
Fast Computation of Content-Sensitive Superpixels and Supervoxels using

q-distances

Zipeng Ye1∗, Ran Yi1∗, Minjing Yu2†, Yong-Jin Liu1†, Ying He3

1Tsinghua University 2Tianjin University 3Nanyang Technological University

Abstract

Many computer vision tasks benefit from superpix-

els/supervoxels, which can effectively reduce the complexity

of input images and videos. To compute content-sensitive

superpixels/supervoxels, the recent approaches represent

the input image or video as a low-dimensional manifold and

compute geodesic centroidal Voronoi tessellation (GCVT)

on them. Although they can produce high-quality results,

these methods are slow due to frequent query of geodesic

distances which are computationally expensive. In this

paper, we propose a novel approach that not only com-

putes superpixels with quality better than the state-of-the-

art, but also runs 6-8 times faster on benchmark dataset.

Our method is based on a fast queue-based graph distance

(called q-distance) and works for both images and videos. It

has an optimal approximation ratio O(1) and a linear time

complexity O(N) for N -pixel images or N -voxel videos. A

thorough evaluation of 31 superpixel methods on five image

datasets and 8 supervoxel methods on four video datasets

shows that our method provides an all-in-one solution and

consistently performs well under a variety of metrics. We

also demonstrate our method on the applications of optimal

image and video closure, and foreground propagation.

1. Introduction

Superpixels group similar pixels into atomic regions

that can effectively capture low-level features in an im-

age. Similarly, supervoxels are perceptually meaning-

ful atomic regions in a video. Replacing the high

amount of pixels/voxels by a moderate number of super-

pixels/supervoxels (collectively referred to as superatoms

in this paper) can greatly reduce the complexities of many

computer vision algorithms, e.g., saliency detection [19],

foreground segmentation [22], 3D reconstruction [4] and

scene understanding [18], etc.

As a special over-segmentation in image/video, super-

∗Joint first authors
†Corresponding authors

atoms — to be perceptually meaningful — should reflect

“regularities of nature” [35]. Some commonly used crite-

ria are: (1) compactness: the shape of superatoms is reg-

ular and thus the neighboring relations among superatoms

are also regular; (2) connectivity: each superatom is sim-

ply connected1; (3) high performance: superatoms well pre-

serve image/video boundaries and their computation is fast,

memory efficient and scalable; (4) parsimony: the high per-

formance is achieved with as few superatoms as possible;

and (5) ease of use: users simply specify the number of su-

peratoms and do not need to tune any other parameters.

1.1. Related work

A large body of superatom generation methods has

been proposed and they can be broadly classified into two

classes: (1) the traditional approaches with artificially de-

signed features and (2) the deep learning based approaches.

Diverse strategies have been applied in the first classes,

e.g., graph partitioning [14], clustering [1], contour evolu-

tion [23], lattice-based energy optimization [11], and other

hierarchical, generative and statistic methods [39, 45]. The

second class was typified by two recent works [40, 21].

However, none of the existing methods satisfy all the above-

mentioned criteria.

Some recent methods [6, 25, 26, 41, 46] focus on the par-

simony principle and compute content-sensitive superatoms

(CSS), which are small in content-dense regions (where the

variation of intensity or color or motion is high) and large

in content-sparse regions, and thus shed some light on of-

fering a good balance among all other criteria (see Figures

1 and 2). Among the existing CSS methods, two recent

approaches [26, 46] (summarized in Section 2) model the

input images and videos as low-dimensional manifolds em-

bedded in high-dimensional feature space, and then gen-

erate CSS by computing a uniform tessellation — e.g.,

geodesic centroidal Voronoi tessellation (GCVT) — on

them. Although GCVT can produce high-quality CSS,

computing it is time consuming, since geodesic distances

are computationally expensive to obtain.

1A region is simply connected if any simple closed curve/surface in it

can be continuously shrunk into a point without leaving the region.

3770

Figure 1. Visual comparison of our method and 8 representative superpixel methods: TurboPixels [23], SEEDS [11], ETPS [45], SLIC [1],

MSLIC [25], IMSLIC [26], SEAL [40], SSN [21] and ours. 300 superpixels are specified by the user and the actual numbers of superpixels

generated are in parentheses. Only IMSLIC, SEAL and ours allow exact control of the number of superpixels, but our method runs 6-8

times faster than IMSLIC and 4-5 times faster than SEAL. Our method also performs well in terms of under-segmentation error, boundary

recall and compactness, and apply to both images and videos. See Section 5 for details.

Figure 2. Visual comparison of supervoxels (which have different colors and are clipped on each image frame) computed by GB [14], GBH

[17], SWA [32, 33, 10], MeanShift [29], TSP [7], Yi-CSS [46] and our method. All the methods generate approximately 1,000 supervoxels.

Our method produces better results than the other methods in terms of UE3D, BRD, SA3D and CO on four video datasets (Figure 8).

1.2. Our contributions

In this paper, we propose a novel method for computing

exact GCVTs, which runs 6-8 times faster than the state-of-

the-art GCVT method [26]. Our method has a proved linear

time complexity, i.e., O(N) for N -pixel images or N -voxel

videos and can guarantee optimal approximation ratio O(1).
We evaluate 31 superpixel methods on five image datasets

and 8 supervoxel methods on four video datasets, and test

them on applications including optimal image and video

closure [22] and video foreground propagation [20]. The

results show that our method provides an all-in-one solution

and consistently performs well under a variety of metrics.

2. Preliminaries

Our method is built upon image and video manifolds,

and K-means++, which are briefly summerized below.

