
 

 

Abstract 

 We propose a new, filtering approach for solving a large 

number of regularized inverse problems commonly found in 

computer vision. Traditionally, such problems are solved by 

finding the solution to the system of equations that expresses 

the first-order optimality conditions of the problem. @is can 

be slow if the system of equations is dense due to the use of 

nonlocal regularization, necessitating iterative solvers such 

as successive over-relaxation or conjugate gradients. In this 

paper, we show that similar solutions can be obtained more 

easily via filtering, obviating the need to solve a potentially 

dense system of equations using slow iterative methods. Our 

filtered solutions are very similar to the true ones, but often 

up to 10 times faster to compute. 

1. Introduction 

 Inverse problems are mathematical problems where one’s 

objective is to recover a latent variable given observed input 

data. In computer vision, a classic inverse problem is that of 

estimating the optical flow [1], where the goal is to recover 

the apparent motion between an image pair. ?e problems of 

image super-resolution, denoising, deblurring, disparity and 

illumination estimation are examples of inverse problems in 

imaging and computer vision [2]–[5]. ?e ubiquity of these 

inverse problems for real-time computer vision applications 

places significant importance on efficient numerical solvers 

for such inverse problems. Traditionally, an inverse problem 

is formulated as a regularized optimization problem and the 

optimization problem then solved by finding the solution to 

its first-order optimality conditions, which can be expressed 

as a system of linear (or linearized) equations.  

 Recently, edge-preserving regularizers based on bilateral 

or nonlocal means weighting have found use in many vision 

problems [5]–[7]. Whereas such nonlocal regularizers often 

produce better solutions than local ones, they generate dense 

systems of equations that in practice can only be solved via 

slow numerical methods like successive over-relaxation and 

conjugate gradients. Such numerical methods are inherently 

iterative, and are sensitive to the conditioning of the overall 

problem. Iterative methods such as conjugate gradients also 

require the problem to be symmetric (and semi-definite). 

 In this work, we solve regularized optimization problems 

of the form 

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋𝐮 (1) 

using fast non-iterative filtering, obviating the need to solve 

dense systems of linear equations produced by geodesic and 

bilateral regularizers for example. We validate our approach 

on three classic vision problems: optical flow (and disparity) 

estimation, depth superresolution, and image deblurring and 

denoising, all of which are expressible in the form (1). Our 

filtered solutions to such problems are all very similar to the 

the true ones as seen in Figure 1, but 10× faster to compute 

in some cases. Compared to the fast bilateral solver [5], our 

formalism is not specific to the bilateral regularizer, and can 

solve more advanced inverse problems such as the disparity 

and the optical flow estimation problems. 
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Figure 1. Solving regularized inverse problems in vision typically 

requires using iterative solvers like conjugate gradients. We solve 

the same type of problems via filtering for a 10× speed-up. 

D
ep

th
 S

R
 

  

D
is

p
ar

it
y
 

  

O
p
ti

ca
l 

fl
o
w

 

  

D
eb

lu
rr

in
g
 

  

D
en

o
is

in
g
 

  
 True solvers Our filtering solvers 

 

5592



 

 

2. Inverse Problems 

 One feature of many inverse problems is that they either  

do not have a unique solution, or the solution is unstable—it  

does not depend continuously on the input. We refer to such 

problems as ill-posed. ?erefore, inverse problems are often 

reformulated for uniqueness and stability. ?e reformulation 

can be demonstrated with a simple least-squares problem of 

the form 

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22, (2) 

in which 𝐇 ∈ ℝ.×/, 𝐳 ∈ ℝ/. Problem (2) admits infinitely 

many solutions when 𝑛 ≤ 𝑚, failing the uniqueness test, so 

a reformulation of (2) is needed in this case. 

 Even when 𝑛 > 𝑚, problem (2) can still fail the stability 

test. Consider the problem instance with input data 

 𝐇 = [1.0 0.0
1.0 0.0
0.9 0.1

] ,  𝐳 = [1.0
1.0
1.0

] + 𝝐, (3) 

for example. One can consider 𝝐 a perturbation on the exact 

right-hand side vector of 𝟏—unless 𝝐 = 𝟎, there is no vector 𝐮 such that 𝐇𝐮 = 𝐳. While problem (2) admits the (unique) 

solution 𝐮ls = 𝐇†𝐳 = (𝐇∗𝐇)−1𝐇∗𝐳, the solution becomes 

unduly influenced by perturbation if 𝝐 lies along a particular 

direction. ?is direction is 𝐇𝐮1, where 𝐮1 is a vector along 

the minor eigen-axis of 𝐇∗𝐇. ?is calls for a reformulation 

of (2) similarly to the case where 𝑛 ≤ 𝑚. 

