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Abstract

It is challenging for weakly supervised object detection

network to precisely predict the positions of the objects, s-

ince there are no instance-level category annotations. Most

existing methods tend to solve this problem by using a two-

phase learning procedure, i.e., multiple instance learning

detector followed by a fully supervised learning detector

with bounding-box regression. Based on our observation,

this procedure may lead to local minima for some objec-

t categories. In this paper, we propose to jointly train the

two phases in an end-to-end manner to tackle this problem.

Specifically, we design a single network with both multi-

ple instance learning and bounding-box regression branch-

es that share the same backbone. Meanwhile, a guided

attention module using classification loss is added to the

backbone for effectively extracting the implicit location in-

formation in the features. Experimental results on public

datasets show that our method achieves state-of-the-art per-

formance.

1. Introduction

In recent years, Convolutional Neural Networks (CNN)

approaches have achieved great success in computer vision

field, due to its ability to learn generic visual features that

can be applied in many tasks such as image classification

[20, 31, 12], object detection [10, 9, 26] and semantic seg-

mentation [23, 2]. Fully supervised object detection has

been widely studied and achieved promising results. There

are also plenty of public datasets which provide precise lo-

cation and category annotations of the objects. However,

precise object-level annotations are always expensive in hu-

man resource and huge data volume is required by training

accurate object detection models. In this paper, we focus

on Weakly Supervised Object Detection (WSOD) problem,

which uses only image-level category labels so that signif-

icant cost of preparing training data can be saved. Due to

the lack of accurate annotations, this problem has not been

well handled and the performance is still far from the fully

supervised methods.
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Figure 1: The learning strategy comparison of existing

weakly supervised object detection methods (above the blue

solid line) and our proposed method (below the blue solid

line).

Recent WSOD methods [5, 1, 34, 22, 18] usually follows

a two-phase learning procedure as shown in the top part of

Figure 1. In the first phase, the Multiple Instance Learning

(MIL) [4, 18, 34, 1] like weakly learning pipeline is used,

which trains a MIL detector by using CNN as feature ex-

tractor. In the second phase, a fully supervised detector,

e.g. Fast R-CNN [9] or Faster R-CNN [26], is trained to

further refine object location by using the selected propos-

als of the first phase as supervision. The main functionality

of the second phase is to regress the object locations more

precisely. However, we observed that the two-phase learn-

ing is easy to get stuck into local minima if the selected

proposals of the first phase are too far from real Ground

Truth (GT). As shown in the top part of Figure 1, in some

categories, the MIL detector tends to focus on the local dis-

criminative parts of the objects, such as the head of a cat,
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Figure 2: Detection results of MIL detector (left part), Fast R-CNN with pseudo GT from MIL detector (middle part) and our

jointly training network (right part) at different training iterations.

so that the wrong proposals are used as pseudo GT for the

second phase. In this case, the accurate location of the ob-

ject can hardly be learned in the regression process of the

second phase, as the MIL detector has already over-fitted

seriously to the discriminate parts, as shown in the middle

part of Figure 2.

We further observed that the MIL detector does not s-

elect the most discriminative parts at the beginning of the

training, but gradually over-fits to these parts, as shown in

the left part of Figure 2.

Taking into account the above observations, we propose

to jointly train the MIL detector and the bounding-box re-

gressor together in an end-to-end manner, as shown in the

bottom part of Figure 1. In this manner, the regressor is

able to start to adjust the predicted boxes before the MIL

detector focuses seriously to small discriminative parts, as

shown in the right part of Figure 2. Specifically, we use

MIL detection scheme [1, 34] as baseline and integrate fully

supervised RoI-based classification and bounding-box re-

gression branch similar to Fast R-CNN, which shares the

same backbone with MIL detector. MIL detector is a weak-

ly learning process, which selects object predictions from

the region proposals, e.g. generated by Selective Search

Windows (SSW) [36] method, according to classification s-

cores. These selected proposals are then used as the pseudo

GT supervision of the classification and regression branch.

In order to further enhance the localization ability of the

proposed network, we propose to use a guided attention

module using image-level classification loss in the back-

bone. To our best knowledge, the well trained classification

network contains rich object location information. There-

fore, we add this attention branch which is guided by image-

level classification loss. Fully considering the global char-

acteristics of the objects, the attention branch can improve

the discriminative ability of the network as well as detection

accuracy.