2.1. Image manifold M2

Both MSLIC and IMSLIC [25, 26] adopt an embedding

map Φ that lifts a color image I to a 2-manifold M2 ⊂ R
3

Φ(r, s) � (r, s, λ1l, λ1a, λ1b), (1)

where (r, s) is the spatial coordinate, (l, a, b) is the pixel

color in the CIELAB color space and λ1 is a constant spec-

M

M
M

Figure 3. MSLIC and IMSLIC. (a) Both methods represent pixel

p(r, s) (red dot) as a unit square (yellow region) whose corners

(green dots) are the centers of their neighboring pixels. The

stretching map Φ in Eq.(1) “lifts” a color image I into a curved

2-manifold M2 ⊂ R
5, whose area element is a good measure of

image content. (b) To ease visualization, we take a greyscale im-

age as an example, which is mapped to a 3D surface M2 ⊂ R
3.

(c) Both MSLIC [25] and IMSLIC [26] compute a regular tessella-

tion T on M2 (cells in T are distinguished by colors). The inverse

mapping Φ−1(T) induces content-sensitive superpixels on I .

ified in [25]. Similarly, a RGBD image can be mapped to a

M2 ⊂ R
6 as (r, s, λ1l, λ1a, λ1b, λ2d), where d is the depth.

As Figure 3 shows, the map Φ stretches content-dense

3771

v(r, s, t)

(r+1, s 1, t 1)
(r 1, s 1, t 1)

(r+1, s 1, t 1)

(r+1, s 1, t 1)
(r 1, s 1, t 1)

(r+1, s 1, t 1)
(r 1, s 1, t 1)

v

a1

a4

a2

a3

a5 a6
a7

a8

R3 M3 = () R6

(v)

(a1)
(a4)

(a2)

(a3)

(a5) (a6)
(a7)

(a8)

Figure 4. Yi-CSS [46] maps a voxel v(r, s, t) (i.e., the red box in

the middle) in a video Ξ into a curved 3-manifold M3 by Φ :
Φ → M3 ⊂ R

6. Each corner ai of the voxel box is the center of

its eight surrounding voxels.

(content-sparse) regions in I into large (small) areas on M.

Then a uniform tessellation on M2 yields high quality CSS

in I by the inverse mapping Φ−1.

2.2. Video manifold M3

Yi-CSS [46] maps a video clip Ξ of voxels v(r, s, t) to a

3-manifold M3 embedded in R
6 (Figure 4)

Φ(r, s, t) � (r, s, λ1t, λ2l, λ2a, λ2b) (2)

where (r, s) is the pixel coordinate, t is the frame index,

(l, a, b) is the pixel color in the CIELAB color space, λ1

and λ2 are two constants. Yi et al. [46] showed that akin to

the 2-manifold M2 for image, the inverse mapping Φ−1 of

a uniform tessellation in M3 results in good CSS in Ξ.

2.3. K-means++

Given N points X = {xi}
N
i=1 in a real metric space X

with metric D(x, y), data clustering techniques target on

minimizing the following potential function by choosing K
cluster centers {cj}

K
j=1 in X :

E
(
{cj}

K
j=1

)
=

n∑

i=1

min
j=1,2,··· ,K

Dl(xi, cj) (3)

where the exponent l ∈ Z+ is a problem parameter. The

centers {ci}
K
i=1 partition the point set X into K clusters,

each of which is a subset Xi = {xs ∈ X : Dl(xs, ci) ≤
Dl(xs, cj), i �= j}. In particular, when l = 2 and D is the

Euclidean metric, it is known as the K-means problem [13].

The K-means++ algorithm iteratively chooses cluster

centers [3]. In the beginning, it takes a center c1 randomly

from X . In each subsequent step i, 1 < i ≤ K, a new clus-

ter center is chosen randomly from points xs ∈ X \{cj}
i−1
j=1

with probabilities proportional to minc∈{cj}
i−1

j=1

Dl(xs, c).

Given a fixed K, let {coptj }Kj=1 be the (unknown) optimal

centers which minimizes the potential (3). An algorithm is

said to have an approximation ratio α, if for any {cj}
K
j=1

output from this algorithm,
E({cj}k

j=1)
E({coptj

}k
j=1)

≤ α. It was shown

in [42] that for any constant factor β > 1, selecting βk clus-

ter centers by the K-means++ algorithm leads to an O(1)-
approximation in expectation.

3. Overview of Our Method

State-of-the-art CSS work [26, 46] maps the input image

or video to a ζ-dimensional manifold Mζ embedded in R
d,

ζ = 2, 3, ζ < d. For example, a color image (video) to a

2-manifold M2 (M3) in R
5 (R6). A common characteristic

of these manifolds Mζ ⊂ R
d is that the geodesic metric —

which defines the lengths, area or volumes on Mζ — is a

good measure of the content density in images and videos.

As a result, a uniform tessellation on Mζ induces a non-

uniform tessellation on the input image and video, which is

content-sensitive superatoms.

To compute a uniform tessellation on Mζ , geodesic cen-

troidal Voronoi tessellation (GCVTs) [12, 26] is a com-

monly used tool, since it is an intrinsic structure on Mζ ,

which only depends on the geodesic metric without further

references to the ambient space R
d. With a simple exten-

sion of the proof in [26] from M2 to Mζ , ζ = 2, 3, we have

the following general results.

Given a set of K generators C = {ci}
K
i=1 ⊂ Mζ , the

geodesic Voronoi tessellation (GVT) on Mζ is the set of

Voronoi cells {V (ci)}
K
i=1 on Mζ :

V (ci) = {x ∈ Mζ : dg(x, ci) ≤ dg(x, cj), ∀j �= i},
i = 1, 2, · · · ,K

(4)

where dg(x, y) is the geodesic distance between x and y on

Mζ . A GVT is a GCVT if each ci is the mass centroid

of its Voronoi cell, defined as the solution to the following

problem [26]:

min
z∈Mζ

∫

x∈Vg(ci)

d2g(x, z)dx (5)

Let X = {xi}
N
i=1 be an N -atom media (i.e., an image

or a video) and Mζ = Φ(X) the stretched manifold in R
d.

