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Abstract

In this paper we present a new computer vision task,

named video instance segmentation. The goal of this new

task is simultaneous detection, segmentation and tracking

of instances in videos. In words, it is the first time that

the image instance segmentation problem is extended to

the video domain. To facilitate research on this new task,

we propose a large-scale benchmark called YouTube-VIS,

which consists of 2,883 high-resolution YouTube videos, a

40-category label set and 131k high-quality instance masks.

In addition, we propose a novel algorithm called Mask-

Track R-CNN for this task. Our new method introduces

a new tracking branch to Mask R-CNN to jointly perform

the detection, segmentation and tracking tasks simultane-

ously. Finally, we evaluate the proposed method and several

strong baselines on our new dataset. Experimental results

clearly demonstrate the advantages of the proposed algo-

rithm and reveal insight for future improvement. We believe

the video instance segmentation task will motivate the com-

munity along the line of research for video understanding.

1. Introduction

Segmentation in images and videos is one of the funda-

mental problems in computer vision. In the image domain,

the task of instance segmentation, i.e. simultaneous detec-

tion and segmentation of object instances in images, was

first proposed by Hariharan et al. [11] and since then has

attracted tremendous amount of attention in computer vi-

sion due to its importance. In this paper, we extend the

instance segmentation problem in the image domain to the

video domain. Different from image instance segmentation,

the new problem aims at simultaneous detection, segmen-

tation and tracking of object instances in videos. Fig-

ure 1 illustrates a sample video with ground truth annota-

tions for this problem. Naturally, we name the new task

video instance segmentation. The new task opens up pos-

∗This work is partially done when Linjie is with Snap Inc.

Video frames

Video instance annotations

Video instance predictions

Figure 1. A illustration of video instance segmentation. The

three rows show image frames in a video, video instance anno-

tations, and video instance predictions by our algorithm respec-

tively. Masks in same color belong to the same object instance.

Ground truth and predicted object categories are given on top of

each bounding box.

sibilities for applications which requires video-level object

masks such as video editing, autonomous driving and aug-

mented reality. To our best knowledge, this is the first work

to address video instance segmentation problem.

Video instance segmentation is more challenging than

image instance segmentation in that it not only requires

instance segmentation on individual frames, but also the

tracking of instances across frames. On the other hand,

video content contains richer information than a single im-

age such as motion pattern of different objects and temporal

consistency, and thus provides more cues for object recogni-

tion and segmentation. Video instance segmentation is also

related to several existing tasks. For example, video ob-

ject segmentation [3, 22, 23] aims at segmenting and track-

ing objects in videos, but does not require recognition of

object categories. Video object detection aims at detecting

and tracking objects, but does not deal with object segmen-

tation.

One potential reason that video instance segmentation is

seldomly studied is the lack of a large-scale dataset. Despite
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the existence of video segmentation datasets [7, 23, 34] for

other tasks, none of them is directly applicable to video

instance segmentation. Given a video, our task requires

both the masks of all instances of a predefined category set

and the instance identities across frames to be labeled. Ex-

isting video segmentation datasets either do not have ex-

haustive labeling [23, 34], or do not have the object identi-

ties [7]. Therefore, in this paper, we present the first large-

scale dataset, named YouTube-VIS, for video instance seg-

mentation. The new dataset contains 2, 883 high-resolution

YouTube videos, a 40-category label set including com-

mon objects such as person, animals and vehicles, 4, 883
unique video instances and 131k high-quality masks. Our

new dataset can be served as a benchmark for not only the

video instance segmentation task, but also related tasks such

as video semantic segmentation and video object detection.

