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Abstract

We propose a two-stage 3D object detection framework,

named sparse-to-dense 3D Object Detector (STD). The first

stage is a bottom-up proposal generation network that uses

raw point clouds as input to generate accurate proposals

by seeding each point with a new spherical anchor. It

achieves a higher recall with less computation compared

with prior works. Then, PointsPool is applied for proposal

feature generation by transforming interior point features

from sparse expression to compact representation, which

saves even more computation. In box prediction, which

is the second stage, we implement a parallel intersection-

over-union (IoU) branch to increase awareness of localiza-

tion accuracy, resulting in further improved performance.

We conduct experiments on KITTI dataset, and evaluate our

method on 3D object and Bird’s Eye View (BEV) detection.

Our method outperforms other methods by a large margin,

especially on the hard set, with 10+ FPS inference speed.

1. Introduction

3D scene understanding from point clouds is a very im-

portant topic in computer vision, since it benefits many ap-

plications, such as autonomous driving [8] and augmented

reality [24]. In this work, we focus on one essential 3D

scene recognition task, i.e., object detection based on point

clouds that predicts the 3D bounding box and class label for

each object in the scene.

Compared to RGB images, LiDAR 3D points are spe-

cial. On the one hand, they provide structural and spatial

information of relative location and precise depth. On the

other hand, they are unordered, sparse and locality sensitive,

which brings difficulties in parsing raw LiDAR data.

Most existing work transforms sparse point clouds to

compact representation by projecting them to images [4, 14,

9, 25, 7] or subdividing them into equally distributed vox-

els [23, 32, 37, 35]. CNNs can be applied to parsing the

point cloud. It is noted that hand-crafted representations

may not be optimal. Instead of converting irregular point

clouds to voxels, Qi et al. proposed PointNet [27, 28] to

directly operate on raw LiDAR data for classification and

semantic segmentation.

There are two streams of methods for 3D object detec-

tion. One is based on voxels, e.g., VoxelNet [37] and SEC-

OND [34], where voxelization is conducted on the entire

point cloud. Then PointNet is applied to each voxel for

feature extraction and CNNs are used for final bounding-

box prediction. Albeit efficient, information loss degrades

localization quality. The other stream is point-based, like

F-PointNet [26] and PointRCNN [30]. They take raw point

cloud data as input, and generate final prediction by Point-

Net++ [28]. These methods achieve better performance.

The limitation is on uncontrollable receptive fields and large

computation cost.

Our Contributions Different from all previous methods,

we propose a two-stage 3D object detection framework. In

the first stage, we take each point in the point cloud as an

element, and seed them with appropriate spherical anchors,

aiming to preserve accurate location information. Then a

PointNet++ backbone is applied to extracting semantic con-

text feature for each point as well as generating objectness

score to filter anchors.

To generate feature for each proposal, we propose the

PointsPool layer by gathering canonical coordinates and se-

mantic features of their interior points, retaining accurate

localization and context information. This layer transforms

sparse and unordered point-wise expression to more com-

pact features, enabling utilization of efficient CNNs and

end-to-end training. Final prediction is achieved in the sec-

ond stage. Instead of predicting the box location and class

label with a simple head, we propose augmenting a novel

3D IoU branch for predicting 3D IoU between predictions

and ground-truth bounding boxes to alleviate inappropriate

removal during post-processing.

We evaluate our model on KITTI dataset [1]. Experi-

ments show that our model outperforms other state-of-the-

arts for both BEV and 3D object detection tasks, especially

for difficult examples. Our contribution is manifold.

• We propose a point-based proposal generation

paradigm for object detection on point clouds with

spherical anchors. It is generic to achieve high recall.
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Figure 1. Illustration of our framework consisting of three different parts. The first is a proposal generation module (PGM) to generate

accurate proposals from man-made point-based spherical anchors. The second part is a PointsPool layer to convert proposal features from

sparse expression to compact representation. The final one is a box prediction network. It classifies and regresses proposals, and picks

high-quality predictions.

• The proposed PointsPool layer takes advantage of both

point- and voxel-based methods, enabling efficient and

accurate prediction.