We discretize manifold Mζ by a graph G = {V,E}, where

the vertex set V contains the mappings of all pixels/voxels

{vi = Φ(xi)}
N
i=1, and an edge e = (vi, vj) ∈ E is defined

when Φ−1(vi) and Φ−1(vj) are nζ-neighbors in X:

• nζ = 8 for ζ = 2: i.e., for X being an image,

Φ−1(vi) = (ri, si) and Φ−1(vj) = (rj , sj) are 8-

neighbors, which satisfy ‖ri − rj‖2 ≤ 1 and ‖si −
sj‖2 ≤ 1.

• nζ = 26 for ζ = 3: i.e., for X being a video,

Φ−1(vi) = (ri, si, ti) and Φ−1(vj) = (rj , sj , tj)
are 26-neighbors, which satisfy ‖ri − rj‖2 ≤ 1,

‖si − sj‖2 ≤ 1 and ‖ti − tj‖2 ≤ 1.

Denote the number of vertices and edges in G by N = |V |
and |E|, respectively. Since G is a sparse graph, we have

|E| = O(N). To evaluate the geodesic metric, we apply

Dijkstra’s algorithm [9] to compute the shortest paths from

3772

multiple sources to all other vertices in G, which runs in

O(N logN) time.

The GCVT computation proposed in [26] has three lim-

itations: 1) it runs slowly due to Dijkstra’s algorithm; 2)

it solves Eq. (5) using an approximate method that works

only for image manifolds and cannot be extended to video

manifolds; and 3) it lacks theoretic bound on the tessella-

tion performance. Replacing geodesic metrics on Mζ by

Euclidean metric in R
d, Yi et al. [46] partially addressed

these limitations. However, Euclidean metric depends on

the embedding space R
d and often produces tiny fragments

and multiple disjoint components in a Voronoi cell.

In this paper, we propose a new GCVT computation

method that overcomes the above-mentioned limitations.

First, to establish a theoretic bound, we introduce K-

means++ into GCVT for obtaining a high quality initializa-

tion. Second, we propose a centroid-free Lloyd refinement

such that we no longer need to solve the problem (5) and

then our method is suitable for both image and video man-

ifolds. Algorithm 1 summarizes these two improvements,

which consists of two steps:

• Initialization (steps 1-8). We configure K-means++

with X = {Φ(pi)}
N
i=1, X = Mζ and D = dg , and

apply it to determine the initial positions of K cluster

centers C = {ci}
K
i=1 on Mζ ;

• Centroid-free Lloyd refinement (steps 9-17). For each

center ci ∈ C, we quickly find an alternative ci to

it. If E
(
{cj}

K
j=1

)
< E

(
{cj}

K
j=1

)
, we replace {ci}

K
i=1

by {ci}
K
i=1 and keep iterating; otherwise the iteration

stops. Unlike the method [26] that explicitly computes

the mass centroids of Voronoi cells, our refinement

does not require an accurate centroid at all. Therefore,

we call it centroid-free refinement.

Property 1. Algorithm 1 is O(1)-approximation.

Proof. The initialization step applies K-means++ with the

geodesic metric dg in the manifold space Mζ . By Corol-

lary 1 in [42] (with the K-subset selection in [2]), the ex-

pected approximation ratio is bounded by
E[E({cj}k

j=1)]
E({coptj

}k
j=1)

≤

O(1). Since in the centroid-free Lloyd refinement, the

potential function decreases strictly, Algorithm 1 is O(1)-
approximation in expectation.

Algorithm 1 achieves very good over-segmentation ac-

curacy but runs slowly due to the Dijkstra’s algorithm. In

the next section, we propose a queue-based graph path (q-

path) and distance (q-distance), which runs only in O(N)
time for computing these paths to all vertices in G from mul-

tiple sources (Algorithm 2). We refer to the variant of Algo-

rithm 1 — which replaces the shortest paths and distances

by q-paths and q-distances — as qd-CSS.

Algorithm 1 Improved CSS (using shortest paths)

Input: A media X of N atoms, the desired number of su-

peratoms K, the maximal number of iterations itermax.

Output: K content-sensitive superatoms.

1: Map each atom xi ∈ X to a point Φ(xi).
2: Build a graph G = {V,E}, where the vertex set V =

{Φ(xi)}
N
i=1 and the edge set E = {(Φ(xi),Φ(xj)) :

xi and xj are nζ-neighbors in X}.

3: Choose a center c1 uniformly at random from V , and

initialize C1 = {c1} and i = 1.

4: while i < K do

5: Compute the shortest paths in G from Ci to all ver-

tices Φ(xj) ∈ V \Ci, and record the shortest distance

dg(Φ(xj), Ci) = mincs∈Ci
dg(Φ(xj), cs).

6: Choose a center ci+1 from V \ Ci with probability

proportional to dg(Φ(xj), Ci).
7: Ci+1 = Ci ∪ {ci+1} and i ← i+ 1.

8: end while

9: Initialize the set of candidate centers C = CK , δ =
−1.0 and iter = 1.

10: while δ < 0 and iter ≤ itermax do

11: CK ← C.

12: For each center ci ∈ CK , compute the cluster Vi =
{Φ(x) ∈ V : dg(ci,Φ(x)) < dg(cj ,Φ(x)), i �= j}.

13: For each Vi, set c̃i =
∑

Φ(x)∈Vi
Φ(x)/|Vi|, where

|Vi| is the number of vertices in Vi.

