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Abstract

Object detection has been a building block in computer

vision. Though considerable progress has been made, there

still exist challenges for objects with small size, arbitrary

direction, and dense distribution. Apart from natural im-

ages, such issues are especially pronounced for aerial im-

ages of great importance. This paper presents a novel multi-

category rotation detector for small, cluttered and rotated

objects, namely SCRDet. Specifically, a sampling fusion

network is devised which fuses multi-layer feature with ef-

fective anchor sampling, to improve the sensitivity to small

objects. Meanwhile, the supervised pixel attention net-

work and the channel attention network are jointly explored

for small and cluttered object detection by suppressing the

noise and highlighting the objects feature. For more accu-

rate rotation estimation, the IoU constant factor is added

to the smooth L1 loss to address the boundary problem for

the rotating bounding box. Extensive experiments on two

remote sensing public datasets DOTA, NWPU VHR-10 as

well as natural image datasets COCO, VOC2007 and scene

text data ICDAR2015 show the state-of-the-art performance

of our detector. The code and models will be available at

https://github.com/DetectionTeamUCAS.

1. Introduction

Object detection is one of the fundamental tasks in com-

puter vision and various general-purpose detectors [12, 15,

11, 26, 30, 5, 31] have been devised. Promising results have

∗Corresponding author is Junchi Yan. The work is partially

supported by National Key Research and Development Program of

China (2016YFB1001003), STCSM (18DZ1112300), NSFC (61602176,

61725105, 41801349).

been achieved on a few benchmarks including COCO [24]

and VOC2007 [9] etc. However, most existing detectors do

not pay particular attention to some useful aspects for ro-

bust object detection in open environment: small objects,

cluttered arrangement and arbitrary orientations.

In real-world problems, due to limitation of camera res-

olution and other reasons, the objects of interest can be of

very small size e.g. for detection of traffic signs, tiny faces

under public cameras on the streets. Also, the objects can

range in a very dense fashion e.g. goods in shopping malls.

Moreover, the objects can no longer be positioned horizon-

tally as in COCO, VOC2007, e.g. for scene text detection

whereby the texts can be in any direction and position.

In particular, the above three challenges are pronounced

for images in remote sensing, as analyzed as follows:

1) Small objects. Aerial images often contain small ob-

jects overwhelmed by complex surrounding scenes;

2) Cluttered arrangement. Objects for detection are

often densely arranged, such as vehicles and ships;

3) Arbitrary orientations. Objects in aerial images can

appear in various orientations. It is further challenged by the

large aspect ratio issue which is common in remote sensing.

In this paper, we mainly discuss our approach in the con-

text of remote sensing, while the approach and the problems

are general and we have tested with various datasets beyond

aerial images as will be shown in the experiments.

Many existing general-purpose detectors such Faster-

RCNN [31] have been widely employed for aerial object

detection. However, the design of such detectors are often

based on the implicit assumption that the bounding boxes

are basically in horizontal position, which is not the case

for aerial images (and other detection tasks e.g. scene text

detection). This limitation is further pronounced by the pop-

ular non-maximum suppression (NMS) technique as post-
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Figure 1: SCRDet includes SF-Net, MDA-Net against small and cluttered objects and rotation branch for rotated objects.

processing as it will suppress the detection of densely ar-

ranged objects in arbitrary orientation over the horizontal

line. Moreover, horizontal region based methods have a

coarse resolution on orientation estimation, which is key in-

formation to extract for remote sensing.

We propose a novel multi-category rotation detector for

small, cluttered and rotated objects, called SCRDet which is

designated to address the following issues: 1) small object:

a sampling fusion network (SF-Net) is devised that incor-

porates feature fusion and finer anchor sampling; 2) noisy

background: a supervised multi-dimensional attention net-

work (MDA-Net) is developed which consists of pixel at-

tention network and channel attention network to suppress

the noise and highlight foreground. 3) cluttered and dense

objects in arbitrary orientation: an angle sensitive network

is devised by introducing an angle related parameter for es-

timation. Combing these three techniques as a whole, our

approach achieves state-of-the-art performance on public

datasets including two remote sensing benchmarks DOTA

and NWPU VHR-10. The contributions of this paper are:

1) For small objects, a tailored feature fusion structure is

devised by feature fusion and anchor sampling.