• Our new 3D IoU prediction branch helps alignment be-

tween classification score and localization, leading to

notable improvement. Experiments manifest the abil-

ity to handle challenging cases with high occlusion and

crowdedness, at 10 FPS speed.

2. Related Work

3D Semantic Segmentation There are several ap-

proaches to tackle semantic segmentation on point clouds.

In [33], a projection function converts LiDAR points to a

UV map, which is then classified by 2D semantic segmen-

tation [33, 36, 3] in pixel level. In [6, 5], a multi-view-based

function produces the segmentation mask. This method

fuses information from different views. Other solutions,

such as [28, 27, 18, 12, 17], segment point clouds from

raw LiDAR data. They directly generate features on each

point while keeping original structural information. A max-

pooling method gathers the global feature. It is then con-

catenated with local feature for processing.

3D Object Detection There are three different lines for

3D object detection. They are multi-view, voxel, and point-

based methods.

For multi-view methods, MV3D [4] projects LiDAR

point clouds to BEV and trains a Region Proposal Network

(RPN) to generate positive proposals. It merges features

from BEV, image view and front view in order to generate

refined 3D bounding boxes. AVOD [14] improves MV3D

by fusing image and BEV features like [20]. Unlike MV3D,

which only merges features in the refinement phase, it also

merges features from multiple views in the RPN phase to

generate positive proposals. These methods still have the

limitation when detecting small objects, such as pedestri-

ans and cyclists. They do not deal with cases with multiple

objects in depth direction.

There are several LiDAR-data based 3D object detection

frameworks using voxel-grid representation. In [32], each

non-empty voxel is encoded with 6 statistical quantities by

the points within this voxel. Binary encoding is used in

[16] for each voxel grid. In PIXOR [35], each voxel grid

is encoded as occupancy. All of these methods use hand-

crafted representation. VoxelNet [37] instead stacks many

VFE layers to generate machine-learned representation for

each voxel. Compared to [37], SECOND [34] uses sparse

convolution layers [10] for parsing the compact representa-

tion. PointPillars [15] uses pseudo-images as the represen-

tation after voxelization.

F-PointNet [26] is the first method of utilizing raw point

cloud to predict 3D objects. It uses frustum proposals

from 2D object detection as candidate boxes and regresses

predictions based on interior points. Therefore, perfor-

mance heavily relies on the 2D object detector. Differently,

PointRCNN [30] uses the whole point cloud for proposal

generation rather than 2D images. It directly uses the seg-

mentation score of proposal’s centric point for classification

considering proposal location information. Other features

like size and orientation are neglected. In contrast, our de-

sign is general to utilize the strong representation power of

point cloud.
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Figure 2. Illustration of networks in the proposal generation module. (a) 3D segmentation network (PointNet++). It takes raw point cloud

(x, y, z, r) as input, and generates semantic segmentation scores as well as global context features for each point by stacking SA layers and

FP modules. (b) Proposal generation Network (PointNet). It treats normalized coordinates and semantic features of points within anchors

as input, and produces classification and regression predictions.

3. Our Framework

Our method is a two-stage 3D object detection frame-

work exploiting advantages of voxel- and point-based meth-

ods. To generate accurate point-based proposals, we de-

sign spherical anchors and a new strategy in assigning la-

bels to anchors. For each generated proposal, we deploy a

new PointsPool layer to convert point-based features from

sparse expression to dense representation. A box prediction

network is applied for final prediction. The framework is

illustrated in Figure 1.

3.1. Proposal Generation Module

Existing methods of 3D object detection mainly project

point clouds to different views or divide them into voxels

for utilizing CNNs. We instead design a generic strategy to

seed anchors based on each point independently, which is

the elementary component in the point cloud. Then features

of interior points of each anchor are utilized to generate pro-

posals. With this structure, we keep sufficient context infor-

mation, achieving decent recall even with a small number

of proposals.

Challenge Albeit elegant, point-based frameworks in-

evitably face many challenges. For example, the amount of

points is prohibitively huge where high redundancy exists in

anchors. They cost much computation during training and

inference. Also, the way to assign ground-truth labels for

anchors needs to be specially designed.

Spherical Anchor The first step of our proposal gener-

ation module is to reasonably seed anchors for each point.