14: For each candidate center ci ∈ C, renew its position

by ci = Φ(x), where x is the nearest atom in X
to π(c̃i), where π truncates the coordinate (r, s) (for

image) or (r, s, t) (for video) of c̃i.
15: Set δ = E

(
{cj}

K
j=1

)
− E

(
{cj}

K
j=1

)
.

16: iter ← iter + 1.

17: end while

18: Output the K clusters {Φ−1(Vi)}
K
i=1 in X , where

Φ−1(Vi) = {x : Φ(x) ∈ Vi}.

4. Queue-based Graph Paths and Distances

The bottleneck of the Dijkstra’s algorithm is the use of

a priority queue for maintaining the to-be-processed nodes,

since insertion takes O(log n) time for a priority queue with

n elements. To improve performance, we propose to replace

the priority queue by an first-in-first-out (FIFO) queue. See

Algorithm 2 for the pseudo code.

The q-paths/distances obtained from FIFO queue does

not equal to shortest paths/distances. Our key idea is that

at manifold regions where q-distances are different from

shortest distances, GCVT is prone to placing more gen-

erators in them, and therefore after few iterations, all q-

distances restricted in the final tessellation are shortest dis-

tances. In this section, we present three properties and two

observations to demonstrate this idea. Proofs of properties

3773

are presented in supplemental material.

Replacing Dijkstra’s shortest distances by q-distances on

G in Algorithm 1, our method (named qd-CSS) has a linear

time complexity O(N). In practice, qd-CSS runs 6-8 times

faster than the state-of-the-art work [26] on images with res-

olution 481× 321.

4.1. Properties

Since the queue in Algorithm 2 works in an FIFO man-

ner, given an N -atom media X and a set of multiple sources

C = {ci}
nc

i=1 ⊂ V , the traversal order of all vertices in

V is predefined by the order of visiting neighbors of each

vertex, i.e., it only depends on the edge connectivity in G
and is irrelevant to the media content. Each vertex in G has

nζ neighbors, whose visiting order can be characterized by

the coordinate of Φ−1(v). For example, when ζ = 2, the

neighboring order of v can be determined by (r, s) coordi-

nate of Φ−1(v) as Γ = (N, W, S, E, NW, SW, SE, NE),

where (r+1, s) for east (E), and then southeast (SE), south

(S), southwest (SW), west (W), northwest (NW), north (N)

and northeast (NE) are defined in the clockwise order.

Let dq(v, c) be the q-distance from v to c and dq(v, C) =
minci∈C dq(v, ci). Based on the predefined traversal order

{v1 = c1, v2 = c2, · · · , vK = cK , vK+1, vK+2, · · · , vN},

we assign an index Ii to each vertex vi ∈ V . Then the q-

path c̃vi = {vIi1 = c, vIi2 , · · · , vIin = vi} from a center

c ∈ C to a vertex vi ∈ V \C, satisfies that ∀ia, ib, 1 ≤ a <
b ≤ n, the indices Iia < Iib .

If G is a regular lattice, i.e., all media atoms have the

same color, any q-path is exactly the shortest path on G.

When the color variation in X is large, the manifold Mζ

will be bumpy, but the q-paths still have chance to pass

around the ridges and valleys, and be the shortest paths,

e.g., green paths in Figures 5(a) and 5(b). The following

definition and properties study the conditions under which

q-paths are shortest paths. Afterwards, we study the condi-

tion under which q-paths are different from shortest paths

and present our key observations that when this condition

occurs, GCVT will place more centers in the corresponding

regions such that after few iterations, the final q-distance-

induced tessellation is an exact GCVT.

Property 2. For any c ∈ C, v ∈ V \ C and a shortest

path cv = {vIj1 = c, vIj2 , · · · , vIjn′

= v} between c and

v on G, the q-path c̃v output from Algorithm 2 is exactly the

shortest path cv, if and only if ∀a, b, 1 ≤ a < b ≤ n′, the

indices Ija < Ijb .

Definition 1. For each vertex vi ∈ V , we define an allow-

able region Ω(vi) of vi, which is a set of vertices satisfying

Ω(vi) = {vj ∈ V : j < i}.

In supplemental material, we show that the allowable re-

gions are sufficiently large using the i-ring concept. Fig-

Algorithm 2 Computing q-paths and q-distances

Input: A sparse graph G = (V,E) discretizing manifold

Mζ and multiple sources C = {ci}
nc

i=1 ∈ V .

Output: The q-paths and q-distances from C to all vertices

in V \ C.

1: For each node v ∈ V , attach three attributes: a distance

value v.dist, a Boolean flag v.visit and a precedent

node ID v.pre;

2: For each source ci ∈ C, initialize ci.dist = 0,

ci.visit = TRUE, and for all other vertices v ∈ V ,

v.dist = ∞, v.visit = FALSE
3: Initialize a queue Q = C
4: while Q is not empty do

5: Extract and remove the element va from the head of

the queue

6: for each neighbor vb of va in G do

7: Set l(va, vb) be the length of edge (va, vb) ∈ E
8: if vb.dist > va.dist+ l(va, vb) then

9: vb.dist = va.dist+ l(va, vb)
10: vb.pre = va
11: end if

12: if vb.visit == FALSE then

13: Insert vb into Q at the tail.

14: Set vb.visit = TRUE.

15: end if

16: end for

17: end while

18: For each vertex v ∈ V \C, output the q-distance v.dist
19: (optional) For each vertex v ∈ V \ C, output the q-

path by backtracking the precedent nodes starting from

v until a source in C is reached.

ure 5(c) illustrates three allowable regions Ω(vi), Ω(vj) and

Ω(vf) of three vertices vi, vj and vf on the q-path c̃1vf .