2) For cluttered, small object detection, a supervised

multi-dimensional attention network is developed to reduce

the adverse impact of background noise.

3) Towards more robust handling of arbitrarily-rotated

objects, an improved smooth L1 loss is devised by adding

the IoU constant factor, which is tailored to solve the bound-

ary problem of the rotating bounding box regression.

4) Perhaps more importantly, in Section 4.2 we show that

the proposed techniques are general, and can also be applied

on natural images and combined with general detection al-

gorithms, which surpass the state-of-the-art method or fur-

ther improves the existing methods by combination.

2. Related Work

Existing detection methods mainly assume the objects

for detection are located along the horizontal line in images.

In the seminal work [12], a multi-stage R-CNN network

for region based detection is presented with a subsequent

line of improvements on both accuracy and efficiency, in-

cluding Fast R-CNN [11], Faster R-CNN [31], and region-

based fully convolutional networks (R-FCN) [5]. On the

other hand, there is also a line of recent works that directly

regress the bounding box, e.g. Single-Shot Object Detector

(SSD) [26] and You only look once (YOLO) [30] leading to

improved speed.

As discussed above, there are challenging scenarios re-

garding with small objects, dense arrangement and arbi-

trary rotation. However they have not been particularly ad-

dressed by the above detectors despite their importance in

practice. In particular for aerial images, due to its strate-

gic value to the nation and society, efforts have also been

made to develop tailored methods to remote sensing. The R-

P-Faster R-CNN framework is developed in [14] for small

objects. While both deformable convolution layers [6] and

R-FCN are combined by [40] to improve detection accu-

racy. More recently, the authors in [40] adopt top-down and

skipped connections to produce a single high-level feature

map of a fine resolution, improving the performance of the

deformable Faster R-CNN. However such horizontal region

based detectors still are confronted with the challenges for

the aforementioned bottlenecks in terms of scale, orienta-

tion and density, which call for more principled methods

beyond the setting for horizontal region detection. On the

other hand, there is a thread of works on remote sensing,

for detecting objects in arbitrary direction. However, these

methods are often tailored to specific object categories, e.g.

vehicle [36], ship [41, 42, 28, 43, 27], aircraft [25] etc..

Though there are recently a few methods for multi-category

rotational region detection models [2, 8], while they lack a

principled way of handling small size and high density.

Compared with the detection methods for natural im-

ages, literature on scene text detection [19, 29] often pay

more attention to object orientation. While such methods

still have difficulty in dealing with aerial image based object

detection: one reason is that most text detection methods

are restricted to single-category object detection [44, 34, 7],

while there are often many different categories to discern

for remote sensing. Another reason is that the objects in

aerial images are often more closer to each other than in

scene texts, which limits the applicability of segmentation

based detection algorithm [7, 44] that otherwise work well

on scene texts. Moreover, there are often a large number of

densely distributed objects that call for efficient detection.

This paper considers all the above aspects comprehen-
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(a) SA = 16 (b) SA = 8

Figure 2: Anchor sampling with different anchor stride SA.

The orange-yellow bounding box represents the anchor, the

green represents ground-truth, and the red box represents

the anchor with the largest IoU of ground-truth.

sively, and proposes a principled method for multi-category

arbitrary-oriented object detection in aerial images.

3. The Proposed Method

We first give an overview of our two-stage method as

sketched in Fig. 1. In the first stage, the feature map is ex-

pected to contain more feature information and less noise by

adding SF-Net and MDA-Net. For positional sensitivity of

the angle parameters, this stage still regresses the horizon-

tal box. By the improved five-parameter regression and the

rotation nonmaximum-suppression (R-NMS) operation for

each proposal in the second stage, we can obtain the final

detection results under arbitrary rotations.