Considering that a 3D object could be with any orientations,

we design spherical anchors rather than traditional cuboid

anchors. For each spherical anchor, it is with a spherical re-

ceptive field parametrized by the class-specific radius (i.e.,

2-meter radius for car, and 1-meter radius for pedestrian

and cyclist). Now the proposal predicted by each anchor

is based on the points in the spherical receptive field. Each

anchor is associated with a reference box for proposal gen-

eration, with a pre-defined size.

These anchors are located at the center of each point.

Different from traditional anchor schemes, we do not pre-

define the orientation of the reference box. It is instead di-

rectly predicted. As a result, the number of spherical an-

chors is not proportional to the number of pre-defined ref-

erence box orientation, leading to about 50% less anchors.

With computation much reduced, we achieve a much higher

recall with spherical anchors than with traditional ones.

This step reduces the amount of anchors to about 16K.

To further compress them, we use a 3D semantic segmen-

tation network to predict the class of each point and pro-

duce semantic feature for each point. It is followed by non-

maximal suppression (NMS) to remove redundant anchors.

The final score of each anchor is the segmentation score on

the center point. The IoU value is calculated based on the

projection of each anchor to the BEV. With these operations,

we reduce the number of anchors to around only 500.

Proposal Generation Network These computed useful

anchors lead to accurate proposals. Inspired by PointNet

[27] in 3D classification, we gather 3D points within an-

chors for regression and classification. For points in an an-

chor, we pass their (X,Y, Z) locations, which are normal-

ized by the anchor center coordinates, and semantic features

from the segmentation network to a PointNet with several

convolutional layers to predict classification scores, regres-

sion offsets and orientations. Details of the 3D segmenta-

tion networks and PointNet are illustrated in Figure 2.

Then we compute offsets regarding anchor center

coordinates (Ax, Ay, Az) and their pre-defined sizes

(Al, Aw, Ah) so as to obtain precise proposals. The pre-

defined size for “car”, “cyclist” and “pedestrian” are (Al =
3.9, Aw = 1.6, Ah = 1.6), (Al = 1.6, Aw = 0.8, Ah =
1.6) and (Al = 0.8, Aw = 0.8, Ah = 1.6), respectively.

For angle prediction, we use a hybrid of classification and

regression formulation following [26]. That is, we pre-
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define Na as equally split angle bins and classify the pro-

posal angle into different bins. Residual is regressed with

respect to the bin value. Na is set to 12 in our experiments.

Finally, we apply NMS based on classification scores and

oriented BEV IoUs to eliminate redundant proposals. We

keep up to 300 and 100 proposals during training and test-

ing.

Assignment Strategy Given that our anchors are with

spherical receptive fields rather than cubes or cuboids, it is

not appropriate to assign positive or negative labels accord-

ing to traditional IoU calculation [37] between the spherical

receptive field and ground-truth boxes. We design a new cri-

terion named PointsIoU to assign target labels. PointsIoU is

defined as the quotient between the number of points in the

intersection area of both regions and the number of points

in the union area of both regions. An anchor is considered

positive if its PointsIoU with a certain ground-truth box is

higher than 0.55 and negative otherwise.

3.2. Proposal Feature Generation

With semantic features from the segmentation network

for each point and refined proposals, we constitute compact

features for each proposal.

Motivation For each proposal, the most straight-forward

way to make final prediction is to perform PointNet++

based on interior points [30, 26]. Albeit simple, several op-

erations such as set abstraction (SA) are computationally

expensive compared to traditional convolution or fully con-

nected (FC) layers. As illustrated in Table 1, with 100 pro-

posals, PointNet++ baseline takes 41ms during inference,

compared with 16ms with pure FC layers. It is almost 2.5×
faster than the baseline, with only 0.4% performance drop.

Moreover, compared to PointNet baseline, the model with

FC layers yields 1.6% performance increase with only 6 ex-

tra milliseconds. It is because PointNet regression head uses

less local information.

We apply a voxelization layer at this stage, named

PointsPool, to compute compact proposal features that can

be used in efficient FC layers for final prediction. Com-

pared to voxelization in [37], this new layer is a gradient-

conductive voxelization layer, enabling end-to-end training.

