clouds instead of standard depth maps,

due to its superior performance in hand pose estimation, as

shown in previous works [10, 4, 6]. Heat maps are chosen

as a third modality for decoding to encourage convergence

of the RGB encoder, since the heat maps are closely related

to activation areas on the RGB images.

For encoding RGB images, we use Resnet-18 from [7]

and two additional fully connected layers to predict the

mean and variance vector of the latent variable. For en-

coding point clouds, we employ the ResPEL network [10],

which is an learning architecture that takes unordered point

cloud as input. While we use same number of PEL layers

as in [10], the number of hidden units are reduced by half to

ease the computational load.

To decode the heatmaps, we follow the decoder archi-

tecture of the DC-GAN [18]. The loss function used for the

heatmaps is the L2 loss function of pixel-wise difference

between prediction and ground-truth:

Lheat =

J
∑

j=1

||Ĥj −Hj ||, (7)

whereas Hj is the ground-truth heatmap for the j-th hand

keypoint and Ĥj is the prediction. For decoding point

clouds, we follow the FoldingNet architecture [28] and try

to reconstruct a point cloud representing the visible surface

of the hand. To learn the decoder, we use two different loss

terms based on the Chamfer distance and Earth Mover’s dis-

tance (EMD). The Chamfer distance is the sum of the Eu-

clidean distance between points from one set and its closest

point in the other set and vice versa:

LChamfer =
1

|P |

∑

p∈P

min
p̂∈P̂

||p̂− p||+
1

|P̂ |

∑

p̂∈P̂

min
p∈P

||p̂− p||.

(8)

For the Earth Mover’s distance, one-to-one bijective corre-

spondences are established between two point clouds, and

the Euclidean distances between them are summed:

LEMD = min
φ:P→P̂

1

|P |

∑

p∈P

||p− φ(p)||, (9)

In both Eq. 8 and 9, P̂ , P ∈ R
3 represent the predicted

point clouds and the ground truth point clouds respectively

and the number of points in both clouds are 256.

The decoder for 3D pose consists of 4 fully-connected

layers with 128 hidden units for each layer. To learn the

pose decoder, we use an L2 loss:

Lpose = ||ŷ − y||, (10)

where ŷ, y are the predicted and the ground truth hand poses

describing the 3D locations of 21 keypoints.

Combining all the losses in Eq. 7-10, we obtain the fol-

lowing reconstruction loss function:

Lrecon =

Lpose + λheatLheat + λcloud(LChamfer + LEMD).
(11)

The overall loss for training is the sum of reconstruction

loss and its corresponding DKL loss based on Eq. 2-4.

5. Experimentation

In the experiments, we set the dimensionality of latent

variable z to 64, λheat to 0.01, λcloud to 1 for all cases and

β′ to 1 for Eq. 3 . Our method is implemented with Tensor-

flow. For learning, we use an Adam optimizer with an initial

learning rate of 10−4 and a batch size of 32. We lower the

learning rate by a factor of 10 two times after convergence.

The value of β is annealed from 10−5 to 10−3.

5.1. Datasets and evaluation metrics

Our method is evaluated on two publicly available

datasets: the Rendered Hand Pose Dataset (RHD) [31] and

the Stereo Hand Pose Tracking Benchmark (STB) [30].

RHD is a synthesized dataset of rendered hand images

with 320×320 resolution from 20 characters performing 39
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Figure 3: 3D pose estimation and point cloud reconstruction for RHD (left) and STB (right) dataset. From top to bottom: RGB images,

ground-truth poses in blue, estimated poses from zrgb in red, ground-truth point clouds, reconstructed point clouds from zrgb. The color for

point clouds decodes the depth information, closer points are more red and further points are more blue. Note that the ground-truth point

clouds are not used for inference, it is shown here only for comparison purpose.