3.1. Finer Sampling and Feature Fusion Network

In our analysis, there are two main obstacles in detecting

small objects: insufficient object feature information and in-

adequate anchor samples. The reason is that due to the use

of the pooling layer, the small object loses most of its fea-

ture information in the deep layers. Meanwhile, larger sam-

pling stride of high-level feature maps tend to skip smaller

objects directly, resulting in insufficient sampling.

Feature fusion. It is generally regarded that low-level

feature map can preserve location information of small ob-

ject, while high-level feature map can contain higher-level

semantic cues. Feature pyramid networks (FPN) [23], Top-

Down Modulation (TDM) [35], and Reverse connection

with objectness prior networks (RON) [21] are common

feature fusion methods that involve the combination of both

high and low level feature maps in different forms.

Finer sampling. Insufficient training samples and im-

balance can affect the detection performance. By introduc-

ing the expected max overlapping (EMO) score, the authors

in [45] calculate the expected max intersection over union

(IoU) between anchor and object. They find the smaller

stride of the anchor (SA) is, the higher EMO score achieves,

Figure 3: SF-Net. F3 has a small SA, while fully consider-

ing the feature fusion and adaptability to different scales.

statistically leading to improved average max IoU of all ob-

jects. Fig. 2 shows the results of small object sampling

given stride step 16 and 8, respectively. It can be seen that

a smaller SA can sample more high-quality samples well

capturing the small objects which is of help for both detec-

tor training and inference.

Based on the above analysis, we design the finer sam-

pling and feature fusion network (SF-Net) as shown in

Fig. 3. In the anchor based detection framework, the value

of SA is equal to the reduction factor of the feature map

relative to the original image. In other words, the value

of SA can only be an exponential multiple of 2. SF-Net

solves this problem by changing the size of the feature map,

making the setting of SA more flexible to allow for more

adaptive sampling. For the purpose of reducing network

parameters, SF-Net only uses C3 and C4 in Resnet [16]

for fusion to balance the semantic information and location

information while ignoring other less relevant features. In

simple terms, the first channel of SF-Net upsamples the C4

so that its SA = S, where S is the expected anchor stride.

The second channel also upsamples the C3 to the same size.

Then, we pass C3 through an inception structure to expand

its receptive field and increase semantic information. The

inception structure contains a variety of ratio convolution

kernels to capture the diversity of object shapes. Finally, a

new feature map F3 is obtained by element-wise addition

of the two channels. Table 1 shows the detection accuracy

and training overhead on DOTA under different SA. We

find that the optimal SA depends on specific dataset, espe-
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(a) (b) (c)

(d) (e) (f)

Figure 4: Visualization of the multi-dimensional attention

network. (a) Blurred boundaries. (b) Input feature map of

attention network. (c) Output feature map of attention net-

work. (d) Saliency map. (e) Binary map. (f) Ground-truth.

anchor stride SA 6 8 10 12 14 16

OBB mAP (%) 67.06 66.88 65.32 63.75 63.32 63.64

HBB mAP (%) 70.71 70.19 68.96 69.09 68.54 69.33

Training time (sec.) 1.18 0.99 0.76 0.46 0.39 0.33

Table 1: Accuracy and average training overhead per image

with 18K iterations on DOTA under varying stride SA.

cially on the size distribution of small objects. In this paper,

the value of S is universally set to 6 for tradeoff between

accuracy and speed.

3.2. Multi­Dimensional Attention Network

Due to the complexity of real-world data such as aerial

images, the proposals provided by RPN may introduce a

large amount of noise information, as shown in Fig. 4b. Ex-

cessive noise can overwhelm the object information, and the

boundaries between the objects will be blurred (see Fig. 4a),

resulting in missed detection and increasing false alarms.

Therefore, it is necessary to enhance the object cues and

weaken the non-object information. Many attention struc-

tures [18, 17, 37, 38] have been proposed to solve problems

of occlusion, noise, and blurring. However, most of the

methods are unsupervised, which have difficulty to guide

the network to learn specific purposes.