2.1. Regularization 

 In computer vision problems, 𝐮 often represents a hidden 

field of variables (such as the scene depth), each element of 𝐳 associated with a particular pixel location in the image. In 

such problems, (2) is often reformulated by regularization: 

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋𝐮, (4) 

in which 𝐋 ∈ 𝕊+
.×. is a (graph) Laplacian matrix penalizing 

the changes between adjacent vertices, and parameter 𝜆 > 0  

specifies a tradeoff between the fidelity of the solution to the 

input (𝐇, 𝐳) and solution smoothness. Problem (4) admits a 

unique solution when 𝐤𝐞𝐫(𝐇∗𝐇) ∩ 𝐤𝐞𝐫(𝐋) = {𝟎}, and this 

condition holds under most circumstances since 𝐋 is often a 

high-pass operator corresponding to the Laplacian matrix of 

some graph whereas 𝐇∗𝐇 is a low-pass operator (for image 

deblurring), or a non-negative diagonal matrix (for disparity 

and optical flow estimation). Since problem (4) is quadratic 

in 𝐮, its solution may be expressed in closed form concisely 

as 𝐮opt = (𝐇∗𝐇 + 𝜆𝐋)−1𝐇∗𝐳. 

 Despite the simplicity, the objective of problem (4) has a 

sufficiently general form, and suitably defining 𝐇 expresses 

most inverse problems in vision and imaging like depth and 

optical flow estimation, depth super-resolution, colorization 

[6], image inpainting [8], de-blurring and de-noising [4]. By 

suitably defining 𝐋, the objective of (4) expresses both local 

[1], [2] and non-local [5]–[11] regularity terms. Problem (4) 

is also sufficiently general to express non-quadratic models 

based on, for example, Charbonnier and Huber losses. 

 One notable non-quadratic objective is the total-variation 

function of Rudin et al. [2] 

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆‖𝑤(𝐊𝐮)‖1, (5) 

in which 𝑤(𝑥) = |𝑥|, and 𝐊 is the difference matrix, so that 𝐋 = 𝐊∗𝐊. Although (5) appears quite different from (4), it 

is shown by Chambolle and Lions [12] that (5) can readily 

be solved using the lagged diffusivity method (or iteratively 

re-weighted least-squares), which solves in the 𝑘th iteration 

the least-squares problem 

 minimize 𝑓C+1(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋C𝐮, (6) 

in which 

 𝐋C = 𝐊∗ 𝐝𝐢𝐚𝐠(abs(𝐊𝐮C))† 𝐊, (7) 

and 𝐮C is the minimizer of 𝑓C. Since each problem (6) is in  

the same form as (4), we do not need to separately consider 

a fast method for solving (5). 

2.2. Local vs Non-Local 

 Solving regularized inverse problems of the form (4) can 

be traced back to Phillips [13], Tikhonov [14], and Twomey 

[15], [16] in the one-dimensional case, which was extended 

to the two-dimensional case by Hunt [17]. A popular choice 

of 𝐋 in two dimensions is one based on the finite-difference 

(fd) or the finite-element (fe) stencils, which are  

 𝕃fd = [  −1  −1   4 −1
 −1  

] , 𝕃fe = [−1 −2 −1−2  12 −2−1 −2 −1
], (8) 

respectively. ?e latter is used by Horn and Schunck [1]. 

 Gilboa and Osher [8] demonstrate the benefits of using a 

non-local Laplacian for image denoising and inpainting. As 

the authors pointed out, their non-local Laplacian is itself an 

adaptation of graph Laplacians of [18]. Given an 𝑁-sample 

image whose 𝑁  vertices are 𝐩., 1 ≤ 𝑛 ≤ 𝑁 , we can define 

a graph Laplacian over the vertices as 𝐋 = 𝐃 − 𝐀, with 𝐀 

denoting the weighted adjacency matrix of some graph over 

the vertices {𝐩.}, and 𝐃 = 𝐝𝐢𝐚𝐠(𝐀𝟏) is the degree matrix 

of this graph. In vision applications, the weighted adjacency 

between 𝐩. and 𝐩/ is usually a function of ‖𝐩. − 𝐩/‖, so 

one can define 𝐀 as 𝑎/. = 𝑟(‖𝐩. − 𝐩/‖) in terms of some 

non-increasing function 𝑟 ∈ ℝ+ → ℝ+. 

2.3. Bilateral vs Geodesic 

 One notable graph Laplacian is inspired by the success of 

the bilateral filter [19], [20]. Suppose we have an 𝑁-sample 

image 𝐳 ∈ ℝS ≅ ℝU, whose sample locations are the points 𝐷 of a rectangular grid in the 𝑥-𝑦 plane. ?e bilateral-space 

representation [21] of the image vertices is  
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 𝐩. = (𝑥.𝜎Z
𝑦.𝜎[

𝑧.𝜎]) ∈ 𝐷 ⊕ [0,255], (9) 

in which 𝜎Z,[ ,]  are the scales of the bilateral space in their 

respective dimensions. If we define the graph adjacencies 𝐀 

over 𝐩. as 𝑎/. = e−|ab−ac|2/2, then 𝐃†𝐀 and 𝐃 − 𝐀 are 

respectively, the bilateral filter and the bilaterally-weighted 

graph Laplacian matrices. Observe that when 𝜎] = ∞, 𝐀 is 

simply a Gaussian blur operator with scales 𝜎Z  and 𝜎[ . 