PointsPool Layer PointsPool layer is composed of three

steps. In the first step, we randomly choose N interior

points for each proposal with their canonical coordinates

and semantic features as initial feature. For each proposal,

we obtain point canonical locations by subtracting the pro-

posal center (X,Y, Z) values and rotating them to the pro-

posal predicted orientation. These canonized coordinates

makes the model robust under geometrical transformation

and aware of inner points’ relative locations for better per-

formance than only using semantic features.

Methods Proposal No. Inference Time Moderate

PointNet (4 conv layers) 100 10 ms 77.1

PointNet++ (3 SA) 100 41 ms 79.1

PointsPool + 2FC 100 16 ms 78.7

Table 1. 3D object detection AP on KITTI val moderate set. We

compare inference time and AP among different box regression

network architectures.

Score-NMS IoU-NMS Easy Moderate Hard√
- 88.8 78.7 78.2

-
√

90.9 90.9 90.6

Table 2. 3D object detection AP on KITTI val set. We conduct ex-

periments to show importance of the post process. “Score-NMS”

means using classification scores as NMS sorting scores. “IoU-

NMS” means for each prediction, we use its largest IoU among all

ground-truth boxes as the sorting score.

The second step is using the voxelization layer to sub-

divide each proposal into equally spaced voxels as [37].

Specifically, we partition each proposal to (dl = 6, dw =
6, dh = 6) voxels. Nr = 35 points are randomly sampled

for each voxel. Concatenated features of canonical coordi-

nates and semantic features of these points are used for each

voxel. Compared to voxelization in [37], this layer has gra-

dient representation, enabling end-to-end training. While

passing gradients, we only pass gradients of these randomly

selected points.

Finally, we apply a Voxel Feature Encoding (VFE) layer

with channels (128, 128, 256) [37] to extract features of

each voxel, so as to generate features of proposals with

shapes (dl × dw × dh × 256). After getting features of

each proposal, we flatten them for following FC layers in

the box prediction head.

3.3. Box Prediction Network

Our box prediction network has two branches for box

estimation and IoU estimation respectively.

Box Estimation Branch In this branch, we use 2 FC lay-

ers with channels (512, 512) to extract features of each pro-

posal. Then another 2 FC layers are applied for classifica-

tion and regression respectively. We directly regress offsets

between the ground-truth box and proposals, parametrized

by (tl, tw, th). We further predict the shift (tx, ty, tz) from

proposal center to the ground-truth box. As for angle pre-

diction, we still use a hybrid of classification and regression

formulation, same as the one described in Section 3.1.

IoU Estimation Branch In previous work [15, 34, 37, 14,

30], NMS is applied to results of box estimation to remove

duplicate predictions. The classification score is used for

ranking during NMS. Noted in [11, 22, 29], the classifica-

tion scores of boxes are not highly correlated with the local-

ization quality. Similarly, weak correlation between classi-
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fication score and box quality affects point-based object de-

tection tasks. Given that LiDAR for autonomous driving is

usually gathered at a fixed angle, and objects are partially

covered, localization accuracy is extremely sensitive to rel-

ative position between visible part and its full view while

the classification branch cannot provide enough informa-

tion. As shown in Table 2, if we feed the oracle IoU value

of each predicted box instead of the classification score to

NMS for duplicate removal, the performance increases by

around 12.6%.

Based on this fact, we develop an IoU estimation branch

for predicting 3D IoU between boxes and corresponding

ground-truth. Then, we multiply each box’s classification

score with its 3D IoU as a new sorting criterion. This de-

sign relieves the discrepancy between localization accuracy

and classification score, effectively improving the final per-

formance. Moreover, this IoU estimation branch is general

and can be applied to other 3D object detectors. We expect

similar performance improvement on other frameworks.

3.4. Loss Function

We use a multi-task loss to train our network. Our total

loss is composed of proposal generation loss Lprop and box

prediction loss Lbox as

Ltotal = Lprop + Lbox. (1)

The proposal generation loss is the summation of 3D se-

mantic segmentation loss and proposal prediction loss. We

use focal loss [21] as segmentation loss Lseg , keeping the

original parameters αt = 0.25 and γ = 2. The predic-

tion loss consists of proposal classification loss and regres-

sion loss. The overall proposal generation loss is defined in

Eq. (2). si and ui are the predicted classification score and

ground-truth label for anchor i, respectively. Ncls and Npos

are the numbers of anchors and positive samples.