Property 3. For any c ∈ C, v ∈ V \ C and a shortest

path cv = {vIj1 = c, vIj2 , · · · , vIjn′

= v} between c and

v on G, the q-path c̃v output from Algorithm 2 is exactly the

shortest path cv, if and only if ∀i, 1 ≤ i ≤ n′, the subpath

cvIi of cv is contained in the allowable region of vIi .

By Property 2, if at steps 8-10 of Algorithm 2, the q-

distance value Φ(vb).dist is updated due to Φ(vb).dist >
Φ(va).dist + l(va, vb) and the indices b < a, then any q-

path c̃v′ passing through vb cannot be the shortest path on

G. The following property shows the condition under which

a q-path cannot be a shortest path.

Property 4. Assume v ∈ V is in a general position, i.e.,

it has nζ neighbors in V . Then in these neighbors, half of

them have indices larger than v.

In Algorithm 2, when a vertex va is extracted and re-

moved from the head of the queue, the q-path from a center

3774

Figure 5. Since Φ is a one-to-one mapping, we can visualize the q-paths on both the media X and the manifold Mζ = Φ(X). For a clear

visualization, here we use a grey image for X . (a) Given the center set C = {c1}, the q-paths from c1 to va, vb, · · · , vf are illustrated as

a tree rooted at c1 in X . On these paths, if the sub-q-path c̃1vx is a shortest path c1vx, the vertex vx is shown in green; otherwise, vx is

shown in red. On a q-path starting from c1, if a vertex vx is red (e.g., vg ∈ c̃1va and vh ∈ c̃1ve), all the subsequent vertices are also red.

(b) The corresponding q-paths on M2. (c) On the q-path c̃1vf which is also a shortest path, allowable regions Ω(vi), Ω(vj) and Ω(vf) of

three vertices vi, vj and vf are illustrated by bordering with different colors. (d) When one more center c2 is added into C, the q-paths

to va, vc, vd, ve and vf are updated by replacing the center from c1 to c2, and all of them are green, i.e., their q-distances to C are also

shortest distances. The black line is the bisector between c1 and c2.

c to va can be extended further to those neighbors with an

index large than a. Property 4 reveals that the number of

these extendable neighbors are not smaller than nζ/2. As a

comparison, in the Dijkstras algorithm, the path from c to

any v can be extended to any one of nζ − 1 neighbors2 of

v. This explains the risk that the q-paths will fail to be the

shortest paths.

The q-paths from the set of centers C to all vertices v ∈
V \ C can be visualized by trees with roots at centers in C
(Figure 5a). In these trees, the parent of each vertex v is the

precedent vertex of v found in Algorithm 2. We say a vertex

v is wrongly labelled (red points in Figure 5a), if its q-path

c̃v is not a shortest path.

Observation 1. If a vertex v is wrongly labelled, then all

the descendent vertices of v in the tree are wrongly labelled.

However, on bumpy manifold Mζ , the number of descen-

dent vertices of a wrongly labelled vertex is small.

Observation 1 can be explained by that when v is wrong,

it means that the q-path c̃v passes through a high-stretched

region like the cliff of a mountain; e.g., vg and vh in Fig-

ure 5a. For any vertex v′ a little bit far beyond the high-

stretched region (e.g., vc in Figure 5a), by Property 3, it has

a big chance that the q-path ṽcv′ can circumvent the high-

stretched region and be the shortest path; e.g., the q-path

c̃1vc in Figure 5a.

Observation 2. On the manifold Mζ , more stretched a re-

gion is, the higher possibility this region is on the bound-

ary of superatoms. Therefore, during the tree propagation

starting from a center c, when a vertex v becomes wrongly

labelled, it is likely that the q-path c̃v goes through a bound-

ary at v.

2Among the eight neighbors, one is already on the path.

Figure 6. When more centers are selected into C, the number of

wrongly-labelled pixels (i.e., their q-distances are not the shortest

distance on the graph G) decrease dramatically. Increasing the

number of clusters can effectively reduce the number of wrongly-

labelled pixels. We did not show the results of IMSLIC [26], since

they are almost visually identical to ours when K = 20, 100 and

exactly the same when K = 300.

It can be regarded that q-paths put a heavy penalty on the

distance when passing through the boundary, and this char-

acteristic is desired in our CSS application. In the initial-

ization phase of qd-CSS, The farther away the point is from

existing centers, the higher the probability that this point is

selected as the next center. Then, when more centers are

added iteratively, the wrong path c̃v′ will be corrected by

another path c̃′v′, given that c and c′ come from different

side of the boundary (Figure 5d). In supplemental mate-

rial, we prove a proposition, indicating that if the shape of

manifold Mζ satisfies certain assumptions (characterized

by the edge length ratio in G) and a moderately large num-

ber3 K of centers are selected, the clustering {Vi}
K
i=1 on

G is exactly the same for using either shortest distance or

q-distance. Figure 6 shows a real example.

3For example, K ≥ 200 is sufficient for an image of 481×321 pixels.

3775

200 300 400 500 600 700
Number of superpixels

0.04

0.06

0.08

0.1

0.12

U
nd

er
se

gm
en

ta
tio

n
Er

ro
r

TP
SEEDS
ETPS
SLIC
MSLIC
IMSLIC
SSN
SEAL
Ours

(a) Under-segmentation error

200 300 400 500 600 700
Number of superpixels

0.5

0.6

0.7

0.8

0.9

1

Bo
un

da
ry

 R
ec

al
l

TP
SEEDS
ETPS
SLIC
MSLIC
IMSLIC
SSN
SEAL
Ours

(b) Boundary recall

200 300 400 500 600 700
Number of superpixels

0

1

2

3

4

5

6
TP
SEEDS
ETPS
SLIC
MSLIC
IMSLIC
SSN
SEAL
Ours

(c) Running time with respect to K

240*160 962*642 1924*1284 2886*1926
Number of image pixels

0

20

40

60

80

100
TP
SEEDS
ETPS
SLIC
MSLIC
IMSLIC
SSN
SEAL
Ours

(d) Running time with respect to N

Figure 7. Evaluation of nine superpixel methods on the BSDS500 dataset for K ∈ [200, 700]. Our method (qd-CSS) is 6-8 times, 4-5 times

and 3-4 times faster than IMSLIC, SEAL and SSN, respectively. Although ETPS and SLIC run faster than qd-CSS, qd-CSS has lower UE

and higher BR. See text for details. More comparisons of 31 superpixel methods on five datasets are presented in supplemental material.