To more effectively capture the objectness of small ob-

jects against complex background, we design a supervised

multi-dimensional attention leaner (MDA-Net), as shown

in Fig. 5. Specifically, in the pixel attention network, the

feature map F3 passes through an inception structure with

different ratio convolution kernels, and then a two-channel

saliency map is learned (see Fig. 4d) through a convolution

operation. The saliency map represents the scores of the

foreground and background, respectively. Then, Softmax

Figure 5: The devised MDA-Net consisting of channel at-

tention network and pixel attention network.

operation is performed on the saliency map and one of the

channels is selected to multiply with F3. Finally, a new in-

formation feature map A3 is obtained, as shown in Fig. 4c.

It should be noted that the value of the saliency map after

the Softmax function is between [0, 1]. In other words, it

can reduce the noise and relatively enhance the object infor-

mation. Since the saliency map is continuous, non-object

information will not be eliminated entirely, which is bene-

ficial to retain certain context information and improve ro-

bustness. To guide the network to learning this process, we

adopt a supervised learning method. Firstly, we can easily

get a binary map as a label (as shown in Fig. 4e) accord-

ing to ground truth, and then use the cross-entropy loss of

the binary map and the saliency map as the attention loss.

Besides, we also use SENet [18] as the channel attention

network for auxiliary, and the value of reduction ratio is 16.

3.3. Rotation Branch

The RPN network provides coarse proposals for the sec-

ond stage. In order to improve the calculation speed of

RPN, we take the highest score of 12,000 regression boxes

for NMS operation in the training stage and get 2,000 as

proposals. In the test stage, 300 proposals are taken from

10,000 regression boxes by NMS.

In the second stage, we use five parameters (x, y, w, h, θ)

to represent arbitrary-oriented rectangle. Ranging in

[−π/2, 0), θ is defined as the acute angle to the x-axis,

and for the other side we denote it as w. This definition

is consistent with OpenCV. Therefore, IoU computation on

axis-aligned bounding box may lead to an inaccurate IoU

of the skew interactive bounding box and further ruin the

bounding box prediction. An implementation for skew IoU

computation [29] with thought to triangulation is proposed

to deal with this problem. We use rotation nonmaximum-

suppression (R-NMS) as a post-processing operation based

on skew IoU computation. For the diversity of shapes in

the dataset, we set different R-NMS thresholds for differ-
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Figure 6: Boundary discontinuity of the rotation angle.

ent categories. In addition, to make full use of the pre-

training weight ResNet, we replace the two fully connected

layers fc6 and fc7 with C5 block and global average pooling

(GAP). The regression of the rotation bounding box is:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha), tθ = θ − θa
(1)

t
′

x = (x
′

− xa)/wa, t
′

y = (y
′

− ya)/ha

t
′

w = log(w
′

/wa), t
′

h = log(h
′

/ha), t
′

θ = θ
′

− θa
(2)

where x, y, w, h, θ denote the box’s center coordinates,

width, height and angle, respectively. Variables x, xa, x
′

are for the ground-truth box, anchor box, and predicted box,

respectively (likewise for y, w, h, θ).

3.4. Loss Function

The multi-task loss is used which is defined as follows:

L =
λ1

N

N∑

n=1

t
′

n

∑

j∈{x,y,w,h,θ}

Lreg(v
′

nj , vnj)

|Lreg(v
′

nj , vnj)|
| − log(IoU)|

+
λ2

h× w

h∑

i

w∑

j

Latt(u
′

ij , uij) +
λ3

N

N∑

n=1

Lcls(pn, tn)

(3)

where N indicates the number of proposals, tn represents

the label of object, pn is the probability distribution of var-

ious classes calculated by Softmax function, t
′

n is a binary

value (t
′

n = 1 for foreground and t
′

n = 0 for background,

no regression for background). v
′

∗j represents the predicted

offset vectors, v∗j represents the targets vector of ground-

truth. uij , u
′

ij represent the label and predict of mask’s pixel

respectively. IoU denotes the overlap of the prediction box

and ground-truth. The hyper-parameter λ1, λ2, λ3 control

the tradeoff. In addition, the classification loss Lcls is Soft-

max cross-entropy. The regression loss Lreg is smooth L1

loss as defined in [11], and the attention loss Latt is pixel-

wise Softmax cross-entropy.