It is worth noting that though jointly learning of classi-

fication and boxes regression has already been shown to be

beneficial for fully supervised object detection, for weakly

supervised object detection it is still non-trivial and need-

s innovative idea and insight on this task. Although Our

method is conceptually simple in form, it significantly al-

leviates the weak detector over-fitting to discriminate parts

and substantially surpasses previous methods. Our contri-

butions can be summarized as follows.

• We design a single end-to-end weakly supervised ob-

ject detection network that can jointly optimize the re-

gion classification and regression, which boosts per-

formance significantly.

• We design a classification guided attention module to

enhance the localization ability of feature learning,

which also leads to a noteworthy improvement.

• Our proposed network significantly outperforms previ-

ous state-of-the-art weakly supervised object detection

approaches on PASCAL VOC 2007 and 2012.

2. Related Work

2.1. Convolutional Feature Extraction

After the success of using CNNs for image classifica-

tion task[20], a research stream based on CNNs [10, 29]

shows significant improvements in detection performance.

These methods use convolutional layers to extract features

from each region proposal. To speed up the the detection,

SPP-Net [11] and Fast R-CNN [9] firstly extract region-

independent feature maps at the full-image level, and then

pool region-wise features via spatial extents of proposals.

2.2. Weakly Supervised Object Detection

Most existing methods formulate weakly-supervised de-

tection as a multiple instance learning problem [1, 32, 13,

18, 22, 27]. These approaches divided training images in-

to positive and negative parts, where each image is con-
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sidered as a bag of candidate object instances. If an im-

age is annotated as a positive sample of a specific object

class, at least one proposal instance of the image belongs

to this class. The main task of MIL-based detectors is

to learn the discriminative representation of the object in-

stances and then select them from positive images to train a

detector. Previous works on applying MIL to WSOD can be

roughly categorized into multi-phase learning approach

[18, 4, 22, 38, 30, 42, 43, 41] and end-to-end learning ap-

proach [1, 39, 34, 19, 33].

End-to-end learning approaches combine CNNs and

MIL into a unified network to address weakly supervised

object detection task. Diba et al. [5] proposed an end-

to-end cascaded convolutional network to perform weakly

supervised object detection and segmentation in cascaded

manner. Bilen et al. [1] developed a two-stream weakly su-

pervised deep detection network (WSDDN), which select-

ed the positive samples by aggregating the score of classi-

fication stream and detection stream. Based on WSDDN,

Kantorov et al. [19] proposed to learn a context-aware C-

NN with contrast-based contextual modeling. Also based

on WSDDN, Tang et al. [34] designed an online instance

classifier refinement (OICR) algorithm to alleviate the lo-

cal optimum problem. Tang et al. [33] also proposed Pro-

posal Cluster Learning (PCL) to improve the performance

of OICR. Following the inspiration of [19] and [5], Wei et

al. [39] proposed a tight box mining method that leverages

surrounding segmentation context derived from weakly-

supervised segmentation to suppress low quality distracting

candidates and boost the high-quality ones. Recently, Tang

et al. [35] proposed a weakly supervised region proposal

network to generate more precise proposals for detection.

Positive object instances often focus on the most discrimi-

native parts of an object (e.g. the head of a cat, etc.) but

not the whole object, which leads to inferior performance

of weakly supervised detectors.

Multi-phase learning approaches first employ MIL to s-

elect the best object candidate proposals, then use these

selected proposals as pseudo GT annotations for learning

the fully supervised object detector such as R-CNN [10] or

Fast(er) R-CNN [9, 26]. Li et al. [22] proposed classi-

fication adaptation to fine-tune the network to collect class

specific object proposals, and detection adaptation was used

to optimize the representations for the target domain by the

confident object candidates. Cinbis et al. [4] proposed a

multi-fold MIL detector by re-labeling proposals and re-

training the object classifier iteratively to prevent the detec-

tor from being locked into wrong object locations. Jie et al.

[18] proposed a self-taught learning approach to progres-

sively harvest high-quality positive instances. Zhang et al.

[43] proposed pseudo ground-truth excavation (PGE) algo-

rithm and pseudo groundtruth adaptation (PGA) algorithm

to refine the pseudo ground-truth obtained by [34]. Wan et

al. [38] proposed a min-entropy latent model (MELM) and

recurrent learning algorithm for weakly supervised object

detection. Ge et al. [8] proposed to fuse and filter object in-

stances from different techniques and perform pixel label-

ing with uncertainty and they used the resulting pixelwise

labels to generate groundtruth bounding boxes for objec-

t detection and attention maps for multi-label classification.