(a) 3D under-segmentation error (b) Boundary recall distance (c) Compactness (d) Running time

Figure 8. Evaluation of eight supervoxel methods on the BuffaloXiph dataset. Our method has the smallest UE3D and BRD, the highest

CO and the second fastest running time. More comparisons on four datasets are presented in supplemental material.

5. Experiments

We implemented qd-CSS4 in C++ and tested it on a

PC with an Intel E5-2698v3 CPU (2.30 GHz) and 128 GB

RAM. In addition to the number of superatoms, qd-CSS has

only one parameter, the maximal iteration number itermax

in Algorithm 1, which is set to 10 in all experiments. Be-

cause qd-CSS uses a random initialization, we report the

average results of 20 initializations.

Evaluation on superpixels. Figure 7 summarizes the

comparison of nine representative methods: TurboPixels

[23], SEEDS [11], ETPS [45], SLIC [1], MSLIC [25], IM-

SLIC [26], SSN [21], SEAL [40] and qd-CSS, in which

SSN and SEAL are two deep learning methods. We use

three commonly used measures — under segmentation error

(UE) [1, 23], boundary recall (BR) [27] and running time —

to evaluate the performance of different superpixels: a lower

UE value means that superpixels are better overlapped with

a ground-truth segmentation, and a higher BR value means

that fewer true ground-truth edges are missed. The results in

Figure 7 are averaged on BSDS500 datasets, showing that

• Deep learning methods (SSN and SEAL) have the best

performance on UE and BR. However, they use GPU

to train and run the deep networks, while qd-CSS only

uses CPU. In our machine with NVIDIA TITAN Xp

12G, both methods are slower than qd-CSS. When im-

age resolution is higher than 1443×693, SSN does not

4Source code is available http://cg.cs.tsinghua.edu.cn/

people/˜Yongjin/Yongjin.htm

work. So far the implementations of SSN and SEAL

apply to images only. To extend them to videos, one

may have to redesign the network architecture and the

loss function. Also, re-training the network is neces-

sary. In comparison, qd-CSS provides a low-cost, all-

in-one solution to both images and videos.

• In the class of methods with artificially designed fea-

tures, qd-CSS has the lowest UE and the second high-

est BR. SEEDS has a better BR than qd-CSS, but it

does not take the superpixel number as input. By care-

fully controlling other parameters, it can only generate

superpixels with numbers around 200, 266, 400 and

600. In terms of speed, ETPS and SLIC are two times

faster than qd-CSS, while qd-CSS is 6-8 times faster

than IMSLIC.

Figure 1 illustrates the visual comparison of these meth-

ods. More qualitative and quantitative comparison of 31

superpixel methods (with more measures including achiev-

able segmentation accuracy [24, 41] and compactness [31]

on three more datasets, NYUV2 [36], SUNRBGD [37] and

Fashionista [44]) are presented in supplemental material.

Evaluation on supervoxels. Figure 8 summarizes the

comparison of eight representative methods: NCut [34, 16,

15], SWA [32, 33, 10], MeanShift [29], GB [14], GBH [17],

TSP [7], Yi-CSS [46] and qd-CSS. To evaluate their perfor-

mance, we use the supervoxel counterpart of the meaures

BR and UE, i.e., Boundary recall distance (BRD) [28, 43],

3D under-segmentation error (UE3D) [7, 23, 43]. We also

3776

Figure 9. Foreground propagation results of six supervoxel methods on an example in Youtube-objects dataset [30]. Three representative

frames are selected. The foreground masks are shown in green. The incorrectly labeled areas are circled in red. The average F ∈ [0, 1]
measure for each example video is shown in the brackets and larger values mean better results.

use the compactness (CO) metric that measures the shape

regularity of supervoxels. The results in Figure 8 are aver-

aged on the BuffaloXiph dataset [8], showing that qd-CSS

has the smallest UE3D and BRD, the highest CO and the

second fastest running time. Figure 2 illustrates the visual

comparison of seven methods. More qualitative and quanti-

tative comparison are presented in supplemental material.

6. Applications

Since superpixels and supervoxels are designed to reduce

the complexity of downstream computer vision tasks, we

directly evaluate them and demonstrate the efficiency of qd-

CSS on one image and two video applications.

Optimal image and video closure. Levinshtein et

al. [22] propose a novel framework that separates an

object from background by finding subsets of superpix-

els/supervoxels such that the contour of the union of these

atomic regions has strong boundary support in the im-

age/video. We use the source code provided by the au-

thors5 to compare different superpixels/supervoxel methods

on an image dataset WHD [5] and a video dataset [38] with

ground-truth segmentations. In 31 superpixel methods, qd-

CSS and ETPS are selected in Section S3 in supplemental

material and are compared for image contour closure. Fig-

ure S11 illustrate some qualitative results and the F-measure

values (averaged on the WHD dataset) are summarized in

Figure S12 in supplemental material, showing that qd-CSS

has better performance than ETPS. For optimal video clo-

sure by supervoxel grouping, the dataset of Stein et al. [38]

in which each sequence has a ground truth segmentation

mask, is used to perform a quantitative assessment. Seven

representative methods (GB, GBH, NCut, MeanShift, SWA,

TSP, Yi-CSS) and our qd-CSS are compared. The average

F measures across all sequences are summarized in Figure

S13 and some qualitative results are illustrated in Figure

5http://www.cs.toronto.edu/∼babalex/spatiotemporal closure code.tgz

S14 in supplemental material. These results show that qd-

CSS achieves the best spatiotemporal closure performance.