Lprop = Lseg +
1

Ncls

∑

i

Lcls(si, ui)

+ λ
1

Npos

∑

i

[ui ≥ 1](Lloc + Lang),

(2)

where the Iverson bracket indicator function [ui ≥ 1]
reaches 1 when ui ≥ 1 and 0 otherwise. Lcls is simply

the softmax cross-entropy loss. We parameterize an anchor

A by its center (Ax, Ay, Az) and size (Al, Aw, Ah). Its

ground truth box G is with (Gx, Gy, Gz) and (Gl, Gw, Gh).
Location regression loss is composed of center residual pre-

diction loss and size residual prediction loss, formulated as

Lloc = Ldis(Actr, Gctr) + Ldis(Asize, Gsize), (3)

where Ldis is the smooth-l1 loss. Actr and Asize are pre-

dicted center residual and size residual by the proposal gen-

eration network, while Gctr and Gsize are targets for them.

The target of our network is defined as

{

Gctr = Gj −Aj , j ∈ (x, y, z)
Gsize = (Gj −Aj)/Aj , j ∈ (l, w, h).

(4)

Angle loss includes orientation classification loss and resid-

ual prediction loss as

Langle = Lcls(ta−cls, va−cls)+Ldis(ta−res, va−res), (5)

where ta−cls and ta−res are predicted angle class and resid-

ual while va−cls and va−res are their targets.

The box prediction loss is defined as the proposal predic-

tion loss mentioned above plus two extra losses, which are

3D IoU loss and corner loss. When training IoU branch, we

use 3D IoU between proposals and corresponding ground-

truth boxes as ground truth, and smooth-l1 loss as the loss

function. Corner loss is the distance between the predicted

8 corners and assigned ground-truth, expressed as

Lcorner =

8
∑

k=1

‖Pk −Gk‖ , (6)

where Pk and Gk are the location of ground-truth and pre-

diction for point k.

4. Experiments

We evaluate our method on the widely used KITTI Ob-

ject Detection Benchmark [1]. There are 7,481 training im-

ages / point clouds and 7,518 test images / point clouds with

three categories of Car, Pedestrian and Cyclist. We use av-

erage precision (AP) metric to compare with different meth-

ods. During evaluation, we follow the official KITTI eval-

uation protocol – that is, the IoU threshold is 0.7 for class

Car and 0.5 for Pedestrian and Cyclist.

4.1. Implementation Details

Following previous work [37, 15, 14, 34], in order to

avoid IoU misalignment in KITTI evaluation protocol on

Car, Pedestrian and Cyclist, we train two networks, one for

car and the other for both pedestrian and cyclist.

Network Architecture To align network input, we ran-

domly choose 16K points from the entire point cloud for

each scene. Our 3D semantic segmentation network is

based on PointNet++ with four SA levels and four fea-

ture propagation (FP) layers. The proposal generation sub-

network is a multi-layer perception consisting of four hid-

den layers with channels (128, 128, 256, 512), followed by

a PointsPool layer where we randomly sample N = 512
interior points per proposal as its initial input. These rep-

resentations are then passed to the box regression network.

Both the box estimation and IoU estimation branches con-

sist of 2 fully connected layers with 512 channels.
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Class Method Modality
APBEV (%) AP3D(%)

Easy Moderate Hard Easy Moderate Hard

Car

MV3D [4]

RGB + LiDAR

86.02 76.90 68.49 71.09 62.35 55.12

AVOD [14] 86.80 85.44 77.73 73.59 65.78 58.38

F-PointNet [26] 88.70 84.00 75.33 81.20 70.39 62.19

AVOD-FPN [14] 88.53 83.79 77.90 81.94 71.88 66.38

RoarNet [31] 88.75 86.08 78.80 83.95 75.79 67.88

UberATG-MMF [19] 89.49 87.47 79.10 86.81 76.75 68.41

VoxelNet [37]