Zhang et al. [42] proposed a Multi-view Learning Local-

ization Network (ML-LocNet) by incorporating multiview

learning into a two-phase WSOD model. However, multi-

phase learning WSOD is a non-convex optimization prob-

lem, which makes such approaches trapped in local optima.

In this paper, we consider the MIL (positive object can-

didates mining) and regression (object candidates localiza-

tion refinement) problems simultaneously. We follow the

MIL pipeline and combine the two-stream WSDDN [1]

and OICR/PCL algorithms [34, 33] to implement our basic

MIL branch and refine the detected boxes with a regression

branch in an online manner.

2.3. Attention Module

Attention modules were first used in the natural lan-

guage processing field and then introduced to the com-

puter vision area. Attention can be seen as a method

of biasing the allocation of available computational re-

sources towards the most informative components of a sig-

nal [15, 16, 25, 21, 37, 24, 14].

The current attention modules can be divided into two

categories: spatial attention and channel-wise attention. S-

patial attention is to assign different weights to different

spatial regions depending on their feature content. It au-

tomatically predicts the weighted heat map to enhance the

relevant features and suppress the irrelevant features during

the training process of a specific task. Spatial attention has

been used in image captioning [40], multi-label classifica-

tion [45], pose estimation [3] and so on. Hu et al. [14]

proposed an Squeeze-and-Excitation block which models

channel-wise attention in a computationally efficient man-

ner. In this paper, we use a combination of spatial and

channel-wise attention, and our attention module is guided

by object category.

3. Method

In this section we introduce proposed weakly supervised

object detection network, which consists of three major

components: guided attention module (GAM), MIL branch

and regression branch. The overall architecture of proposed

network is shown in Figure 3. Given an input image, an en-

hanced feature map is first extracted from the CNN network

with GAM. Region features generated by ROI pooling are

then sent to MIL branch and regression branch. The ob-

ject locations and categories proposed by MIL branch are

taken as pseudo GT of the regression branch for location
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Figure 3: Architecture of our proposed network. (1) Generate discriminate features using attention mechanism. (2) Generate

the RoI features from enhanced feature map. (3) MIL branch: Feed the extracted RoI features into a MIL network for

pseudo GT boxes annotation initialization. (4) Regression branch: Feed the extracted RoI features and generated pseudo

GT to the regression branch for RoI classification and regression.

regression and classification. The remainder of this section

discusses the three components in detail.

3.1. Guided Attention Module

First, we describe the conventional spatial neural at-

tention structure. Given a feature map X ∈ R
H×W×D

extracted from a ConvNet, the attention module takes it

as input and outputs a spatial-normalized attention weight

map A ∈ R
H×W via a 1×1 convolutional layer. Atten-

tion map is then multiplied to X to get attended feature

Xa ∈ R
H×W×D. Xa is added to X to get the enhanced

feature map X̂. After that, X̂ is fed to subsequent modules.

Attention map A acts as a spatial regularizer to enhance the

relevant regions and suppress the non-relevant regions for

feature X.

Formally, attention module consists of a convolutional

layer, a non-linear activation layer and a spatial normaliza-

tion as follows:

zi,j = F
(

wTxi,j + b
)

, (1)

ai,j =
zi,j

∑

i,j zi,j
, (2)

where F is non-linear activation function. w and b are the

parameters of the attention module, which is a 1 × 1 con-

volutional layer. The attended feature x̂i,j can be calculated

by:

x̂i,j = (1 + ai,j)xi,j . (3)

The conventional attention map is class-agnostic. We

hope it can learn some foreground/background information

to help figure out the position of the objects, because it has

been proved that CNNs are not only effective at predicting

the class label of an image, but also localizing the image

regions relevant to this label [44].

We add the classification loss to guide the learning of

the attention weights. To achieve this, we expand spa-

tial attention to both spatial and channel attention. Specif-

ically, attention map are changed from A ∈ R
H×W to

A ∈ R
H×W×D. The attention module can be formalized

as:

zci,j = F
(

wT
c xi,j + bc

)

, (4)

aci,j =
zci,j

1 + exp (−zci,j)
, (5)

where c denotes the value of the c-th channel. The attended

feature x̂
c
i,j can be calculated by:

x̂
c
i,j = (1 + aci,j)x

c
i,j . (6)

To introduce classification supervision to attention

weights learning, attention map A is also fed to another con-

volutional layer and a Global Average Pooling (GAP) layer

to get the classification score vector. Then the attention map

can be supervised by the standard multi-label classification

loss. The enhanced feature map X̂ is fed to subsequent com-

ponents for detection.