 Another graph Laplacian often found in edge-preserving 

regularization is one based on the geodesic distance. In such 

a case, matrix 𝐀 is defined as 𝑎/. = e−geod(ab,ac), where 

geod(𝐩., 𝐩/) is the distance of the shortest path from point 𝐩. to point 𝐩/ on the two-dimensional manifold defined by 

the vertices {𝐩.}. ?at is, 

geod(𝐩., 𝐩/) = minh,(ij)1≤j≤l: ij∼ij+1,ab=i1, il=ac
 ∑  |𝐯s − 𝐯s+1|
h−1
s=1

, (10) 

in which 𝐯 ∼ 𝐯′ means that 𝐯 and 𝐯′ are adjacent pixels on 

the two-dimensional grid. 

 Since bilateral and geodesic graph Laplacians often have 

degrees that differ across vertices, normalization is typically 

applied for more uniform regularization. ?e most common 

form of normalization is �̃� = 𝐃†/2𝐋𝐃†/2, referred to as the 

symmetric-normalized Laplacian, and �̂� = 𝐃†𝐋, referred to 

as the random-walk normalized Laplacian [18], [22]. Barron 

et al. [7] use the Sinkhorn-normalized form [23], [24] of the 

bilateral-weighted graph Laplacian. By contrast, Laplacians 

based on stencils (8) are already normalized up to a constant 

scaling factor (except possibly at the image boundaries). 

3. Related Work 

 Whereas the solution 𝐮opt = (𝐇∗𝐇 + 𝜆𝐋)−1𝐇∗𝐳 of (4) 

is simple, its numerical evaluation can be expensive. Except 

in a handful of scenarios, 𝐮opt must be evaluated iteratively 

using numerical methods such as successive over-relaxation 

or conjugate gradients, both of which require us to evaluate 

the mappings 𝐭 ↦ 𝐇∗𝐇𝐭 and 𝐭 ↦ 𝐋𝐭 repeatedly. ?e latter 

mapping can be particularly expensive to evaluate if 𝐋 has a 

nonlocal (dense) matrix structure. Krylov-subspace methods 

like conjugate gradients additionally require the spectrum of 𝐇∗𝐇 + 𝜆𝐋 to be clustered for faster convergence.  

3.1. Fast Solvers 

 For optical flow estimation, Krähenbühl and Koltun [11] 

consider the bilaterally-regularized instance of (4), but with 

the Charbonnier penalty for regularization. ?ey essentially 

use the fact that 𝐋 = 𝐃 − 𝐀, where 𝐀 is the unnormalized 

bilateral filter, and evaluate the mapping 𝐭 ↦ 𝐀𝐭 efficiently 

inside conjugate gradients with a fast implementation of the 

bilateral filter. However, ten or more iterations of conjugate 

gradients are usually required even when preconditioning is 

used, which is not as efficient as a non-iterative approach. 

 Barron and Poole [5] propose their bilateral solver for the 

specific case where 𝐋 is bilateral-weighted, and 𝐇 is square 

and diagonal. Forming the Laplacian �̃� = 𝐈 − �̃� in terms of 

the bi-stochasticized �̃�, they factorize �̃� = 𝐒𝐁𝐒∗, where 𝐒 

and 𝐁 are the slice and the blur operators respectively. ?ey 

reformulate problem (4) in terms of 𝐮 = 𝐒𝐲 as 

 minimize 𝑓(𝐲) = ∥�̂�𝐲 − 𝐳∥̂22 + 𝜆𝐲∗(𝐈 − 𝐁)𝐲, (11) 

the solution 𝐲opt of which is obtained using pre-conditioned 

conjugate gradients. ?e solution of the original problem (4) 

is finally obtained as 𝐮opt ≈ 𝐒𝐲opt. 

 Although the bilateral solver produces efficient solutions 

in practice, the solver is iterative, and does not generalize to 

problems with other edge-preserving regularizers. Also, the 

solution 𝐒𝐲opt suffers from block artifacts, requiring further 

post-processing by a second edge-preserving filter, as stated 

by the authors themselves. 

3.2. Fast Filtering 

 Fast solvers like the bilateral solver ultimately depend on 

the ability to perform bilateral filtering efficiently. Many fast 

bilateral filtering methods have been proposed. ?ey include 

the adaptive manifold [25], the Gaussian 𝐾D-tree [26], and 

the permutohedral lattice [21] filters. All of them exploit the 

fact that filtering with a large kernel can also be achieved by 

(i) down-sampling the input, (ii) filtering the down-sampled 

signal using a smaller filter kernel, finally (iii) up-sampling 

the filtered signal. ?is series of operations is often referred 

to as the splat-blur-slice pipeline. Such a pipeline guarantees 

a computational complexity constant in the size of the filter 

kernel. By contrast, the complexity of a naïve bilateral filter 

implementation would scale linearly with kernel size. 

 Similarly, efficient geodesic regularization depends upon 

efficient geodesic filtering. Fast implementations of the filter 

include the geodesic distance transform [27] and the domain 

transforms [28]. Since geodesic filtering requires computing 

the shortest path between every pair of vertices (10), a naïve 

implementation of the filter would be quite expensive. As an 

example, if Dijkstra’s algorithm is used to find all pixelwise 

shortest paths, geodesic filtering would have an 𝑂(𝑁3) cost 

in the number 𝑁  of pixels. 