In addition, we propose a novel algorithm called Mask-

Track R-CNN for video instance segmentation. Based

upon Mask R-CNN [12] which is a state-of-the-art method

for image instance segmentation, a new branch is added

to the framework for tracking instances across video

frames. Predicted instances are stored to an external mem-

ory and matched with objects in later frames. More-

over, we also propose several baselines by adapting top-

performing methods from related tasks to our task, and

compare their performance with our new method. Ex-

perimental results clearly demonstrate the advantage of

our new algorithm and reveal insights for future improve-

ment. Our dataset has been released at https://

youtube-vos.org/dataset/vis. The code of our

algorithm has been released at https://github.com/

youtubevos/MaskTrackRCNN.

We conclude the contribution of this paper as follows.

• To our best knowledge, it is the first time that video in-

stance segmentation is formally defined and explored.

• We create the first large-scale video instance segmen-

tation dataset which contains 2.9k videos and 40 object

categories.

• We propose a novel algorithm for video instance seg-

mentation and compare it with several baselines on our

new dataset.

The rest of our paper is organized as follows. In Sec-

tion 2 we briefly state the difference between related tasks

and our new task. In Section 3 we formally introduce the

video instance segmentation problem and evaluation met-

rics. Our new dataset and algorithm is elaborated in Sec-

tion 4 and 5 respectively. Finally, experimental results are

presented in Section 6.

2. Related Work

Although video instance segmentation has been largely

neglected in the literature, several related tasks have been

well studied such as image instance segmentation, video

object tracking, video object detection, video semantic seg-

mentation and video object segmentation.

Image Instance Segmentation Instance segmentation not

only group pixels into different semantic classes, but also

group them into different object instances [11]. A two-stage

paradigm is usually adopted, which first generate object

proposals using a Region Proposal Network (RPN) [24],

and then predict object bounding boxes and masks using

aggregated RoI features[8, 15, 12]. The proposed video in-

stance segmentation not only requires segmenting object in-

stances in each frame, but also determining the correspon-

dence of objects across frames.

Video Object Tracking Video object tracking has two

different settings. One is the detection-based tracking

which simultaneously detect and track video objects. Meth-

ods [26, 32, 28] under this setting usually take the “tracking-

by-detection” strategy. The other setting is the detection-

free tracking [1, 19, 9], which targets at tracking objects

given their initial bounding boxes in the first frame. Among

the two settings, DBT is more similar to our problem as it

also requires a detector. However, DBT only requires to

produce bounding boxes, which is different from our task.

Video Object Detection Video object detection aims at de-

tecting objects in videos, which is first proposed as part of

ImageNet visual challenge [25]. While object identity in-

formation are often utilized for improve robustness of de-

tection algorithms [9, 36, 33], the evaluation metric is lim-

ited to per-frame detection and does not require joint object

detection and tracking.

Video Semantic Segmentation Video semantic segmen-

tation is a direct extension of semantic segmentation to

videos, where image pixels are predicted as different se-

mantic classes. Temporal information such as optical

flow is adopted to improve either accuracy [36] or effi-

ciency [36, 16, 27] of semantic segmentation models. Video

semantic segmentation does not require explicit matching of

object instances across frames.

Video Object Segmentation Video object segmentation

has gained substantial attention in recent years, which has

two scenarios: semi-supervised and unsupervised. Semi-

supervised video object segmentation [21, 3] targets at

tracking and segment a given object with a mask. Visual

similarity [3, 5, 31], motion cues [6], and temporal con-

sistency [21, 35] are extracted to identity the same object

across the video. In unsupervised scenario, a single fore-

ground object is segmented [29, 14, 30]. In both settings,

algorithms consider the target objects as general objects and

does not care about the semantic categories.
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3. Video Instance Segmentation

Problem Definition. In video instance segmentation, we

have a predefined category label set C = {1, ...,K} where

K is the number of categories. Given a video sequence

with T frames, suppose there are N objects belonging to

the category set C in the video. For each object i, let ci ∈ C
denote its category label, and let mi

p...q denote its binary

segmentation masks across the video where p ∈ [1, T ] and

q ∈ [p, T ] denote its starting and ending time. Suppose a

video instance segmentation algorithm produces H instance

hypotheses. For each hypothese j, it needs to have a pre-

dicted category label c̃j ∈ C, a confidence score sj ∈ [0, 1]
and a sequence of predicted binary masks m̃

j
p̃...q̃ . The con-

fidence score is used for our evaluation metrics which will

be explained shortly.