3.2. MIL Branch

We only have image-level labels indicating whether an

object category appears. To train a standard object detec-

tor with regression, it is necessary to mine instance-level

supervision such as bounding-box annotations. Therefore,

we need to introduce a MIL branch to initialize the pseu-

do GT annotations. There are a couple of possible choic-

es such as [1, 4, 34]. We choose to adopt OICR network
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

MIL 56.2 62.1 39.4 21.8 10.3 63.6 60.6 31.8 24.8 45.9 35.3 24.1 36.7 63.3 13.1 23.1 39.4 49.1 64.7 60.3 41.3

MIL+GAM 55.2 62.5 42.6 23.0 12.7 66.2 62.0 39.2 26.1 48.9 37.7 26.1 45.3 64.5 12.8 24.4 42.3 46.4 65.9 62.4 43.3

MIL+FRCN 60.2 65.0 50.9 24.9 11.9 71.6 68.0 34.6 27.2 61.2 40.8 17.6 47.1 65.6 13.0 22.8 51.0 57.6 66.5 60.5 45.9

MIL+REG 56.5 63.4 38.8 28.3 15.3 68.2 66.6 68.0 23.7 51.6 46.0 32.4 53.8 63.9 12.1 23.5 47.2 56.3 65.2 64.9 47.3

MIL+GAM+REG 55.2 66.5 40.1 31.1 16.9 69.8 64.3 67.8 27.8 52.9 47.0 33.0 60.8 64.4 13.8 26.0 44.0 55.7 68.9 65.5 48.6

Table 1: Ablation study: AP performance (%) on PASCAL VOC 2007 test

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

MIL 82.5 76.5 61.0 47.3 30.2 80.7 82.4 44.8 42.1 78.1 45.2 32.8 57.1 89.6 16.6 57.9 73.2 61.8 79.1 73.5 60.6

MIL+GAM 82.1 78.4 64.3 48.9 32.4 81.2 82.9 48.5 43.4 79.5 43.7 34.9 61.9 89.2 16.6 57.5 71.1 56.2 78.7 77.4 61.4

MIL+FRCN 83.8 81.2 65.2 48.4 34.4 84.3 84.6 49.4 44.8 82.9 48.7 37.7 67.0 90.0 21.4 60.1 76.3 66.4 82.5 80.6 64.5

MIL+REG 82.1 79.2 61.6 52.7 33.2 82.7 85.8 77.3 39.2 82.2 47.5 42.3 75.2 92.0 19.3 58.6 79.4 65.6 77.2 83.9 65.8

MIL+GAM+REG 81.7 81.2 58.9 54.3 37.8 83.2 86.2 77.0 42.1 83.6 51.3 44.9 78.2 90.8 20.5 56.8 74.2 66.1 81.0 86.0 66.8

Table 2: Ablation study: CorLoc performance (%) on PASCAL VOC 2007 trainval

[34] which is based on WSDDN [1] for its effectiveness and

end-to-end training. WSDNN employed a two streams net-

work: the classification and detection data streams. By ag-

gregating these two streams, instance-level predictions can

be achieved.

Specifically, given an image I with only image-level la-

bel Y = [y1, y2, ..., yC ] ∈ R
C×1, where yc = 1 or 0 indi-

cates the presence or absence of an object class c. For each

input image I, the object proposals R = (R1, R2, ..., Rn)
are generated by the selective search windows method [36].

The features of each proposal are extracted through a Con-

vNet pre-trained on ImageNet [28] and RoI Pooling, then

are branched into two streams to produce two matrices

xcls, xdet ∈ R
C×|R| by two FC layers, where |R| denotes

the number of proposals and C denotes the number of image

classes. These two matrices are passed through a softmax

layer with different dimensions and the outputs are two ma-

trices with the same shape: σ(xdet) and σ(xcls). After that,

the scores of all proposals are generated by element-wise

product xR = σ(xdet) ⊙ σ(xcls). Finally, the c-th class

prediction score at the image-level can be obtained by sum-

ming up the scores over all proposals: pc =
∑|R|

r=1 xRc,r .