Figure 4: Latent space interpolation. Two examples of reconstructing point clouds and hand poses from the latent space. The most left

and most right column are RGB images and their corresponding ground-truth poses. Other columns are generated point clouds and poses

when interpolating linearly on the latent space.

actions. It is composed of 41238 samples for training and

2728 samples for testing. For each RGB image, a corre-

sponding depth map, segmentation mask, and 3D hand pose

are provided. The dataset is highly challenging because of

the diverse visual scenery, illumination, and noise.

STB contains videos of a single person’s left hand in

front of six different real-world backgrounds. The dataset

provides stereo images, color-depth pairs with 640 × 480

resolution and 3D hand pose annotations. Each of the 12

sequences in the dataset contains 1500 frames. To make the

3D pose annotations consistent for RHD, we follow [31, 2]

and modify the palm joint in STB to the wrist point. Similar

to [31, 2, 19, 27], we use 10 sequences for training and the

other 2 for testing.

To evaluate the accuracy of the estimated hand poses, we

use the common metrics mean end-point-error (EPE) and

area under the curve (AUC) on the percentage of correct

keypoints (PCK) curve. EPE is measured as the average Eu-
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Strategy Encoder Decoder Mean EPE [mm]

S1 (Eq. 1) R P 16.61

S2 (Alg. 1) R H+P 16.10

R C+P 15.91

R C+H+P 15.49

S3 (Alg. 2) R+C C+H+P 14.93

S4 (Alg. 3) R+C C+H+P 13.14

Table 1: Comparison of different training strategies on the RHD

dataset. The mean EPE values are obtained from monocular RGB

images. (R: RGB, C: point cloud, P: pose, H: heatmap). Poses es-

timated from monocular RGB images can be improved by increas-

ing number of different encoders and decoders during training.

clidean distance between predicted and ground-truth hand

joints, whereas AUC represents the percentage of predicted

keypoints that fall within certain error thresholds compared

with ground-truth poses. To compare with the state-of-the-

art methods in a fair way, we follow the similar condition

used in [19, 9, 2, 27] to assume that the global hand scale

and the hand root position are known in the experimental

evaluations, where we set the middle finger’s base position

as the root of the hand.

5.2. Qualitative results

Using the flexible design of our method, we train the net-

works exploiting all the available modalities and test using

only limited modalities. In Fig. 3, we show some qualita-

tive examples of poses and point clouds decoded from the

zrgb. The 3D poses and point clouds can be successfully

reconstructed from the same latent variable z. The recon-

structed point clouds’ surfaces are smoother than the origi-

nal inputs, since the inputs are sub-sampled from raw sensor

data, while the reconstructed point clouds hold some struc-

tured properties from the FoldingNet decoder.

We also evaluate the ability of our model to synthesize

hand poses and point clouds. From two RGB images of the

hand, we estimate the corresponding latent variables z1,2
and then sample points by linearly interpolating between

the two. 3D hand pose and point cloud reconstructions of

the interpolated points via our learned decoders are shown

in Fig. 4. We observe that the learned latent space recon-

structs a smooth and realistic transition between different

poses, with changes in both global rotations and local fin-

ger configurations.

5.3. RGB 3D Hand Pose Estimation

Note that even though our network is trained with mul-

tiple modalities, the results provided here are based only in

monocular RGB inputs.

Training Strategy. We first compare different training
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Figure 5: Comparisons of 3D PCK results of our different strate-

gies on RHD dataset. The abbreviations can be found in Sec. 3.3

and “vc” stands for “view correction”

strategies (S) in Table 1: S1. Baseline method to only use

RGB-pose pairs for training. S2. Training with extended

decoders, where the latent variables zrgb reconstruct more

modalities (heatmaps and point clouds) besides poses. S3.

Training with an additional encoder for point clouds, where

the different latent variables are aligned as per Alg. 2. S4.