The goal of our task is minimizing the difference be-

tween the ground truth and the hypotheses. In other words,

a good video instance segmentation method should be able

to have a good detection rate of all instances, track all the

instances reliably and localize the instance boundaries accu-

rately. It should be noted that there is some minor difference

between our task and the multi-object tracking problem [18]

in that a still object instance is treated as a ground truth, and

if an object is occluded or out of scene for several frames

then reappears in the following frames, the instance label

should be consistent.

Evaluation Metrics. We borrow the standard evaluation

metrics in image instance segmentation with modification

adapted to our new task. Specifically, the metrics are aver-

age precision (AP) and average recall (AR). AP is defined

as the area under the precision-recall curve. The confidence

score is used to plot the curve. AP is averaged over mul-

tiple intersection-over-union (IoU) thresholds. We follow

the COCO evaluation to use 10 IoU thresholds from 50% to

95% at step 5%. AR is defined as the maximum recall given

some fixed number of segmented instances per video. Both

of the two metrics are first evaluated per category and then

averaged over the category set.

Our IoU computation is different from image instance

segmentation because each instance contains a sequence of

masks. To compute the IoU between a ground truth instance

m
i
p...q and a hypothese instance m̃

j
p̃...q̃ , we first extend p

and p̃ to 1, q and q̃ to T by padding empty masks. Then,

IoU(i, j) =
ΣT

t=1|m
i
t ∩ m̃

j
t |

ΣT
t=1|m

i
t ∪ m̃

j
t |

(1)

The proposed IoU computes the spatial-temporal consis-

tency of predicted and ground truth segmentations. If the al-

gorithm detects object masks successfully, but fails to track

the objects across frames, it will get a low IoU.

4. YouTube-VIS

Since none of the existing video segmentation datasets

matches the requirement for our video instance segmen-

tation task, we need to collect a new benchmark dataset

for the development and evaluation of the proposed meth-

ods. There are several criteria that the new benchmark need

to satisfy. First, it should contain common instance cate-

gories, just like recent image instance segmentation bench-

marks [17, 11]. Second, it should contain video instances

with various challenging cases such as occlusion, appear-

ance change, heavy camera motion etc. Last but not the

least, the annotation quality should also be high, which is

a common problem in some of the existing segmentation

datasets with polygon-based annotations.

With the above criteria in mind, we create a new large-

scale benchmark called YouTube-VIS. Instead of building

our benchmark from scratch, we take advantage of an ex-

isting dataset called YouTube-VOS [34]. YouTube-VOS

is a large-scale video object segmentation dataset which is

comprised of 4453 high-resolution YouTube videos and 94

common object categories. In each video, several objects

are labeled by tracing the object boundaries manually at

every 5 frames in a 30fps frame rate. The length of each

video is around 3 to 6 seconds. Even though object masks

are not exhaustively labeled in YouTube-VOS, it still serves

as a very good resource to build our own dataset. Specif-

ically, we first select 40 common category labels from the

94 category labels as our category set. Then we sample

around 2.9k videos with objects from the 40 categories in

YouTube-VOS. We then ask human annotators to carefully

label the other objects belonging to the category set ex-

haustively in these videos. As a result, our dataset is an-

notated with 4, 883 unique objects and approximately 131k

object masks. A comparison of some high level statistics

of YouTube-VIS and related datasets are shown in Table 1.

The distribution of the unique objects per category in our

dataset is illustrated in Figure 2.

Our new dataset YouTube-VIS is not only the first large-

scale benchmark for video instance segmentation, but also a

useful benchmark for other vision tasks such as video object

detection and video semantic segmentation. It also comple-

ments the original YouTubeVOS dataset with more objects.