LiDAR

89.35 79.26 77.39 77.47 65.11 57.73

SECOND [34] 88.07 79.37 77.95 83.13 73.66 66.20

PointPillars [15] 88.35 86.10 79.83 79.05 74.99 68.30

PointRCNN [30] 89.47 85.68 79.10 85.94 75.76 68.32

Ours 89.66 87.76 86.89 86.61 77.63 76.06

Pedestrian

AVOD [14]

RGB + LiDAR

42.51 35.24 33.97 38.28 31.51 26.98

F-PointNet [26] 58.09 50.22 47.20 51.21 44.89 40.23

AVOD-FPN [14] 58.75 51.05 47.54 50.80 42.81 40.88

VoxelNet [37]

LiDAR

46.13 40.74 38.11 39.48 33.69 31.51

SECOND [34] 55.10 46.27 44.76 51.07 42.56 37.29

PointPillars [15] 58.66 50.23 47.19 52.08 43.53 41.49

Ours 60.99 51.39 45.89 53.08 44.24 41.97

Cyclist

AVOD [14]

RGB + LiDAR

63.66 47.74 46.55 60.11 44.90 38.80

F-PointNet [26] 75.38 61.96 54.68 71.96 56.77 50.39

AVOD-FPN [14] 68.09 57.48 50.77 64.00 52.18 46.61

VoxelNet [37]

LiDAR

66.70 54.76 50.55 61.22 48.36 44.37

SECOND [34] 73.67 56.04 48.78 70.51 53.85 46.90

PointPillars [15] 79.14 62.25 56.00 75.78 59.07 52.92

Ours 81.04 65.32 57.85 78.89 62.53 55.77

Table 3. Performance on KITTI test set for both Car, Pedestrian and Cyclists.

Training Parameters Our model is trained stage-by-

stage to save GPU memory. The first stage consists of 3D

semantic segmentation and proposal generation, while the

second is for box prediction. For the first stage, we use

ADAM [13] optimizer with an initial learning rate 0.001 for

the first 80 epochs and then decay it to 0.0001 for the last

20 epochs. Each batch consists of 16 point clouds evenly

distributed on 4 GPU cards. For the second stage, we train

50 epochs with batch size 1. The learning rate is initialized

as 0.001 for the first 40 epochs and is then decayed by 0.1

for every 5 epochs. For each input point cloud, we sample

256 proposals, with ratio 1:1 for positives and negatives.

Our implementation is based on Tensorflow [2]. For the

box prediction network, a proposal is considered positive if

its maximum 3D IoU with all ground-truth boxes is higher

than 0.55 and negative if its maximum 3D IoU is below 0.45

during training the car model. The positive and negative

3D IoU thresholds are 0.5 and 0.4 for the pedestrian and

cyclist models. Besides, for the IoU branch, we only train

on positive proposals.

Data Augmentation Data augmentation is important to

prevent overfitting. First, similar to that of [34], we ran-

domly add several ground-truth boxes with their interior

points from other scenes to current point cloud in order

to simulate objects with various environments. Then, for

each bounding box, we randomly rotate it following a uni-

form distribution ∆θ1 ∈ [−π/4,+π/4] and randomly add

a translation (∆x,∆y,∆z). Third, each point cloud is

flipped along the x-axis in camera coordinate with proba-

bility 0.5. We also randomly rotate each point cloud around

z-axis (up axis) by a uniformly distributed random variable

∆θ2 ∈ [−π/4,+π/4]. Finally, we apply a global scaling

to points with a random variable drawn from the uniform

distribution [0.9, 1.1].

4.2. Main Results

For evaluation on the test set, we train the model on split

train/val sets at ratio 4:1. Performance of our method and

comparison with previous work are listed in Table 3. Our

model performs much better on Car and Cyclist classes than

others, especially on the hard set. Compared to multi-view

methods that use other sensors as extra information, our

method still achieves higher AP with input of only raw point

clouds. Compared to UberATG-MMF [19], which is the

best multi-sensor detector, STD outperforms it by 0.88%
on the moderate level on 3D detection of Cars. Large in-

crease 7.65% on the hard set is also obtained, manifest-

ing the effectiveness of our proposal-generation module and

IoU branch.

Note that on Pedestrian class, STD is still the best among

LiDAR-only detectors. Multi-sensor detectors work better

because there are very few 3D points on pedestrians, mak-

ing it difficult to distinguish them from other small objects

like indicator or telegraph pole, as shown in Figure 3. Extra

information of RGB would help in these cases.