4. Our Filtering Method 

 We now present the main result of our work. We assume 

that 𝐋 is Sinkhorn-normalized as in [5], although this is not 

required in practical implementations. ?e proposed method 

originates from the observation that without regularization, 

 argmin�  ‖𝐇𝐮 − 𝐳‖22 = argmin � ‖𝐇(𝐮 − 𝐇†𝐳)‖22, (12) 

so we can consider 𝐇†𝐳 some transformed signal to filter by 

least-squares using the weights (inverse covariance matrix) 

5594



 

 

𝐇∗𝐇 (but the problem is still ill-posed). Note the structural 

(in contrast to the numeric) pseudo-inverse of 𝐇 ∈ ℝ.×/ is 

defined as 

 𝐇† = {𝐇∗(𝐇𝐇∗)−1 if 𝑛 ≤ 𝑚
(𝐇∗𝐇)−1𝐇∗ if 𝑛 > 𝑚 ,

 (13) 

so whereas relationship (12) always holds, it is generally not 

the case that ‖𝐇𝐮 − 𝐳‖22 = ‖𝐇(𝐮 − 𝐇†𝐳)‖22 when 𝑛 > 𝑚. 

 Using the weighing 𝐂 = 𝐇∗𝐇, we propose to obtain the 

solution of the regularized problem (4) non-iteratively as1 

 𝐮filt = 𝐅†𝐀𝐂𝐇†𝐳 𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝐂𝟏), (14a) 
 = 𝐅†𝐀𝐇∗𝐳, 

in which 𝐀 is the graph adjacency (or low-pass filter) matrix 

of 𝐋. Said simply, 𝐮filt is filtering of the naïve solution 𝐇†𝐳 

of the ill-posed problem (2) using the least-squares weights 𝐂, normalized by 𝐅 to preserve the mean of the signal. ?is 

is the idea of normalized convolution [29] applied to solving 

regularized inverse problems. 

 For some instances of problem (3), the weighting by 𝐂 is 

neither necessary nor desirable. In the deblurring instance of 

problem (2) for example, the original ill-posed problem is to 

solve 𝐇𝐮 − 𝐳 = 𝟎 for 𝐮. ?e blur operator 𝐇 is structurally 

(but not numerically) invertible, and it would have been just 

as valid to formulate the regularized inverse problem as2 

 minimize 𝑓(𝐮) = ‖𝐮 − 𝐇†𝐳‖22 + 𝜆𝐮∗𝐋𝐮, (15) 

in which case the weighting by 𝐂 disappears. Depending on 

the application, we therefore use the de-weighted variant of 

our filtering strategy 

 �̂�filt = 𝐅†𝐀𝐇†𝐳,  𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝟏), (14b) 

cf. the original pixelwise weighted formulation (14a). 

 Note that since 𝐀 is a low-pass filter, our approach (14a) 

is valid only if (𝐂 + 𝜆𝐋)−1 has a low-pass response. ?is is 

fortunately the case for most inverse problems in vision. ?e 

image deblurring problem is unique in that (𝐂 + 𝜆𝐋)−1 has 

a high-pass response, and is ill-approximated by 𝐀. In such 

a case, one can apply the de-weighted variant of our method 

(14b) to solve the problem. ?e supplement discusses this in 

more detail. We make no specific assumptions regarding the  

structural rank of 𝐇 ∈ ℝ.×/, while we continue to assume 

that 𝐤𝐞𝐫(𝐂) ∩ 𝐤𝐞𝐫(𝐋) = {𝟎} for a unique solution. 

4.1. Analysis when 𝐂 = 𝐈 

 To observe 𝐮filt ≈ 𝐮opt in (14a), let us consider a simpler 

instructive instance of problem (4), where 𝐂 = 𝐈. ?en, our 

solution (14a) can be written as 𝐮filt = 𝐀𝐳, and the true one 

as 𝐮opt = 𝐆𝐳 with 𝐆 = (𝐈 + 𝜆𝐋)−1. Since 𝐋 is symmetric 

and positive semi-definite, we can write 𝐋 = 𝐔𝚲𝐔∗, where 𝐔 are the eigenvectors of 𝐋, the corresponding eigenvalues 

of which are 𝚲 = 𝐝𝐢𝐚𝐠(𝜆1, 𝜆2, . . . , 𝜆S ). We assume 𝜆. are 

ordered as 0 = 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆S ≤ 1.  

 One can observe that the filter 𝐀 = 𝐔(𝐈 − 𝚲)𝐔∗ has the 

spectral filter [22] factors 

 1 = 1 − 𝜆1 ≥ 1 − 𝜆2 ≥. . . ≥ 1 − 𝜆S ≥ 0, (16) 

and 𝐆 = 𝐔(𝐈 + 𝜆𝚲)−1𝐔∗ has the factors 

 1 =
1

1 + 𝜆1 ≥ 1

1 + 𝜆2 ≥. . . ≥ 1

1 + 𝜆S ≥ 1

2
, (17) 

assuming 𝜆 = 1 for simplicity. ?e eigenvalues of 𝐀 decay 

towards 0 while those of 𝐆, towards 1 2⁄ . However, we can 

easily equalize the two spectral filter responses by applying 

the mapping 𝐀 ↦ (𝐀 + 𝐈)/2. In any case, they both have a 

unit DC gain (or a unit filter response to the constant vector 𝟏) as can be seen in the left-hand side of (16)–(17) (the first 

eigenvector of 𝐋 is 𝑁−1/2𝟏).  