Foreground propagation in videos. Given the first

frame with manual annotation for the foreground object, a

novel approach is proposed in [20] to propagate the fore-

ground region through time, by using supervoxels to guide

the estimates towards long-range coherent regions. We

use the source code provided by the authors6 to compare

five representative methods7 (GB, GBH, MeanShift, TSP

and Yi-CSS) and our qd-CSS. Youtube-Objects dataset [30]

(126 videos in 10 object classes) with foreground ground-

truth, is used to perform a quantitative assessment. The

average F measures of 10 classes are summarized in Fig-

ure S15 in supplemental material, showing that qd-CSS

achieves the best performance in four classes and achieves

the best performance averagely over ten classes. Some qual-

itative results are illustrated in Figure 9.

7. Conclusion

In this paper, we propose qd-CSS for computing content-

sensitive superatoms. By using a low-cost q-distances, qd-

CSS significantly cuts down the data management over-

head. As a result, it runs 6-8 times faster than the state-of-

the-art IMSLIC [26]. Moreover, qd-CSS also works with

supervoxels for videos thanks to centroid-free refinement.

In a thorough evaluation involving 31 superpixel methods

and 8 supervoxel methods on benchmark image and video

datasets, we observe that qd-CSS achieves good balance

among various measures.

Acknowledgment

This work was supported by the Natural Science Foun-

dation of China (61725204, 61521002) and BNRist.

6www.cs.utexas.edu/∼suyog/code release public.tar
7NCut is not compared due to its high computational cost. SWA is not

compared since it requires huge memory for long videos in this dataset.

3777

References

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aure-

lien Lucchi, Pascal Fua, and Sabine Süsstrunk. SLIC su-

perpixels compared to state-of-the-art superpixel methods.

IEEE Trans. Pattern Analysis and Machine Intelligence,

34(11):2012–2281, 2012. 1, 2, 7

[2] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adap-

tive sampling for k-means clustering. In Proceedings of the

12th International Workshop and 13th International Work-

shop on Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, APPROX ’09 /

RANDOM ’09, pages 15–28. Springer-Verlag, 2009. 4

[3] David Arthur and Sergei Vassilvitskii. K-means++: The ad-

vantages of careful seeding. In Proceedings of the Eigh-

teenth Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA ’07, pages 1027–1035, 2007. 3

[4] András Bódis-Szomorú, Hayko Riemenschneider, and Luc

J. Van Gool. Superpixel meshes for fast edge-preserving sur-

face reconstruction. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR ’15, pages 2011–2020,

2015. 1

[5] Eran Borenstein and Shimon Ullman. Class-specific, top-

down segmentation. In Proceedings of the 7th European

Conference on Computer Vision-Part II, ECCV ’02, pages

109–124. Springer-Verlag, 2002. 8

[6] Yiqi Cai and Xiaohu Guo. Anisotropic superpixel generation

based on mahalanobis distance. Computer Graphics Forum

(Pacific Graphics 2016), 35(7):199–207, 2016. 1

[7] Jason Chang, Donglai Wei, and John W. Fisher III. A video

representation using temporal superpixels. In Proceedings of

the 2013 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’13, pages 2051–2058, 2013. 2, 7

[8] Albert Y.C. Chen and Jason J. Corso. Propagating multi-

class pixel labels throughout video frames. In Proceedings

of Western New York Image Processing Workshop, 2010. 8

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to Algorithms, Third Edi-

tion. The MIT Press, 3rd edition, 2009. 3

[10] Jason J. Corso, Eitan Sharon, Shishir Dube, Suzie El-Saden,

Usha Sinha, and Alan L. Yuille. Efficient multilevel brain

tumor segmentation with integrated Bayesian model classifi-

cation. IEEE Trans. Med. Imaging, 27(5):629–640, 2008. 2,

7

[11] Michael Van den Bergh, Xavier Boix, Gemma Roig, and

Luc Van Gool. Seeds: Superpixels extracted via energy-

driven sampling. International Journal of Computer Vision,

111(3):298–314, 2015. 1, 2, 7

[12] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal

Voronoi tessellations: Applications and algorithms. SIAM

Review, 41(4):637–676, 1999. 3

[13] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern

Classification. John Wiley & Sons, Inc., 2nd. edition, 2004.

3

[14] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient

graph-based image segmentation. International Journal of

Computer Vision, 59(2):167–181, 2004. 1, 2, 7

[15] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra

Malik. Spectral grouping using the nyström method. IEEE

Trans. Pattern Anal. Mach. Intell., 26(2):214–225, 2004. 7

[16] Charless C. Fowlkes, Serge J. Belongie, and Jitendra Ma-

lik. Efficient spatiotemporal grouping using the Nyström

method. In 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, CVPR ’01, pages

231–238, 2001. 7

[17] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan A.

Essa. Efficient hierarchical graph-based video segmentation.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR’10, pages 2141–2148, 2010. 2, 7

[18] Saurabh Gupta, Pablo Andrés Arbeláez, Ross B. Girshick,

and Jitendra Malik. Indoor scene understanding with RGB-

D images: Bottom-up segmentation, object detection and se-

mantic segmentation. International Journal of Computer Vi-

sion, 112(2):133–149, 2015. 1

[19] Shengfeng He, Rynson W. H. Lau, Wenxi Liu, Zhe Huang,

and Qingxiong Yang. Supercnn: A superpixelwise convolu-

tional neural network for salient object detection. Interna-

tional Journal of Computer Vision, 115(3):330–344, 2015.