We believe our new dataset will serve as a useful benchmark

for various pixel-level video understanding tasks.

5. MaskTrack R-CNN

Our new algorithm for video instance segmentation is

built based on Mask R-CNN [12]. In addition to its orig-

inal three branches for object classification, bounding box

regression, and mask generation, we add the forth branch

together with an external memory to track object instances

across frames. The tracking branch mainly leverages the
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Table 1. High level statistics of YouTubeVIS and previous video

object segmentation datasets. YTO, YTVOS, and YTVIS stands

for YouTubeObjects, YouTubeVOS, and YouTube-VIS respec-

tively.
YTO

[13]

FBMS

[20]

DAVIS

[22, 23]

YTVOS

[34]
YTVIS

Videos 96 59 50 90 4,453 2,883

Categories 10 16 - - 94 40

Objects 96 139 50 205 7,755 4,883

Masks 1.7k 1.5k 3.4k 13.5k 197k 131k

Exhaustive ✗ ✗ ✗ ✗ ✗ ✓

Figure 2. Number of unique video objects for the 40 categories in

our dataset.

cue of appearance similarity. In addition, we propose a

simple yet effective method to combine it with the other

cues such as semantic consistency and spatial correlation

to improve the tracking accuracy substantially. The overall

framework of our algorithm is illustrated in Figure 3. For

inference, our method processes video frames sequentially

in an online fashion. Next we first briefly review Mask R-

CNN and then describe our new components in detail.

5.1. Mask R­CNN

Mask R-CNN is a high-performing method for image in-

stance segmentation. It consists of two stages. In the first

stage, a RPN [24] takes an image as input and proposes

a set of candidate object bounding boxes. In the second

stage, features are extracted by the RoIAlign operation from

each candidate box and further used to perform classifica-

tion, bounding box regression and binary segmentation in

parallel by three dedicated branches. Please refer to [12]

for more details.

5.2. New Tracking Branch

Our network adopts the same two-stage procedure, with

an identical first stage which proposes a set of object bound-

ing boxes at each frame. In the second stage, in parallel to

the three branches (i.e. classification, bounding box regres-

sion, binary segmentation), we add the forth branch to as-

sign an instance label to each candidate box. Suppose there

are already N instances identified by our algorithm from

previous frames. Then a new candidate box can only be as-

signed to one of the N identities if it is one of the previous

instances or a new identity if it is a new instance. We for-

mulate the problem as multiclass classification. There are

N + 1 classification digits which represent the N already

identified instance and a new unseen instance which is de-

noted by digit 0. The probability of assigning label n to a

candidate box i is defined as

pi(n) =











e
f
⊺

i
fn

1+ΣN
j=1

e
f
⊺

i
fj

n ∈ [1, N ]

1

1+ΣN
j=1

e
f
⊺

i
fj

n = 0
(2)

where fi and fj , j ∈ [1, N ] denote the new features ex-

tracted by our tracking branch from the candidate box and

the N identified instances. Our tracking branch has two

fully connected layers which project the feature maps ex-

tracted by RoIAlign into new features. Since the features of

previously identified instances have already been computed,

we use an external memory to store them for efficiency.

The cross entropy loss is used for out tracking branch, i.e.

Ltrack = −Σi log(pi(yi)) where yi is the ground truth in-

stance label.

We dynamically update our external memory when a

new candidate box is assigned with an instance label. If

the candidate box belongs to an existing instance, we up-

date the instance feature stored in the memory with the new

candidate feature, which represent the latest state of the in-

stance. If the candidate object is assigned with label 0, we

insert feature of the candidate object to the memory and add

1 to the number of identified instances.