During the training stage, the loss function can be formulat-

ed as follows:

Lmil = −
C
∑

c=1

{yc log pc + (1− yc) log(1− pc)}. (7)

Since the performance of WSDDN is unsatisfactory, we

adopt the OICR [34] and its upgraded version Proposal

Cluster Learning (PCL) [33] to refine the proposal classi-

fication results of WSDDN. After several times classifier

refinement, the classifier tends to select the tight boxes as

positive instances, which can be used as pseudo GT annota-

tions for our online boxes regressor.

3.3. Multi­Task Branch

After pseudo GT annotations are generated, a multi-task

branch can operate fully supervised classification and re-

gression as Fast R-CNN [9]. The detection branch has t-

wo sibling branches. The first branch predicts a discrete

probability distribution (per RoI), p ∈ R
(C+1)×1, over C+1

categories, which is computed by a softmax over the C+1
outputs of a FC layer. The second sibling branch output-

s bounding-box regression offsets, tc = (tcx, t
c
y, t

c
w, t

c
h) for

each of the C object classes, indexed by c.

Since we get the instance annotations from MIL branch

as introduced in Section 3.2, each RoI now has a GT

bounding-box regression target v and GT classification tar-

get u. We use a multi-task loss Ldet of all labeled RoIs for

classification and bounding-box regression:

Ldet = Lcls + λLloc, (8)

where Lcls is classification loss, and Lloc is regression loss.

λ controls the balance between two losses. For Lloc, smooth

L1 loss is used. For Lcls, since the pseudo GT annotations

are noisy, we add a weight wr with respect to RoI r:

Lcls = −
1

|R|

|R|
∑

r=1

C+1
∑

c=1

wrur
c log p

r
c , (9)

where |R| is the number of proposals. The weight wr is

calculated following the weights calculation method in [34]

when refining the classifiers.

The overall network is trained by optimizing the follow-

ing composite loss functions from the four components us-

ing stochastic gradient descent:

L = Limgcls + Lmil + Lrefine + Ldet, (10)

where Limgcls is the multi-label classification loss of GAM;

Lmil is the multi-label classification loss of WSDDN;

Lrefine is the classifier refinement loss; and Ldet is multi-

task loss of the detection sub-network.

4. Experiments

In this section, we first introduce the evaluation datasets

and the implementation details of our approach. Then we
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN[1] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

ContextLocNet[19] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

OICR[34] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

Self-taught[18] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

WCCN[5] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

TS2C[39] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

WSRPN[35] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

PCL[33] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

MIL-OICR+GAM+REG(Ours) 55.2 66.5 40.1 31.1 16.9 69.8 64.3 67.8 27.8 52.9 47.0 33.0 60.8 64.4 13.8 26.0 44.0 55.7 68.9 65.5 48.6

MIL-PCL+GAM+REG(Ours) 57.6 70.8 50.7 28.3 27.2 72.5 69.1 65.0 26.9 64.5 47.4 47.7 53.5 66.9 13.7 29.3 56.0 54.9 63.4 65.2 51.5

PDA[22] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

WSDDN-Ens.[1] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

OICR-Ens.+FRCNN[34] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

WCCN+FRCNN[5] - - - - - - - - - - - - - - - - - - - - 43.1

MELM[8] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

GAL-fWSD512[30] 58.4 63.8 45.8 24.0 22.7 67.7 65.7 58.9 15.0 58.1 47.0 53.7 23.8 64.3 36.2 22.3 46.7 50.3 70.8 55.1 47.5

ZLDN[41] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

TS2C+FRCNN[39] - - - - - - - - - - - - - - - - - - - - 48.0

PCL-Ens.+FRCNN[33] 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8

ML-LocNet-L+[42] 60.8 70.6 47.8 30.2 24.8 64.9 68.4 57.9 11.0 51.3 55.5 48.1 68.7 69.5 28.3 25.2 51.3 56.5 60.0 43.1 49.7

WSRPN-Ens.+FRCNN[35] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

Multi-Evidence[8] 64.3 68.0 56.2 36.4 23.1 68.5 67.2 64.9 7.1 54.1 47.0 57.0 69.3 65.4 20.8 23.2 50.7 59.6 65.2 57.0 51.2

W2F+RPN+FSD2[43] 63.5 70.1 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4