In particular, there exists the boundary problem for the

rotation angle, as shown in Fig. 6. It shows that an ideal

form of regression (the blue box rotates counterclockwise

(a) Smooth L1 loss (b) IoU-smooth L1 loss
Figure 7: Comparison of detection results by two losses.

to the red box), but the loss of this situation is very large

due to the periodicity of the angle. Therefore, the model

has to be regressed in other complex forms (such as the blue

box rotating clockwise while scaling w and h), increasing

the difficulty of regression, as shown in Fig. 7a. To bet-

ter solve this problem, we introduce the IoU constant factor
|−log(IoU)|

|Lreg(v
′

j
,vj)|

in the traditional smooth L1 loss, as shown in

Eq. 3. It can be seen that in the boundary case, the loss

function is approximately equal to |− log(IoU)| ≈ 0, elim-

inating the sudden increase in loss, as shown in Fig. 7b.

The new regression loss can be divided into two parts,
Lreg(v

′

j ,vj)

|Lreg(v
′

j
,vj)|

determines the direction of gradient propaga-

tion, and | − log(IoU)| for the magnitude of gradient. In

addition, using IoU to optimize location accuracy is consis-

tent with IoU-dominated metric, which is more straightfor-

ward and effective than coordinate regression.

4. Experiments

Tests are implemented by TensorFlow [1] on a server

with Nvidia Geforce GTX 1080 GPU and 8G memory. We

perform experiments on both aerial benchmarks and natu-

ral images to verify the generality of our techniques. Note

our techniques are orthogonal to specific network backbone.

In experiments, we use Resnet-101 as backbone for remote

sensing benchmarks, and FPN and R2CNN for COCO,

VOC2007 and ICDAR2015 respectively.

4.1. Experiments on Aerial Images

4.1.1 Datasets and Protocls

The benchmark DOTA [39] is for object detection in aerial

images. It contains 2,806 aerial images from different sen-

sors and platforms. The image size ranges from around

800× 800 to 4, 000× 4, 000 pixels and contains objects ex-

hibiting a wide variety of scales, orientations, and shapes.

These images are then annotated by experts using 15 com-

mon object categories. The fully annotated DOTA bench-

mark contains 188,282 instances, each of which is labeled

by an arbitrary quadrilateral. There are two detection tasks

for DOTA: horizontal bounding boxes (HBB) and oriented

bounding boxes (OBB). Half of the original images are ran-

domly selected as the training set, 1/6 as the validation

set, and 1/3 as the testing set. We divide the images into

800× 800 subimages with an overlap of 200 pixels.

The public benchmark NWPU VHR-10 [4] contains 10-

class geospatial object for detection. This dataset con-
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Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R2CNN (baseline) [19] 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67

+Pixel Attention 81.17 75.23 36.71 68.14 62.33 48.22 55.75 89.57 78.40 76.61 54.08 58.32 63.76 61.94 54.89 64.34