 Since the two spectral factors (𝐈 − 𝚲) and (𝐈 + 𝚲)−1 are 

generally not the same, our filtered solutions 𝐮filt = 𝐀𝐳 are 

necessarily an approximation of 𝐮opt = 𝐆𝐳. However, such 

an approximation is reasonable since our true objective is to 

obtain a good solution to a vision problem, not to accurately 

solve problem (4) per se. 

4.2. Analysis when 𝐂 ≠ 𝐈 but (block-) diagonal 

 Let us relate our filter solution 𝐮filt to the true 𝐮opt when 𝐂 is no longer the identity but diagonal. We write 𝐳̂ = 𝐇†𝐳 

for convenience. ?en, the solution of problem (4) becomes 𝐮opt = (𝐂 + 𝜆𝐋)−1𝐂𝐳 ̂and 𝐮filt = 𝐅†𝐀𝐂𝐳 ̂(14a). Suppose 

all weights are initially 𝐂 = 𝐈 as in 4.1. To observe how the 

solution 𝐮opt changes when an arbitrary weight 𝑐.. is set to 

1 − 𝜖., we invoke the Sherman-Morrison formula to write  

 (𝐂 + 𝜆𝐋)−1 = (𝐈 + 𝜆𝐋 − 𝜖𝐝.𝐝.∗ )−1 

(18) 
 = 𝐆 +

𝜖.𝐆𝐝.𝐝.∗ 𝐆∗
1 − 𝜖.𝐝.∗ 𝐆𝐝. 

 = 𝐆 + 𝛼.𝐠.𝐠.∗ , 
in which 

 𝛼. =
𝜖.

1 − 𝜖.𝑔.. ,  0 ≤ 𝛼. ≤ 1, (19) 

and 𝐝. is the 𝑛th column of the identity matrix. 

 ?e equalities (18) tell us that setting 𝑐.. = 1 − 𝜖. adds 𝛼.𝐠.𝐠.∗  to 𝐆, which is the unique adjustment guaranteeing 

that (𝐆 + 𝛼.𝐠.𝐠.∗ )𝐂 has a unit row-sum. ?is adjustment 

is small if 𝐆 has a large effective filter scale since  𝐠.∗ 𝟏 = 1 

implies the elements of 𝐠. are small. We similarly guarantee 

that the filter 𝐅†𝐀𝐂 has a unit row-sum but normalizing by 𝐅† explicitly. A similar argument to (18)–(19) may be given 

for the general vectorial case where 𝐂 is block-diagonal, as 

is the case in the optical flow estimation problem. 

1Despite the cosmetic resemblance, 𝐅†𝐀 has no relationship to iteration 

matrices seen in e.g. the Jacobi, Gauss-Seidel or SOR methods. 
2Numerically, 𝐇† is computed using the truncated SVD in the general 

case, or efficiently via the FFT if 𝐇 is shift-invariant (e.g. a blur operator). 
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5. Robust Estimation 

 Our filtering method (14) can be robustified by changing 

the filter 𝐀 in the graph domain. By augmenting the vertices 

(9) of the underlying graph as 

 𝐩. = (𝑥.𝜎Z
𝑦.𝜎[

𝑧.𝜎]
𝑢.𝜎�), (20) 

in which 𝑢. is the 𝑛th element of the previous solution, and 𝜎�  is the scale of this solution. (For the optical flow and the 

illumination estimation problems, both components 𝑢1. and 𝑢2. are added to 𝐩. with their respective scales.) 

 If 𝐀 is Gaussianly weighted as 𝑎/. = e−|ab−ac|2/2, the 

introduction of 𝑢. corresponds to the use of the Welsch loss 

for our regularization. However, in the case where 𝐀 is the 

geodesic filter with 𝑎/. = e−geod(ab,ac), introducing 𝑢. is 

difficult to interpret within the established robust estimation 

framework. Since the Welsch loss 

 𝑤(𝑥) = 𝜎2(1 − exp(− 𝑥2 2𝜎2⁄ )) (21) 

is non-convex (and non-homogeneous), the scale parameter 𝜎�  plays an important role in guaranteeing the convexity of 

our problem. Observing that 𝑤 is convex across the interval 

[−𝜎, 𝜎], we should set 𝜎 such that most of the input to 𝑤 fall 

inside this interval. ?e input may fall outside of the convex 

interval some of the time as long as the Hessian of the over-

all objective in (5) is positive semidefinite. Krähenbühl and 

Koltun [11] on the other hand propose an efficient method to 

incorporate other convex robust losses 𝑤 in (5). 

6. Solving Vision Problems 

 We apply our method to a number of vision problems, all 

of which can be written in the form (4). One may also apply 

our method to other simpler problems discussed in [5], such 

as semantic segmentation and colorization, which can all be 

converted into the form (4). 