We need a sequence of frames to train the new track-

ing branch. In our implementation we use a pair of frames

which are randomly sampled from a training video. One of

the frames is randomly picked as the reference frame while

the other one is picked as the query frame. On the reference

frame, we do not generate any candidate boxes but only ex-

tract features from its ground truth instance regions and save

them into our external memory. On the query frame, candi-

date boxes are generated in the first stage and only positive

candidate boxes are then matched to the instance labels in

the memory and contribute to the tracking loss. A positive

candidate box is the one with at least 70% IoU overlapping

with any ground truth object boxes. Our whole network

is trained end-to-end with losses combined from the four

branches together L = Lcls + Lbox + Lmask + Ltrack.

5.3. Combining Other Cues

Our tracking branch computes the probability of assign-

ing an instance label to a candidate box based on the appear-

ance similarity. However, there are also other information

such as semantic consistency, spatial correlation and detec-

tion confidence which could be leveraged to determine the

instance labels. We propose a simple yet effective way to

combine all these cues together to improve the tracking ac-

curacy in a post-processing way.
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Figure 3. An overview of our approach. A tracking head is embedded in the MaskRCNN framework to facilitate identity tracking of object

instances through interaction with a memory queue. The memory queue is used to maintain all the existing object instances in the video.

Specifically, for a new candidate box i, let bi, ci and si
denote its bounding box prediction, category label and de-

tection score, which are obtained from the bounding box

branch and the classification branch of our network. Simi-

larly, for an identified instance with label n, let bn and cn
denote its bounding box prediction and category label asso-

ciated with the saved features in the memory. Then a score

for assigning the label n to candidate box i is computed as

vi(n) = log pi(n) + α log si + βIoU(bi, bn) + γδ(ci, cn)
(3)

where pi(n) is obtained by Equation 2, IoU(bi, bn) com-

putes the IoU between bi and bn, and δ(ci, cn) is a Kro-

necker delta function which equals 1 when ci and cn are

equivalent and 0 otherwise. α, β and γ are hyperparameters

to balance the effect of different cues. Empirically we find

that the score is not sensitive to different values of α and β.

Note that Equation 3 is only used in the testing stage and

does not contribute to the training of our network. There

are also other possible ways to integrate these cues, for ex-

ample, take all the cues as inputs and train an end-to-end

network, which will be left as an interesting future study

for us.

5.4. Inference

Given a new testing video, our external memory is set

empty and the number of identified instances is set 0. Our

method processes each frame sequentially in an online fash-

ion. At each frame, our network first generates a set of

instance hypotheses. Non-Max Suppression (NMS) (50%

overlapping threshold) is applied to reduce the hypotheses.

Then the remaining hypotheses are matched to identified

instances from previous frames by Equation 3. Note that

we do not match hypotheses within a single frame to avoid

conflicts. All instance hypotheses of the first frame are di-

rectly regarded as new instances and saved into the external

memory. It is possible for our method to match multiple

hypotheses from a single frame to one instance label, which

contradicts the common sense. We handle this case by keep-

ing only one hypothese which has the largest score v among

the conflicting hypotheses while discarding the others.

After processing all frames, our method produces a set

of instance hypotheses, each of which contains an unique

instance label, and a sequence of binary segmentation, cat-

egory labels and detection confidence. We use the averaged

detection confidence as the confidence score for the whole

sequence and use the majority votes of category labels as

the final category label for the instance.

6. Experiments

In this section, we compare our MaskTrack R-CNN with

several baselines on our new dataset YouTube-VIS. We first

present the information of the dataset splits and implemen-

tation details of our method.

Dataset. We randomly split the YouTube-VIS dataset into

2, 238 training videos, 302 validation videos and 343 test

videos. Each of the validation and test set is guaranteed to

have more than 4 instances per category. All the methods

are trained on the training set and all hyperparameters are

cross validated on the validation set. We present results on

both the validation set and test set in the results section.