1

[20] Suyog Dutt Jain and Kristen Grauman. Supervoxel-

consistent foreground propagation in video. In 13th Eu-

ropean Conference on Computer Vision, ECCV ’14, pages

656–671, 2014. 2, 8

[21] Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan

Yang, and Jan Kautz. Superpixel sampling networks. In

Computer Vision - ECCV 2018 - 15th European Conference,

pages 363–380, 2018. 1, 2, 7

[22] Alex Levinshtein, Cristian Sminchisescu, and Sven Dickin-

son. Optimal image and video closure by superpixel group-

ing. International Journal of Computer Vision, 100(1):99–

119, 2012. 1, 2, 8

[23] Alex Levinshtein, Adrian Stere, Kiriakos N. Kutulakos,

David J. Fleet, Sven J. Dickinson, and Kaleem Sid-

diqi. Turbopixels: Fast superpixels using geometric flows.

IEEE Trans. Pattern Analysis and Machine Intelligence,

31(12):2290–2297, 2009. 1, 2, 7

[24] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and

Rama Chellappa. Entropy rate superpixel segmentation. In

The 24th IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’11, pages 2097–2104, 2011. 7

[25] Yong-Jin Liu, Chengchi Yu, Minjing Yu, and Ying He. Mani-

fold SLIC: a fast method to compute content-sensitive super-

pixels. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’16, pages 651–659, 2016. 1, 2, 7

[26] Yong-Jin Liu, Minjing Yu, Bing-Jun Li, and Ying He. In-

trinsic manifold SLIC: A simple and efficient method for

computing content-sensitive superpixels. IEEE Trans. Pat-

tern Anal. Mach. Intell., 40(3):653–666, 2018. 1, 2, 3, 4, 5,

6, 7, 8

[27] David R. Martin, Charless C. Fowlkes, and Jitendra Ma-

lik. Learning to detect natural image boundaries using lo-

cal brightness, color, and texture cues. IEEE Trans. Pattern

Anal. Mach. Intell., 26(5):530–549, 2004. 7

[28] Alastair Philip Moore, Simon Prince, Jonathan Warrell,

Umar Mohammed, and Graham Jones. Superpixel lattices.

3778

In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), 2008. 7

[29] Sylvain Paris and Frédo Durand. A topological approach to

hierarchical segmentation using mean shift. In IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition, CVPR’07, 2007. 2, 7

[30] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia

Schmid, and Vittorio Ferrari. Learning object class detec-

tors from weakly annotated video. In IEEE Conference on

Computer Vision and Pattern Recognition, CVPR’12, pages

3282–3289, 2012. 8

[31] Alexander Schick, Mika Fischer, and Rainer Stiefelhagen.

An evaluation of the compactness of superpixels. Pattern

Recognition Letters, 43(1):71–80, 2014. 7

[32] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale

image segmentation. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR ’00, pages 1070–1077,

2000. 2, 7

[33] Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri,

and Achi Brandt. Hierarchy and adaptivity in segmenting

visual scenes. Nature, 442(7104):810–813, 2006. 2, 7

[34] Jianbo Shi and Jitendra Malik. Normalized cuts and im-

age segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,

22(8):888–905, 2000. 7

[35] Kaleem Siddiqi and Benjamin B. Kimia. Parts of visual

form: Computational aspects. IEEE Trans. Pattern Anal.

Mach. Intell., 17(3):239–251, 1995. 1

[36] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In Proceedings of the 12th European Confer-

ence on Computer Vision, ECCV ’12, pages 746–760, 2012.

7

[37] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao.

SUN RGB-D: A RGB-D scene understanding benchmark

suite. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’15, pages 567–576, 2015. 7

[38] Andrew N. Stein, Derek Hoiem, and Martial Hebert. Learn-

ing to find object boundaries using motion cues. In IEEE

11th International Conference on Computer Vision, ICCV

’07, pages 1–8, 2007. 8

[39] David Stutz, Alexander Hermans, and Bastian Leibe. Su-

perpixels: An evaluation of the state-of-the-art. Computer

Vision and Image Understanding, 166:1–27, 2018. 1

[40] Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun,

Shao-Yi Chien, Ming-Hsuan Yang, and Jan Kautz. Learning

superpixels with segmentation-aware affinity loss. In IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 568–576, 2018. 1, 2, 7

[41] Peng Wang, Gang Zeng, Rui Gan, Jingdong Wang, and

Hongbin Zha. Structure-sensitive superpixels via geodesic

distance. International Journal of Computer Vision,

103(1):1–21, 2013. 1, 7

[42] Dennis Wei. A constant-factor bi-criteria approximation

guarantee for k-means++. In Annual Conference on Neural

Information Processing Systems, NIPS ’16, pages 604–612,

2016. 3, 4

[43] Chenliang Xu and Jason J. Corso. Libsvx: A supervoxel

library and benchmark for early video processing. Interna-

tional Journal of Computer Vision, 119(3):272–290, 2016.

7

[44] Kota Yamaguchi, M. Hadi Kiapour, Luis E. Ortiz, and

Tamara L. Berg. Parsing clothing in fashion photographs.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’12, pages 3570–3577, 2012. 7

[45] Jian Yao, Marko Boben, Sanja Fidler, and Raquel Urtasun.

Real-time coarse-to-fine topologically preserving segmenta-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR ’15, pages 2947–2955, 2015. 1, 2, 7

[46] Ran Yi, Yong-Jin Liu, and Yu-Kun Lai. Content-sensitive

supervoxels via uniform tessellations on video manifolds. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR ’18, pages 646–655, 2018. 1, 2, 3, 4, 7

3779