6.1. Depth Super-resolution 

 In the depth super-resolution problem [30]–[32], the goal 

is to upsample a depth map captured by a depth camera to a 

higher resolution one in an edge-aware manner. For a given 

low-resolution depth map 𝐳, the super-resolution problem is 

expressed by 

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋𝐮, (22) 

in which the down-sampler 𝐇 = 𝐒𝐁, where 𝐁 represents a 

pre-filter (a windowed sinc, in accordance with the Nyquist 

theorem), and 𝐒 is a sub-sampler. We use (14b) to obtain 

 𝐮filt = 𝐅†𝐀𝐁∗𝐒∗𝐳,  𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝐁∗𝐒∗𝐒𝐁𝟏), (23) 

so we first upsample 𝐳 using 𝐁∗𝐒∗, filter the result using 𝐀 

and normalize. Figure 2 illustrates depth super-resolution. 

6.2. Disparity Estimation 

 Disparity estimation can be formed as a non-linear least-

squares problem at first, and solved iteratively as a series of 

linear(ized) least-squares problems using the Gauss-Newton 

algorithm. In the 𝑘 + 1th iteration, the estimated disparity is 

given by the solution of the regularized inverse problem 

minimize 𝑓C+1(𝐮) = ‖𝐙�(𝐮 − 𝐮C) + 𝐳�C‖22⏟⏟⏟⏟⏟⏟⏟⏟⏟
��(�)

+ 𝜆𝐮∗𝐋𝐮 
(24) 

in which 𝐮C is the minimizer of 𝑓C, 𝐙� = 𝐝𝐢𝐚𝐠(𝐳�) and 𝐳�C 

are the 𝑥- and 𝑡-derivatives of the image pair, warped using 

the disparity estimate 𝐮C. We can then write the first term of 

the objective function of (24) as 

 𝑑C(𝐮) = ‖𝐙�(𝐮 − 𝐳Ĉ)‖22, �̂�C = 𝐮C − 𝐙�† 𝐳�C, (25) 

using the relationship (12) on 𝑑C(𝐮). We obtain the 𝑘 + 1th 

estimate of the disparity via filtering 

 𝐮C+1 = 𝐅†𝐀(𝐙�2𝐮C − 𝐙�∗ 𝐳�C),  𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝐙�2𝟏). (26) 

6.3. Optical Flow Estimation 

 ?e optical flow estimation problem is a vector extension 

of disparity estimation (24). Since there are now two values 

to estimate at each pixel, one may wonder if our method can 

still be applied. In fact, our formalism remains the same. To 

recap, the 𝑘 + 1th flow estimate is the solution of  

 minimize 𝑓C+1(𝐮) = 𝜆𝐮�∗ 𝐋𝐮� + 𝜆𝐮�∗𝐋𝐮� 

(27) 

 
+ ∥(𝐙�, 𝐙�)(𝐮 − 𝐮C) + 𝐳�C∥22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

��(�)
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 Reference image Ground truth disparity Low-resolution disparity Our disparity (geodesic) Our disparity (bilateral) 

 
Figure 2. ?e 16× super-resolution disparity maps produced using the geodesic and the bilateral variants of our method for the 1088 × 1376 

Art scene. Best viewed online by zooming in. Results are typical (more results are available in the supplement). 
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[33], where 𝐮 = (𝐮�∗ , 𝐮�∗ )∗, and 𝐮C, 𝐙�, and 𝐙� are defined 

similarly as for (24). We can rewrite the last term of (27) as  

 𝑑C(𝐮) = ∥(𝐙�, 𝐙�)(𝐮 − 𝐳Ĉ)∥22, (28) 

in which 𝐳Ĉ = 𝐮C − (𝐙�, 𝐙�)†𝐳�C.  

 Unlike in the disparity estimation problem, we now have 

two flow components that cannot be filtered separately—the 

inverse covariances (𝐙�, 𝐙�)∗(𝐙�, 𝐙�) now couple the two 

flow components 𝐮�∗  and 𝐮�∗ . ?e original equation (14a) is 

therefore generalized to the vectorial case. ?e new estimate 

of flow is obtained as 

 𝐮C+1 = 𝐅†𝐀(𝐙𝐮C − (𝐙�, 𝐙�)∗𝐳�C), (29) 

in which  

 𝐀 = [𝐀  

𝐀], 𝐙 = [ 𝐙�2 𝐙�𝐙�𝐙�𝐙� 𝐙�2 ], (30) 

and 

 𝐅 = [ 𝐝𝐢𝐚𝐠(𝐀𝐙�2𝟏) 𝐝𝐢𝐚𝐠(𝐀𝐙�𝐙�𝟏)
𝐝𝐢𝐚𝐠(𝐀𝐙�𝐙�𝟏) 𝐝𝐢𝐚𝐠(𝐀𝐙�2𝟏) ], (31) 

so that as well as filtering the signal 𝐙𝐮C − (𝐙�, 𝐙�)∗𝐳�C, we 

need also to filter 𝐙�2𝟏, 𝐙�2𝟏 and 𝐙�𝐙�𝟏. 

 Observe that the mapping 𝐱 ↦ 𝐀𝐱 simply filters the two 

components of 𝐱 separately, whereas the matrices 𝐙 and 𝐅 

can be permuted to be block-diagonal, whose 𝑛th blocks are 

the 2 × 2 matrices 

 𝐙. = [ 𝑧�.2 𝑧�.𝑧�.𝑧�.𝑧�. 𝑧�.2 ], (32) 

and 

 𝐅. = [𝐚.∗ 𝐚.∗ ] [ 𝐙�2𝟏 𝐙�𝐙�𝟏
𝐙�𝐙�𝟏 𝐙�2𝟏 ], (33) 

respectively. Essentially, 𝐅. is a weighted sum of the 2 × 2 

inverse covariance matrices with which to normalize the 𝑛th 

filtered vector. Figure 3 illustrates optical flow estimation. 