Implementation. The backbone of our network is based

on the network structure of ResNet-50-FPN in [12] and we

use a public implementation [4] which is pretrained on MS
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COCO [17]. The structure of our new tracking branch is

two fully connected layers. The first fully connected layer

transforms the 7× 7× 256 input feature maps to 1-D 1024
dimensions. The second fully connected layer also maps its

input to 1-D 1024 dimensions. Our full model is trained

end-to-end in 12 epochs. The initial learning rate is set to

0.05 and decays with a factor of 10 at epoch 8 and 11. In

testing, our model runs at 20 FPS with a NVIDIA 1080Ti

GPU. The hyperparameters α, β and γ in Equation 3 are

cross validated and chosen to be 1, 2 and 10 to produce our

final results. We downsample original frame sizes to 640×
360 for all the methods in both training and evaluation.

6.1. Baselines

To our best knowledge, there is no prior work directly ap-

plicable to our new task. Therefore we combine ideas from

related tasks to propose several new baselines. We incor-

porate two types of algorithms for the baselines. The first

type uses the object masks detected in the first frame of the

video as initial guidance and applies video object segmenta-

tion algorithms to propagate the masks. We evaluate two re-

cent video object segmentation algorithms OSMN [35] and

FEELVOS [31]. The second type follows the “tracking-by-

detection” idea which is very popular in the multi-object

tracking task. The basic idea of this type of works is using

image detection methods on each frame independently and

then linking the detection across frames by various track-

ing methods. In our experiment, all the baselines are given

the same per-frame instance segmentation results which are

produced by a Mask R-CNN. The Mask R-CNN has the

same structure as our network except the tracking branch.

To make the evaluation fair, The Mask R-CNN is pretrained

on MS COCO and is then finetuned on YouTube-VIS with

12 training epochs. Next we describe different track-by-

detect methods in our experiment.

IoUTracker+. This method computes a score between a

new candidate box with each identified instance by using a

similar equation as Equation 3 except without using the first

term, i.e. the appearance similarity. Therefore the matching

does not leverage any visual information. The candidate

box is assigned to the instance label with the largest score,

with a minimum IoU threshold (30%). Otherwise it is as-

signed with a new label. The matching process is similar

to IoUTracker [2]. The difference is that a similar mem-

ory as our method is equipped with the baseline to save the

information of identified instances.

OSMN [35]. Given an identified instance mask, OSMN es-

timates a new mask of the instance at a new frame. The new

mask is then used to compute IoU with candidate boxes at

the same frame. This is better than IoU directly computed

via consecutive frames especially when an instance is oc-

cluded or has large motion. The rest of the matching process

is the same as IoUTracker+.

DeepSORT [32]. DeepSORT is a top-performing track-

ing method. it uses Kalman filter to predict bounding box

location to avoid directly computing IoU of consecutive

frames. In addition, it use a deep network to measure the

appearance similarity between bounding boxes. Finally the

IoU score and the visual appearance score are combined to

match tracks by the Hungarian algorithm.

SeqTracker. This is an offline algorithm following Seq-

NMS [10]. Given a video and a set of instance segmenta-

tion results of every frame, SeqTracker searches all possi-

ble tracks to find the one with the largest score, which is

computed similarly as IoUTracker+. Then the instance seg-

mentation of the track will be removed from the set and the

search process repeats. The method halts until the length of

a retrieved track is less than a threshold, which is set to 8 in

our experiment.

6.2. Main Results

Table 2 presents the comparison results. Notably, our

method MaskTrack R-CNN achieves the best results under

all evaluation metrics and on both the validation and test

sets. The main difference between our method and the other

track-by-detect baselines is the new tracking branch which

is trained end-to-end with the other branches, so that useful

information can be shared among multiple tasks. The key

for the joint training of tracking with other tasks is that we

formulate the instance matching process as a differentiable

component, which enables the matching loss to be properly

back propagated.