+MDA 84.89 77.07 38.55 67.88 61.78 51.87 56.23 89.82 75.77 76.30 53.68 63.25 63.85 65.05 53.99 65.33

+SA [45]+MDA 81.27 76.49 38.16 69.13 54.03 46.51 55.03 89.80 69.92 75.11 57.06 58.51 62.70 59.72 48.20 62.78

+SJ [45]+MDA 81.13 76.02 32.79 66.94 60.73 48.12 54.86 90.29 74.54 76.25 54.00 57.27 63.87 60.24 43.48 62.70

+BU [45] +MDA 84.63 75.34 42.84 68.47 63.11 53.69 57.13 90.70 76.93 75.28 55.63 58.28 64.57 67.10 49.19 65.53

+BUS [45]+MDA 87.50 75.60 42.41 69.48 62.45 50.89 56.10 90.87 78.41 75.68 58.94 58.68 63.87 67.38 52.78 66.07

+DC [45]+MDA 87.01 76.66 42.25 68.95 62.55 53.62 56.22 90.83 78.54 75.49 58.54 57.17 63.99 66.77 57.43 66.40

+SF+MDA 89.65 79.51 43.86 67.69 67.41 55.93 64.86 90.71 77.77 84.42 57.67 61.38 64.29 66.12 62.04 68.89

+SF+MDA+IoU 89.41 78.83 50.02 65.59 69.96 57.63 72.26 90.73 81.41 84.39 52.76 63.62 62.01 67.62 61.16 69.83

+SF +MDA+IoU+P 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

Table 2: Ablative study of each components in our proposed method on the DOTA dataset. The short names for categories

are defined as: PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-Ground field track, SV-Small vehicle, LV-Large vehicle,

SH-Ship, TC-Tennis court, BC-Basketball court, ST-Storage tank, SBF-Soccer-ball field, RA-Roundabout, HA-Harbor, SP-

Swimming pool, and HC-Helicopter.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

OBB

FR-O [39] 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.4 52.52 46.69 44.80 46.30 52.93

R-DFPN [41] 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94

R2CNN [19] 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67

RRPN [29] 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

ICN [2] 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

RoI-Transformer [8] 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet (proposed) 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

HBB

SSD [10] 44.74 11.21 6.22 6.91 2.00 10.24 11.34 15.59 12.56 17.94 14.73 4.55 4.55 0.53 1.01 10.94

YOLOv2 [30] 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61 39.20

R-FCN [5] 79.33 44.26 36.58 53.53 39.38 34.15 47.29 45.66 47.74 65.84 37.92 44.23 47.23 50.64 34.90 47.24

FR-H [31] 80.32 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85 60.46

FPN [23] 88.70 75.10 52.60 59.20 69.40 78.80 84.50 90.60 81.30 82.60 52.50 62.10 76.60 66.30 60.10 72.00

ICN [2] 90.00 77.70 53.40 73.30 73.50 65.00 78.20 90.80 79.10 84.80 57.20 62.10 73.50 70.20 58.10 72.50

SCRDet (proposed) 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 75.35

Table 3: Performance evaluation of OBB and HBB task on DOTA datasets.

tains 800 very-high-resolution (VHR) remote sensing im-

ages that are cropped from Google Earth and Vaihingen

dataset and then manually annotated by experts.

We use the pretrained ResNet-101 model for initializa-

tion. For DOTA, the model is trained by 300k iterations

in total, and the learning rate changes during the 100k and

200k iterations from 3e-4 to 3e-6. For NWPU VHR-10, the

split ratios of the training dataset, validation dataset, and test

dataset are 60%, 20%, and 20%, respectively. The model is

trained by totally 20k iterations with the same learning rate

as for DOTA. Besides, weight decay and momentum are

0.0001 and 0.9, respectively. We employ MomentumOpti-

mizer as optimizer and no data augmentation is performed

except random image flip during training.

For parameter setting, the expected anchor stride S as

discussed in Sec. 3.1 is set to 6, and we set the base an-

chor size to 256, and the anchor scales setting from 2−4

to 21. Since the multi-categories objects in DOTA and

NWPU VHR-10 have different shapes, we set anchor ra-

tios to [1/1,1/2,1/3,1/4,1/5,1/6,1/7,1/9]. These settings en-

sure that each ground-truth can be assigned with positive

samples. When IoU > 0.7, the anchor is assigned as a

positive sample, and as a negative sample if IoU < 0.3.

Besides, due to the sensitivity between angle and IoU in the

large aspect ratio rectangle, the two thresholds in the sec-

ond stage are all set to 0.4, respectively. For training, the

mini-batch size in two stages is 512. The hyperparameters

in Eq. 3 are set to λ1 = 4, λ2 = 1, λ3 = 2.