The alignment method in S3 is changed to the product of

Gaussian experts (Alg. 3). More comparison results with

AUC metric are shown in Fig. 5

Comparing S1 to the other strategies, we observe that the

baseline performance can be improved by training with in-

creasing number of additional encoders or decoders. Com-

paring S4 to S3, the alignment with the Gaussian product

outperforms the intuitive KL-divergence alignment method

by capturing a better joint posterior of different input

modalities.

Furthermore, we emphasize the necessity of viewpoint

correction (Sec. 4.1). We applied both view corrected and

uncorrected data for training the baseline strategy “R2P”

(S1). The difference can be seen from Fig. 5, where the

view corrected data clearly improves the AUC metric.

Method RHD STB

VAE-based

Spurr et al. [19] 19.73 8.56

Yang et al. [27] 19.95 8.66

Ours 13.14 7.05

Others
Z&B [31] 30.42 8.68

Iqbal et al. [9] 13.41 \

Table 2: Comparison to state-of-the-art on the RHD and STB with

mean EPE [mm]. Ours refers to S4 in Table 1 (RC2CHP).

Comparison to state-of-the-art. In Table 2, we com-

pare the EPE of our method with VAE-based methods [19,

27] which are most related to our method as well as other
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Figure 6: AUC: Comparison to state-of-the-art methods on the

RHD dataset. Ours refers to S4 in Table 1 (RC2CHP).
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Figure 7: AUC: Comparison to state-of-the-art methods on the

STB dataset. Ours refers to S4 in Table 1 (RC2CHP).

state-of-the-art [31, 9]. On both datasets, our proposed

method achieves the best results, including an impressive

1.61mm or 19% improvement on the STB dataset.

We also compare the PCK curve of our approach with

other state-of-the-art methods [19, 27, 31, 9, 12, 16] in

Fig. 6 and Fig. 7. For both datasets, our method achieves the

highest AUC value on the 3D PCK. We marginally outper-

form the state-of-the-art [9, 2] on the STB dataset, whereas

on the RHD dataset, we surpass all reported methods to

date [31, 27, 2, 19] with a significant margin. We note,

however, that the STB dataset contains much less variation

in hand poses and backgrounds than the RHD dataset and

that performance by state-of-the-art methods on STB has

become saturated. As such, there is little room for improve-

ment on STB, whereas the benefits of our method is more

visible on the RHD dataset.

Weakly-supervised learning. Thanks to flexibility of

the proposed method, (surface) point clouds can be also

used as “weak” labels for unlabelled data to aid the training

process. We tested our method under a weakly-supervised

setting on the RHD dataset, where we sample the first m%
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Figure 8: Mean EPE of our model on the weakly-supervised set-

ting. Our method makes full use of unlabelled data, as the weakly-

supervised setting performs almost as well as the supervised one.

samples as labelled data (including RGB, point clouds and

3D poses) and the rest as unlabelled data (including RGB,

point clouds) by discarding 3D pose labels. We compare

the supervised setting with the weakly-supervised setting

for the “RC2CHP” networks (S4 in Table 1). In the super-

vised training setting, we train the networks with only m%

samples, In the weakly-supervised setting, besides fully su-

pervised training on m% data, we also train the “RC2C”

sub-parts with the rest (100-m)% samples simultaneously.

The percentage of labelled data is varied from 5% to 100%

to compare the mean EPE between supervised and weakly-

supervised settings. From Fig. 8 we can see that our

method makes full usage of additional unlabelled informa-

tion, where the improvement is up to 6%.

6. Conclusion

In this paper, we formulate RGB-based hand pose es-

timation as a multimodal learning and cross-modal infer-

ence problem. We derive different objectives for three hand

modalities, and show different ways of aligning their asso-

ciated latent spaces with a joint one. Our experiments show

that the proposed method can exploit different modalities

as prior knowledge to improve the performance of RGB-

based hand pose estimation as well as leverage weakly la-

belled data. Experiments on two publicly available datasets

demonstrate that our approach outperform previous state-

of-the-art methods. Moreover, the model size and runtime

of our architecture is kept the same as other VAE-based

hand estimation methods at test time.
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