Next we analyze the performance of the baselines. For

mask propagation algorithms, they suffer from a natural dis-

advantage, that they cannot handle objects appear in the

intermediate frames. Also the flawed detections in the

frist frames directly degenerate their performance. Even

the state-of-the-art video object segmentation algorithm

FEELVOS only gains 26.9 AP on validation set. For track-

by-detect algorithm, IoUTracker+ does not leverage any vi-

sual information which is not surprising to gain weak per-

formance. OSMN predicts the possible location of previ-

ously identified instances at new frames, and use the pre-

diction to match instances, which is useful to handle occlu-

sion and fast motion. DeepSORT improves IoUTracker+

on both the IoU matching and usage of visual similarity,

achieving better results. SeqTracker does not depend on any

visual information and achieves better performance than the

other baselines. However, it is an offline method which

requires instance segmentation results to be precomputed

for all frames. The other methods including MaskTrack R-

CNN are online methods, which produce instance tracks se-

quentially.

Figure 4 shows six sample videos with our predictions.

The first four rows ((a),(b), (c) and (d)) are successful pre-

dictions and the last two rows are failure cases. In video (a),
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Table 2. Quantitative evaluation of the proposed algorithm and baselines on the YouTube-VIS validation and test set. The best results are

highlighted in bold.

Methods
validation set test set

AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

Mask propagation
OSMN [35] 23.4 36.5 25.7 28.9 31.1 27.3 44.4 28.0 28.8 34.0

FEELVOS [31] 26.9 42.0 29.7 29.9 33.4 29.6 45.4 30.7 33.4 36.8

Track-by-detect

IoUTracker+ 23.6 39.2 25.5 26.2 30.9 25.2 41.9 26.2 28.7 33.7

OSMN [35] 27.5 45.1 29.1 28.6 33.1 27.3 44.4 28.0 28.8 34.0

DeepSORT [32] 26.1 42.9 26.1 27.8 31.3 27.2 44.0 29.2 29.1 33.3

SeqTracker 27.5 45.7 28.7 29.7 32.5 29.5 48.1 31.2 32.0 34.5

MaskTrack R-CNN 30.3 51.1 32.6 31.0 35.5 32.3 53.6 34.2 33.6 37.3

(a)

(b)

(c)

(e)

(f)

(d)

Figure 4. Sample results of MaskTrack R-CNN. Each row have five sampled frames from a video sequence. (a),(b),(c) and (d) show correct

predictions while (e) and (f) are failure cases. Objects with same predicated identity have the same color. Object category is shown on top

of each bounding box. Zoom in to see details.

the frame-level prediction gives incorrect results in the first

two frames, where the bear is predicted as “deer” and “ear-

less seal”. The video-level prediction corrects these mis-

takes by majority voting of all frames. In video (c), the

surfboard is occluded by the wave in multiple frames, our

algorithm is able to track the surfboard after it disappears

and reoccurs. The memory queue in MaskTrack R-CNN

is able to keep track of all previous objects even they are

disappeared in intermediate frames. In video (d), we show

a case that new object enters the video in the intermediate

frames. Our algorithm is able to detect the deer in the sec-

ond frame as new object and add it to the external memory.

Video (e) and (f) shows two challenging cases. In video (e),

the dear has quite different appearance in different poses,

and our algorithm fail to recognize the same object and con-

sider them as two different objects. In video (f), multiple

similar fishes move around the aquarium and occlude each

other. Our algorithm groups two fishes as one in the second

and third frame, and gets confused with the object identities

later on.
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Figure 5. A sample result with different matching cues used. With

all four factors, the result is the best.

Table 3. Ablation study of our method on the YouTube-VIS valida-

tion set. “Det”, “IoU”, and “Cat” denote the detection confidence,

the bounding box IoU, and the category consistency in Equation 3

respectively. Numbers in brackets shows the difference compared

to the complete score.