Ours-Ens. 59.8 72.8 54.4 35.6 30.2 74.4 70.6 74.5 27.7 68.0 51.7 46.3 63.7 68.6 14.8 27.8 54.9 60.9 65.1 67.4 54.5

Table 3: Comparison of AP performance (%) on PASCAL VOC 2007 test. The upper part shows results by single end-to-end

model. The lower part shows results by multi-phase approaches or ensemble model.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

ContextLocNet[19] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3

OICR[34] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9

Self-taught[18] 60.8 54.2 34.1 14.9 13.1 54.3 53.4 58.6 3.7 53.1 8.3 43.4 49.8 69.2 4.1 17.5 43.8 25.6 55.0 50.1 38.3

WCCN[5] - - - - - - - - - - - - - - - - - - - - 37.9

TS2C[39] 67.4 57.0 37.7 23.7 15.2 56.9 49.1 64.8 15.1 39.4 19.3 48.4 44.5 67.2 2.1 23.3 35.1 40.2 46.6 45.8 40.0

WSRPN[35] - - - - - - - - - - - - - - - - - - - - 40.8

PCL[33] 58.2 66.0 41.8 24.8 27.2 55.7 55.2 28.5 16.6 51.0 17.5 28.6 49.7 70.5 7.1 25.7 47.5 36.6 44.1 59.2 40.6

MIL-OICR+GAM+REG(Ours) 64.7 66.3 46.8 28.5 28.4 59.8 58.6 70.9 13.8 55.0 15.7 60.5 63.9 69.2 8.7 23.8 44.7 52.7 41.5 62.6 46.8

MIL-PCL+GAM+REG(Ours) 60.4 68.6 51.4 22.0 25.9 49.4 58.4 62.1 14.5 58.8 24.6 60.4 64.3 70.3 9.4 26.0 47.7 45.5 36.7 55.8 45.6

MELM[8] - - - - - - - - - - - - - - - - - - - - 42.4

OICR-Ens.+FRCNN[34] - - - - - - - - - - - - - - - - - - - - 42.5

ZLDN[41] 54.3 63.7 43.1 16.9 21.5 57.8 60.4 50.9 1.2 51.5 44.4 36.6 63.6 59.3 12.8 25.6 47.8 47.2 48.9 50.6 42.9

GAL-fWSD512[30] 64.9 56.8 47.0 18.1 22.2 60.0 51.7 60.7 12.9 43.1 23.6 58.5 52.1 66.9 39.5 19.0 39.6 36.1 62.7 27.4 43.1

ML-LocNet-L+[42] 53.9 60.4 40.4 23.3 18.7 58.7 63.3 52.5 13.3 49.1 46.8 33.5 61.0 65.8 21.3 22.9 46.8 48.1 52.6 40.4 43.6

TS2C+FRCNN[39] - - - - - - - - - - - - - - - - - - - - 44.0

PCL-Ens.+FRCNN[33] 69.0 71.3 56.1 30.3 27.3 55.2 57.6 30.1 8.6 56.6 18.4 43.9 64.6 71.8 7.5 23.0 46.0 44.1 42.6 58.8 44.2

WSRPN-Ens.+FRCNN[35] - - - - - - - - - - - - - - - - - - - - 45.7

W2F+RPN+FSD2[43] 73.0 69.4 45.8 30.0 28.7 58.8 58.6 56.7 20.5 58.9 10.0 69.5 67.0 73.4 7.4 24.6 48.2 46.8 50.7 58.0 47.8

Ours-Ens. 66.8 71.1 56.0 28.4 34.2 56.2 60.3 63.8 17.3 61.3 24.8 59.7 67.4 73.6 12.0 30.0 52.7 47.1 45.9 61.5 49.5

Table 4: Comparison of AP performance (%) on PASCAL VOC 2012 test. The upper part shows results by single end-to-end

model. The lower part shows results by multi-phase approaches or ensemble model.

explore the contributions of each proposed module by the

ablation experiments. Finally, we compare the performance

of our method with the-state-of-the-art methods.

4.1. Datasets and Evaluation Metrics

We evaluate our method on the popular PASCAL VOC

2007 and 2012 datasets [6] which have 9963 and 22531 im-

ages for 20 object classes, respectively. These two dataset-

s are split into train, validation, and test sets. We use the

trainval set (5011 images for 2007 and 11540 for 2012) for

training. As we focus on weakly supervised detection, on-

ly image-level labels are utilized during training. Average

Precision (AP) and the mean of AP (mAP) are taken as the

evaluation metrics to test our model on the testing set. Cor-

rect localization (CorLoc) is also used to evaluate our model

on the trainval set to measure the localization accuracy [1].