Compared to LiDAR-only detectors, and voxel or point
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Indicator
Pedestrian

Figure 3. Small objects such as indicators are easy to detect on

RGB images, but not on LiDAR data.

Class Easy Moderate Hard

Car (BEV) 90.5 88.5 88.1

Car (3D) 89.7 79.8 79.3

Pedestrian (BEV) 75.9 69.9 66.0

Pedestrian (3D) 73.9 66.6 62.9

Cyclist (BEV) 89.6 76.0 72.7

Cyclist (3D) 88.5 72.8 67.9

Table 4. 3D and BEV detection AP on KITTI val set.

Method Easy Moderate Hard

MV3D [4] 71.29 62.68 56.56

AVOD [14] 84.41 74.44 68.65

VoxelNet [37] 81.97 65.46 62.85

SECOND [34] 87.43 76.48 69.10

F-PointNet [26] 83.76 70.92 63.65

PointRCNN [30] 88.88 78.63 77.38

Ours (without IoU branch) 88.8 78.7 78.2

Ours (IoU branch) 89.7 79.8 79.3

Table 5. 3D detection AP on KITTI val set of our model for “Car”

compared to other state-of-the-art methods.

methods, our method works best on all three classes.

Specifically, on Car detection, STD achieves a better AP by

1.87%, 2.64% and 3.97% compared to PointRCNN [30],

PointPillars [15], and SECOND [34] respectively on the

moderate set. The improvement on the hard set is more sig-

nificant – 7.74%, 7.76% and 9.86% increase respectively.

We present several qualitative results in Figure 4.

4.3. Ablation studies

For ablation studies, we follow VoxelNet [37] to split the

official training set into a train set of 3,717 images/scenes

and a val set of 3,769 images/scenes. Images in train/val set

belong to different video clips. Following [37], all ablation

studies are conducted on the car class due to the relatively

large amount of data to make system run stably.

Results On Validation Set We first report the perfor-

mance on KITTI val set in Table 4. The comparison on

validation set is presented in Table 5. Unlike voxel-based

methods of [37] and [34], our model preserves more struc-

Methods Proposal Num. IoU Threshold Recall

AVOD [14] 50 0.5 91.0

Ours 50 0.5 96.3

PointRCNN [30] 100 0.7 74.8

Ours 100 0.7 76.8

Table 6. Recall of proposals on KITTI val set compared to other

methods with the same proposal number and IoU threshold.

Shape Anchor Amount Proposal Num. Recall (IoU=0.7)

Cuboid 1× 100 74.2

Cuboid 2× 100 75.7

Sphere 1× 100 76.8

Table 7. Recall of generated proposals on KITTI val set.

Semantic Canonized Easy Moderate Hard

- - 38.7 31.1 26.0√
- 82.5 67.6 67.2√ √

88.8 78.7 78.2

Table 8. 3D object detection AP on KITTI val set. A tick in “can-

onized” item means using canonical coordinates rather than origi-

nal coordinates as part of the feature. A tick in “semantic” means

using points feature from 3D semantic segmentation backbone in

proposal feature.

ture and appearance details, leading to better performance.

Compared to point-based methods, the proposal generation

module and IoU branch keep more accurate proposals and

high-quality predictions, which result in higher AP espe-

cially on the hard set. We compare recall among different

2-stage object detectors in Table 6, demonstrating the pow-

erfulness of our proposal generation module.

Effect of Anchors’ Receptive Field Given that anchors

play an important role, it is vital to make anchors cover as

much as possible ground-truth area while not consuming

much computation. We use spherical receptive field that has

only one radius for each detection model. In order to jus-

tify the effectiveness of this design, we conduct experiments

varying the shape and size of receptive fields. Average Re-

call (AR) with IoU threshold 0.7 is the metric. The result

is shown in Table 7. First, “cuboid” shape of the receptive

field needs more than one angles, i.e. (0, π/2), because of

the disproportion between length and width, leading to 2×
more data and accordingly more computation. “Cuboid”

with only one orientation causes 1.5% decrease in terms of

AR. Moreover, spherical receptive fields brings additional

context information, which benefit anchor classification and

regression.