4.1.2 Ablation Study

Baseline setup. We choose Faster-RCNN-based R2CNN

[19] as the baseline for ablation study, but not limited to this

method. For fairness, all experimental data and parameter

settings are strictly consistent. We use mean average pre-

cision (mAP) as a measure of performance. The results of

DOTA reported here are obtained by submitting our predic-

tions to the official DOTA evaluation server1.

Effect of MDA-Net. As discussed in Sec. 3.2, the at-

tention structure is beneficial to suppress the influence of

noise and highlight the object information. It also can be

1https://captain-whu.github.io/DOTA/
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Figure 8: Examples on DOTA. Our method performs better on those with small size, in arbitrary direction, and high density.

evidenced in Table 2 that the detection results of most ob-

jects have been improved to varying degrees after adding

the pixel attention network, and the total mAP increase by

3.67%. MDA-Net further improves the detection accuracy

of large aspect ratio targets such as bridge, large vehicle,

ship, harbor and so on. Compared to pixel attention, MDA-

Net increases mAP by about 1% to 65.33%. Table 5 shows

that supervised learning is the main contribution of MDA-

Net rather than computation.

Effect of SF-Net. Reducing the stride size of the anchor

and the feature fusion are effective means to improve the

detection for small objects. In Table 2 we also study on the

techniques presented in [45]. Both shifted anchors (SA) and

shift jittering (SJ) follow the idea of using a single feature

point to regress the bounding boxes of multiple sub-areas.

Experiments show that these two strategies can hardly con-

tribute to the accuracy in accordance with the observation in

the original paper. Enlarged feature maps is a good strategy

to reduce SA, including bilinear upsampling (BU), bilinear

upsampling with skip connection (BUS), dilated convolu-

tion (DC). Although these methods take into account the

importance of sampling for small object detection and their

detection performance have been improved to varying de-

grees, the SA settings are still inflexible and cannot achieve

the best sampling results. SF-Net effectively models the

feature fusion and the flexibility of the SA setting, and it

achieves the best performance of 68.89%, especially bene-

fited from the improvement of small object such as vehicle,

ship and storage tank.

Effect of IoU-Smooth L1 Loss. IoU-Smooth L1 Loss

eliminates the boundary effects of the angle, making it eas-

ier for the model to regress to the objects coordinates. This

new loss improves the detection accuracy to 69.83%.

Effect of image pyramid. Image pyramid based train-

ing and test is an effective means to improve performance.

The method ICN [2] uses the image cascade network struc-

Method mAP

R-P-Faster R-CNN [14] 76.50

SSD512 [26] 78.40

DSSD321 [10] 78.80

DSOD300 [33] 79.80

Deformable R-FCN [40] 79.10

Deformable Faster R-CNN [32] 84.40

RICADet [22] 87.12

RDAS512 [3] 89.50

Multi-Scale CNN [13] 89.60

SCRDet (proposed) 91.75

Table 4: Performance for HBB task on NWPU VHR-10.

dataset train/test baseline MDA-Net MDA-Net† baseline†

DOTA trainval/test 60.67% (R2CNN) 65.33% 61.23% 65.08%

VOC 07+12/07 80.39% (FPN∗) 82.27% 80.53% 82.11%

Table 5: MDA-Net† means MDA-Net without supervised

learning. baseline† means baseline with supervision.

ture, which is similar to the idea of image pyramid. Here we

randomly scale the original image to [600×600, 800×800,

1, 000 × 1, 000, 1, 200 × 1, 200] and send it to the net-

work for training. For testing, each image is tested at four

scales and combined by R-NMS. As shown in Table 2, im-

age pyramid can notably improve the detection efficiency

and achieves 72.61% mAP. The detection results for each

class on DOTA are shown in Fig. 8.

4.1.3 Peer Methods Comparison

OBB Task. Besides the official baseline given by DOTA,

we also compare with RRPN [29], R2CNN [19], R-DFPN

[41], ICN [2] and RoI-Transformer [8], which are all ap-

plicable to multi-category rotation object detection. Table

3 shows the performance of these methods. The excellent

performance of RoI-Transformer, ICN and SCRDet in small

object detection is attributed to feature fusion. SCRDet con-
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(a) (b)

FPN∗+MDA-Net FPN∗

Figure 9: Detection results of COCO. The first column is

the result of FPN∗+MDA-Net and the second column is

FPN∗. The red boxes represent missed objects and the or-

ange boxes represent false alarm.