Both metrics are evaluated on the PASCAL criteria, i.e., IoU

> 0.5 between ground truths boxes and predicted boxes.

4.2. Implementation Details

We use the object proposals generated by selective

search windows [36] and adopt VGG16 [31] pre-trained on

ImageNet [28] as the backbone of our proposed network.

For the newly added layers, the parameters are randomly

initialized with a Gaussian distribution N (µ, δ)(µ = 0, δ =
0.01) and 10 times learning rate. During training, we adop-

t a mini-batch size of 2 images, and set the learning rate

to 0.001 for the first 40K iterations and then decrease it to
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN[1] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

ContextLocNet[19] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

OICR[34] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

Self-taught[18] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1

WCCN[5] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

TS2C[39] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

WSRPN[35] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

PCL[33] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

MIL-OICR+GAM+REG(Ours) 81.7 81.2 58.9 54.3 37.8 83.2 86.2 77.0 42.1 83.6 51.3 44.9 78.2 90.8 20.5 56.8 74.2 66.1 81.0 86.0 66.8

MIL-PCL+GAM+REG(Ours) 80.0 83.9 74.2 53.2 48.5 82.7 86.2 69.5 39.3 82.9 53.6 61.4 72.4 91.2 22.4 57.5 83.5 64.8 75.7 77.1 68.0

Table 5: Comparison of correct localization (CorLoc) (%) of single end-to-end model on PASCAL VOC 2007 trainval.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

ContextLocNet[19] 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8

OICR[34] 86.2 84.2 68.7 55.4 46.5 82.8 74.9 32.2 46.7 82.8 42.9 41.0 68.1 89.6 9.2 53.9 81.0 52.9 59.5 83.2 62.1

Self-taught[18] 82.4 68.1 54.5 38.9 35.9 84.7 73.1 4.8 17.1 78.3 22.5 57.0 70.8 86.6 18.7 49.7 80.7 45.3 70.1 77.3 58.8

TS2C[39] 79.1 83.9 64.6 50.6 37.8 87.4 74.0 74.1 40.4 80.6 42.6 53.6 66.5 88.8 18.8 54.9 80.4 60.4 70.7 79.3 64.4

WSRPN[35] - - - - - - - - - - - - - - - - - - - - 64.9

PCL[33] 77.2 83.0 62.1 55.0 49.3 83.0 75.8 37.7 43:2 81.6 46:8 42.9 73.3 90.3 21.4 56.7 84.4 55.0 62.9 82.5 63.2

MIL-OICR+GAM+REG(Ours) 82.4 83.7 72.4 57.9 52.9 86.5 78.2 78.6 40.1 86.4 37.9 67.9 87.6 90.5 25.6 53.9 85.0 71.9 66.2 84.7 69.5

MIL-PCL+GAM+REG(Ours) 80.2 83.0 73.1 51.6 48.3 79.8 76.6 70.3 44.1 87.7 50.9 70.3 84.7 92.4 28.5 59.3 83.4 64.6 63.8 81.2 68.7

Table 6: Comparison of correct localization (CorLoc) (%) of single end-to-end model on PASCAL VOC 2012 trainval.

0.0001 in the following 30K iterations. The momentum and

weight decay are set to 0.9 and 0.0005, respectively. We use

five image scales , i.e., {480, 576, 688, 864, 1200}, and hor-

izontal flips for both training and testing data augmentation.

During testing, we use the mean output of the regression

branch, including classificaiton scores and bounding boxes,

as the final results. Our experiments are based on the deep

learning framework of Caffe [17]. All of the experiments

run on NVIDIA GTX 1080Ti GPUs.

4.3. Ablation Studies

We conduct ablation experiments on PASCAL VOC

2007 to prove the effectiveness of our proposed network.

We validate the contribution of each component including

GAM and regression branch.

4.3.1 Baseline

The baseline is the MIL detector without GAM and regres-

sion branch that we introduced in Section 3.1, which is the

same as OICR [34]. We re-run the experiment and get a

slightly higher result of 41.3% mAP (41.2% mAP in [34]).