Effect of Complex Shapes of Anchors We evaluate the

performance of using ellipsoidal and cylindrical anchors. In

order to keep the same amount of spherical anchors and get

rid of specific ground-truth orientations, we set the shape

of ellipsoidal anchors from bird-eye view (BEV) to circles

with fixed radius, and change ratio of radius and height.

As shown in Table 9, these complex representations bring
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Figure 4. Visualization of our results on KITTI test set. The upper row in each image is the 3D object detection result projected onto the

RGB image. The other is the result in the LiDAR phase.

Cuboid Cylindrical Ellipsoidal Spherical

Recall 75.7 77.0 77.4 76.8

mAP 78.39 78.74 78.82 78.75

Table 9. Influence of using different shapes of anchors. “ratio”

means the average ratio of positive points within anchors located

at points inside ground-truth bounding boxes. “recall” means the

recall rate of proposal generation module (PGM). “precision” rep-

resents the classification accuracy of positive anchors. “mAP” in-

dicates the final mean average precision.

NMS Soft-NMS 3D Easy Moderate Hard√
- - 88.8 78.7 78.2

-
√

- 88.9 79.0 78.4

- -
√

89.7 79.8 79.3

Table 10. 3D object detection AP on KITTI val moderate set. Our

experiments analyze influence of our 3D IoU branch. “3D” means

using 3D IoU branch for post-processing.

higher recall rate than spherical anchors. But their perfor-

mance on final mAP is just comparable. Accordingly, we

choose spherical anchors because they are simpler. They

can be determined by only radius lengths, and are suffi-

ciently effective. We note it is still possible that better per-

formance is yielded with carefully designed more sophisti-

cated anchors.

Effect of Proposal Feature Our proposal features are

with canonical coordinates and 3D semantic features. We

quantify their benefits using original points coordinates as

our baseline. As shown in Table 8, using 3D segmenta-

tion features results in around 36.5% performance boost on

moderate set in terms of AP. It means global context infor-

mation enhances model capability greatly. With canonical

transformation, AP increases by 11.1% on moderate set.

Effect of IoU Branch Our 3D IoU prediction branch es-

timates the localization quality to finally improve perfor-

mance. As illustrated in Table 10, our 3D-IoU-guided NMS

outperforms traditional methods of NMS and soft-NMS by

1.1% and 0.8% on moderate set respectively, manifesting

the usefulness of this branch. We note directly taking pre-

NMS Sorting Scores Easy Moderate Hard

3D-IoU 89.0 79.1 78.7

cls-score × 3D-IoU 89.7 79.8 79.3

Table 11. 3D object detection AP on KITTI val moderate set. Our

experiments analyze influence of different ways to use 3D IoU

branch. “3D-IoU” means only using 3D IoU as NMS sorting

score. “cls-score × 3D-IoU” indicates the way we describe in

Section 3.3.

dicted 3D IoU as the NMS sorting criterion, as shown in Ta-

ble 11, performs less well. The reason is that only positive

proposals are considered in IoU branch, while classification

scores can tell positive predictions from negative ones. Ac-

cordingly, combination of classification score and predicted

IoU becomes effective.

Inference Time The total inference time of STD is 80ms

on a Titan V GPU where the PointNet++ backbone takes

54ms, the proposal generation module including PointNet

and NMS takes 10ms, PointsPool layer takes about 6ms,

and the second stage with two branches takes 10ms. STD

is the fastest model among all point-based and multi-view

methods. Note that we merge batch normalization into con-

volution layers, and split the input point cloud of first SA

level (16K) in PointNet++ to (32 × 512) for parallel com-

putation. It shortens inference time, resulting in 25ms and

50ms speedup respectively, while not degrading accuracy in

detection.

5. Conclusion

We have proposed a new two-stage 3D object detection

framework that takes advantage of both voxel- and point-

based methods. We introduced spherical anchors based on

points and refined them for accurate proposal generation

without loss of localization information in the first stage.

Then a PointsPool layer is applied to generating compact

representation for proposals. It is beneficial to reduce in-

ference time. The second stage reduces incorrect removal

in post-process to further improve performance. Our model

works decently on 3D detection, especially on the hard set.
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