Det IoU Cat AP AP50 AP75

✗ ✗ ✗ 21.1(-9.2) 37.7(-13.4) 23.6(-9.0)

✓ ✗ ✗ 23.4(-6.9) 42.5(-8.6) 24.4(-8.2)

✗ ✓ ✗ 22.7 (-7.6) 40.7 (-10.4) 25.2 (-7.4)

✓ ✓ ✗ 24.7 (-5.6) 44.3 (-6.8) 26.7 (-5.9)

✗ ✗ ✓ 27.9 (-2.4) 47.1 (-4.0) 30.5 (-2.1)

✓ ✗ ✓ 29.2 (-1.1) 49.2 (-1.9) 31.9 (-0.7)

✗ ✓ ✓ 29.5 (-0.8) 48.7 (-2.4) 32.2 (-0.4)

✓ ✓ ✓ 30.3 51.1 32.6

6.3. Ablation Study

We study the importance of three cues used in Equation 3

to our method. They are the detection score, the bouding

box IoU and category consistency. We evaluate our method

on the validation set by turning these cues on and off. The

results are presented in Table 3. We find that the bounding

box IoU and the category consistency are most important

to the performance of our method. Without any of them,

AP will drop around 5%. While the detection confidence

score only improves our method slightly. Intuitively, the

bounding box IoU correlates to the spatial relationship be-

tween instances, which is a strong prior in many cases. The

category consistency also provides a very strong constraint

because the category label of an instance should not change

in a video. However, relying too much on the these factors

can also cause problems due to the imperfect estimation.

Therefore our method uses these cues as soft constraints. To

visualize the effect of these three factors, we also generate

predictions with the three factors added one by one on one

specific sample, which is shown in Figure 5. Note that the

first three variants cannot track the identity of the “green”

motorbike well, while the variant with four different cues is

able to track it through the whole video.

Table 4. Oracle results in two settings on validation set. Image or-

acle is results with predicted object identity based on ground truth

image-level annotations, identity oracle is results with ground

truth object identities based on predicted image-level instances.

AP AR10

Image Oracle 78.7 83.7

Identity Oracle 31.5 34.6

6.4. Oracle Results

Additionally, we investigate the effectiveness of the two

parts in our algorithm: image-level prediction and cross-

frame association. We evaluate effectiveness of video-

level association by applying ground truth image-level an-

notations to our algorithm. Specifically, given ground

truth image-level predictions including bounding boxes,

masks and categories, we compute matching score pi us-

ing RoIAlign features of ground truth bounding boxes and

match objects across frames using combined score vi. The

result is shown in Table 4 with “Image Oracle”. We also

evaluate image-level predictions with ground truth object

identities. Towards this end, per-frame predictions are first

matched to their closest ground truth image objects, and

then video objects are aggregated using ground truth ob-

ject identities. The result is shown in Table 4 with “Identity

Oracle”. It shows that Image Oracle achieves much better

performance than Identity Oracle, which means image-level

predictions is critical for better performance on video in-

stance segmentation. Identity Oracle is only marginally bet-

ter than MaskTrack RCNN, which indicates limited poten-

tial of improving over our current method by modifying ob-

ject tracking method. Improving image-level detection per-

formance by utilizing properly-designed spatial-temporal

feature could be a promising direction. Meanwhile, even

with image-level ground truth, it is still challenging to asso-

ciate objects across frames due to object occlusions and fast

motion.

7. Conclusions

We present a new task named video instance segmenta-

tion and an accompany dataset named YouTubeVIS in this

work. The new tasks is a combination of object detection,

segmentation, and tracking, which poses specific challenges

given the rich and complex scenes. We also propose a new

method combining single-frame instance segmentation and

object tracking, which aims to provide some early explo-

rations towards this task. There are a few interesting fu-

ture directions: object proposal and detection with spatial-

temporal features, end-to-end trainable matching criterion,

and incorporating motion information for better recognition

and identity association. We believe the new task and new

algorithm will innovate the research community on new re-

search ideas and directions for video understanding.
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