6.4. Image Deblurring 

 In the classic image deblurring problem, our objective is 

to recover a deblurred image from some blurry image 𝐳. We 

use the de-weighted variant (14b) of our method to recover 

the deblurred image as  

 𝐮filt = 𝐅†𝐀𝐇†𝐳,  𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝟏), (34) 

in which 𝐇 is some known blur operator. When 𝐇 = 𝐈, (34) 

simply reduces to edge-aware filtering.  

 One can express 𝐇† = 𝐔𝚲†𝐔∗, where 𝐔 is the discrete 

two-dimensional Fourier basis, and 𝚲 is their corresponding 

magnitude response. We can compute 𝐇†𝐳 in the frequency 

domain by multiplying the Fourier coefficients of 𝐳 with the 

inverse magnitude response 𝚲†, and transforming the result 

back into the image domain. 

 For practical implementations, however, one needs to use 

the numerical definition of 𝐇†. Expressing the blur operator 
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 Ground truth Baseline flow Our flow (geodesic) Our flow (bilateral) 

Figure 3. Optical flow (top row) and the corresponding flow error (bottom row) produced using the geodesic and the bilateral variants of our 

method. ?e baseline flow is [41] and we perform 3 warping iterations. Whiter pixels correspond to smaller flow vectors. 

Im
ag

e 
d
eb

lu
rr

in
g
 

    

    

 Ground truth Noisy blurred image Our deblurred (geodesic) Our deblurred (bilateral) 

Figure 4. Crops of the deblurred images from the Kodak dataset, produced using the geodesic and the bilateral variants of our method when 

the standard deviation of the blur kernel is 2. Noise variance is 10−5. Results are typical (more results are available in the supplement). 
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as 𝐇 = 𝐅𝚲𝐅∗, where 𝐅 denote the discrete Fourier vectors 

and 𝚲 is the diagonal matrix of the magnitude response, we 

define 𝐇ϵ† = 𝐅𝚲§†𝐅∗, where 

 (𝚲§†). = {𝜆.−1 if 𝜆. > 𝜖 ,

0 otherwise
 (35) 

is the 𝑛th diagonal element of 𝚲§†. Essentially, the numerical 

pseudo-inverse 𝚲§† treats all 𝜆. ≤ 𝜖 as 0. We can regard our 

solution 𝐅†𝐀𝐇ϵ†𝐳 as a noiseless Wiener deblurring solution 

filtered by an edge-aware filter 𝐀 which is then normalized. 

 Another choice of inverse filter is 𝐇ϵg = 𝐅𝚲§g𝐅∗, where 

 (𝚲§g). = min(𝜆.−1, 𝜖−1) (36) 

and one can verify that 𝐇ϵg defined via (36) is a generalized 

inverse but not the pseudo-inverse of 𝐇. Since thresholding 

(35) introduces ringing artifacts in the de-blurred image, the 

rectified filter factors (36) are preferable over (35). Observe 

that the generalized inverse 𝐇g yields the relation 

 argmin ‖𝐇𝐮 − 𝐳‖22 = argmin ‖𝐇(𝐮 − 𝐇g𝐳)‖22 (37) 

similarly to the relation regarding 𝐇† in (12). Figure 5 plots 

the pseudo-inverse and the generalized inverse responses. 

7. Experimental Results 

 To demonstrate the proposed method, we implement our 

filter to solve a few problems from the previous section. ?e 

disparity estimation problem (24) is a special case of optical 

flow estimation (27), so we consider the latter problem only 

in this section. We use the domain transforms filter [28] and 

the permutohedral lattice filter [21] implementations for the 

geodesic filter, and the bilateral filter, respectively. Running 

times are obtained on a single core of an Intel 2.7GHz Core 

i7 processor (iMac mid-2011). Note, the bilateral variants of 

our methods are slower than their geodesic counterparts due 

solely to the speed of the bilateral filter implementation [21] 

used. However, the bilateral variants perform slightly better 

than the geodesic ones. 

 In all applications, we formulate the graph vertices in the 𝑥-𝑦-𝑢-𝑙-𝑎-𝑏 space as 

 𝐩. = (𝑥.𝜎Z
𝑦.𝜎[

𝑢.𝜎�
ℓ.𝜎]

𝑎.𝜎]
𝑏.𝜎]), (38) 

and optimize 𝜎Z,[ , 𝜎]  and 𝜎�  using grid search separately 

for each problem. ?e results for our two iterative solutions 

in Tables 1 and 2 (geodesic and bilateral) are computed with 

conjugate gradients (24 iterations, norm tolerance of 10−6).  