(a) (b)

SCRDet-R2CNN R2CNN-4∗

Figure 10: Detection results of COCO and ICDAR2015.

The first column is the result of R2CNN-4∗ equipped with

our techniques (SCRDet-R2CNN) and the second column

is vanilla R2CNN-4∗. Red arrows denote missed objects.

siders the expansion of the receptive field and the attenu-

ation of noise in the fusion, so it is better than ICN and

RoI-Transformer for large objects. Our method ranks first

among existing published results, reaching 72.61% mAP.

HBB Task. We use DOTA and NWPU VHR-10 to vali-

date our proposed approach and shield the angle parameter

in the code. Table 3 and Table 4 show the performance on

the two datasets, respectively. We also get the first place

among existing methods in literature on DOTA, at 75.35%

or so. For the NWPU VHR-10 dataset, we compare it with

nine methods and achieve the best detection performance, at

91.75%. Our approach achieves the best detection accuracy

on more than half of the categories.

4.2. Experiments on Natural Images

To verify the universality of our model, we further

validate the proposed techniques on generic datasets and

general-purpose detection networks FPN [23] and R2CNN

Dataset Model Backbone mAP/F1

COCO

FPN∗ Res50 36.1

FPN∗+IoU-Smooth Res50 36.2

FPN∗+MDA-Net Res50 36.8

VOC2007
FPN∗ Res101 76.14

FPN∗+MDA-Net Res101 78.36

ICDAR2015
R2CNN-4∗ Res101 77.23

SCRDet-R2CNN Res101 80.08

Table 6: Effectiveness of the proposed structure on generic

datasets. Notation ∗ indicates our own implementation. For

VOC 2007, all methods are trained on VOC2007 trainval

sets and tested on VOC 2007 test set. For COCO, all the

results are obtained on the minival set. For ICDAR2015,

results are obtained by submitting it to the official website.

[19]. We choose COCO [24] and VOC2007 [9] datasets as

they contain many small objects. We also use ICDAR2015

[20] because there are rotated texts for scene text detection.

By Table 6, FPN∗ with MDA-Net can increase by 0.7%

and 2.22% on COCO [24] and VOC2007 [9] datasets, re-

spectively. As shown in Fig. 9, the MDA-Net has good per-

formance in both dense and small objects detection. IoU-

Smooth loss does not bring high improvement to horizontal

region detection, hence this also reflects its pertinence to

rotation detection boundary problem.

For ICDAR2015, R2CNN-4 achieves 74.36% in single

scale according to [19]. As it is not open sourced, we

reimplement it and term our version as R2CNN-4∗ accord-

ing to the definition of the rotation box in the paper with-

out multiple pooled sizes structure, and our version can

achieve the mAP of 77.23%. Then, we equip R2CNN-4∗

with our proposed techniques and term it SCRDet-R2CNN.

It achieves the highest performance 80.08% in single scale.

Once again, the validity of the structure proposed in this

paper is proved. According to Fig. 10, SCRDet-R2CNN,

achieves a notably better recall for dense objects detection.

5. Conclusion

We have presented an end-to-end multi-category detector

designated for objects in arbitrary rotations, which are com-

mon in aerial image. Considering the factors of feature fu-

sion and anchor sampling, a sampling fusion network with

smaller SA is added. Meanwhile, the algorithm weakens

the influence of noise and highlights the object information

through a supervised multi-dimensional attention network.

Moreover, we implement rotation detection to preserve ori-

entation information and solve intensive problems. Our ap-

proach achieves state-of-the-art performance on two pub-

lic remote sensing datasets: DOTA and NWPU VHR-10.

Finally, we have further validated our structure on nature

datasets such as COCO, VOC2007 and ICDAR2015.
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