4.3.2 Guided Attention Module

To verify the effect of GAM, we conduct experiments

with and w/o GAM. We denote the network with GAM

as MIL+GAM, which does not include regression branch.

From Table 1, we can conclude that GAM does help the

detector learn better features and improves the accuracy of

MIL detector by 2.0%.

4.3.3 Joint Optimization

To optimize proposal classification and regression jointly,

we propose to use bounding-box regression in an online

manner together with MIL detection. To verify the effect

of online regression, we conduct control experiments un-

der two setting: 1) our joint optimization of MIL detec-

tor and regressor, which we denote as MIL+REG; 2) we

train a MIL detector first, then use the pseudo GT from the

MIL detector to train a fully supervised Fast R-CNN [9].

We denote this setting as MIL+FRCN. The experimental

results are summarized in Table 1. From the results, we

can see the performance of our MIL+REG is much higher

than MIL+FRCN. We attribute the improvements to join-

t optimization. Separate optimization of MIL detector and

regressor result in sub-optimal results. It easily gets stuck

in local minima if the pseudo GTs are not accurate. This

can be seen from the results of the object category cat and

dog. The two object classes are much easier to over-fit to

the discriminate parts in the MIL detection. Our joint op-

timization strategy can alleviate this problem as shown in

Figure 2. More visualization results are shown in the sup-

plementary file. We also carry the exploration study on the

CorLoc metric, as reported in Table 2. From these results,

we can draw the same conclusion.

4.4. Comparison with State­of­the­Art

To fully compare with other methods, we report the re-

sults for both “single end-to-end network” and “multi-

phase approaches or ensemble model”. The results on

VOC 2007 and VOC 2012 are shown in Table 3, Table

5, Table 4 and Table 6. From the tables, we can see that

our method achieves the highest performance, outperform-
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Figure 4: Qualitative detection results of our method and the baseline (OICR+FRCN).The results of baseline are shown in

the odd columns. The results of our method are shown in even columns.

ing the state-of-the-arts for both cases. It is worth noting

that our single model results are even much better than

the ensemble models results of most methods which en-

semble the results of multiple CNN networks. For exam-

ple, compared with OICR [34], which we use as baseline,

our single model outperforms the ensemble models of

OICR significantly while keeping much lower complexi-

ty (47.0% mAP Versus 48.6% mAP; 60.6% CorLoc Versus

66.8% CorLoc on VOC 2007). In Figure 4, we also illus-

trate some detection results by our network as compared to

those by our baseline method, i.e., OICR+FRCN. It can be

concluded from the illustration that our joint training strate-

gy significantly alleviates the detector focusing on the most

discriminative parts.

4.5. Discussion

C-WSL [7] also explored bounding box regression in

weakly supervised object detection network. We list the

relationship and some differences below. Relationship: We

both use bounding box regression in an online manner.

However, there are key differences in network architecture

between the two, which lead to the performance of C-WSL

being much lower than ours, even though they use addition-

al object count labels. Differences: The network structure

is different. We use bounding box regression after several

box classifier refinements and use only once. C-WSL

[7] uses a box regressor together with each box classifier

refinement after the MIL branch. Their structure brings

two problems. First, a single MIL branch’s classification

performance is very poor, it is not wise to directly use

the box regressor to refine the box location after the MIL

branch. The second problem is that the bounding box

regression is used in a cascade manner for each refinement

without re-extracting features for the RoIs. Specifically, the

subsequent box regression branch should take the refined

box locations from the previous box regression branch

to update RoIs and re-extracting RoIs features for the

classifier and regressor. Because of the above problems,

after deducting the improvement of extra label information,

their network only improves 1.5% compared with OICR

as shown in [7] while our network has increased by 6%

compared with OICR (Please note that we use the same set

of code released by the authors of OICR). In addition, [7]

does not solve the problem of local minima. On the two

categories that most affected by the local minima problem,

[7] drops 4% in the dog category and improves 3% in the

cat category while our method improves 16.3% and 38.6%

respectively.

5. Conclusion

In this paper, we present a novel framework for weakly

supervised object detection. Different from traditional ap-

proaches in this field, our method jointly optimize the MIL

detection and regression in an end-to-end manner. Mean-

while, a guided attention module is also added for better

feature learning. Experiments show substantial and consis-

tent improvements by our method. Our learning algorithm

is potential to be applied in many other weakly supervised

visual learning tasks.
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