7.1. Depth Super-resolution 

 Using the depth map super-resolution dataset of [30], we 

measure the accuracy and efficiency of our super-resolution 

method based on our filtering formalism. ?e method is also 

compared with a number of other well-performing ones. We 

assume 𝐁 in (23) is the lanczos3 windowed sinc resampling 

operator. We set our filter scales adaptively using 

 𝜎Z,[ = 𝑠 + 2, 𝜎] = 160 𝑠⁄ , 𝜎� = 𝑠 + 10 (39) 

for the bilateral variant of our method, and  

 𝜎Z,[ = 3𝑠, 𝜎] = 48, 𝜎� = 16
√𝑠 (40) 

for the geodesic variant (𝑠 is the super-resolution factor). 

 Table 1 lists the peak SNR for the depth super-resolution 

Table 1. Depth super-resolution performance of different methods. ?e PSNR (dB) values are of the supperresolution disparity to the ground 

truth. Running times are for the 16× case. ?e results for other methods (first six rows) are based on the mean squared errors reported in [5]. 

Methods 
Art  Books  Möbius  Average 

Time 
2× 4× 8× 16×  2× 4× 8× 16×  2× 4× 8× 16×  2× 4× 8× 16× 

O
th

er
 m

et
h

o
d

s Guided filter [35] 
Diebel and ?run [34] 

Chan et al.[36] 
Park et al. [30]  

Yang et al. [33] 
Ferstl et al.[31] 

37.13 
37.27 

37.40 
36.63 

38.56 
38.05 

35.44 
35.24 

35.30 
35.11 

36.27 
35.96 

33.18 
32.23 

32.60 
32.86 

34.42 
34.01 

29.83 
28.94 

29.63 
29.29 

30.55 
30.50 

 40.64 
41.85 

41.73 
42.33 

42.69 
44.49 

39.41 
38.59 

39.28 
39.83 

40.60 
41.24 

37.45 
35.96 

36.58 
37.76 

39.00   
40.28 

35.03 
33.93 

33.40 
34.40 

35.54 
37.15 

 40.24 
41.56 

41.77 
42.29 

42.46 
44.78 

39.13 
38.30 

39.54 
40.21 

40.49 
41.98 

37.15 
35.79 

36.70 
38.00 

38.70 
39.90 

35.01 
33.95 

33.60 
35.11 

35.32 
37.25 

 39.19 
39.97 

40.05 
39.98 

41.02 
41.85 

37.80 
37.24 

37.81 
38.05 

38.87 
39.29 

35.70 
34.48 

35.07 
35.87 

37.11 
37.56 

32.93 
31.94 

32.01 
32.52 

33.48 
34.36 

23.9s 
– 

3.02s 
24.1s 

– 
140.s 

It
er

at
iv

e
 

Bilateral Solver3 [5] 
Geodesic4 (22) 

Bilateral4 (22) 

40.16 
41.80 

43.02 

37.24 
37.88 

38.59 

34.87 
35.41 

35.94 

31.41 
31.67 

32.26 

 47.58 
48.95 

49.43 

44.76 
45.53 

45.79 

42.37 
42.41 

42.96 

39.56 
39.74 

39.77 

 48.47 
49.67 

49.82 

45.80 
46.16 

45.78 

43.37 

42.81 

43.20 

40.84 

39.78 

40.65 

 43.70 
45.25 

46.22 

40.82 
41.45 

41.96 

38.44 
38.78 

39.29 

35.15 
35.27 

35.82 

1.61s 
1.60s 

8.23s 

O
u

rs
 

Geodesic  
Bilateral  

41.73 
43.63 

38.31 
38.98 

35.79 
36.15 

31.66 
32.22 

 49.06 
49.72 

45.49 
45.96 

42.77 
43.09 

39.70 
39.87 

 49.50 
48.89 

46.07 
45.78 

43.23 
42.96 

40.39 
40.30 

 45.19 
46.51 

41.75 
42.26 

39.16 
39.43 

35.32 
35.76 

0.44s 

1.41s 

 

3Using 𝜎Z,[ = 8, 𝜎± = 4, 𝜎�,² = 3, 𝜆 = 4³−1/2, as suggested in [5].  
4Here, 𝜎Z,[ , 𝜎] , 𝜎� , 𝜆 are found by separate grid search for each scale. 

ℎ̂ 

ℎ̂§g 

ℎ̂§† 

ℎ̂§µ 

𝜖 

Figure 5. Magnitude responses of a blur kernel (left) and different 

inverse responses (right). ?e Wiener response ℎ̂µ varies smoothly  

across frequencies. ?e pseudo-inverse response ℎ̂† is thresholded 

to zero. Our generalized inverse one ℎ̂g has a rectified response.  
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methods and their running times. ?e results in the top rows 

(other methods) are computed using Table 2 of [5] (from the 

supplement). ?e results of Bilateral Solver [5] are obtained 

using the publicly available code. Our two filtering methods 

are 1–100 times faster than most methods specialized to the 

super-resolution application. Figure 2 shows our 16× depth 

maps obtained using the geodesic variant of our method. 

7.2. Optical Flow Estimation 

 Using the training set of the MPI-Sintel optical flow data 

set [34], we now compare the accuracy and the efficiency of 

our filtering method with the iterative variational optimizer 

of EpicFlow [35] also used by [36]–[40], the Horn-Schunck 

[1] and the Classic+NL [41] methods. Our iterative bilateral 

baseline is similar to [11], but uses the Welsch loss in place 

of the Charbonnier loss for regularity. We initialize the flow 

(27) using the interpolation of DeepMatching [42]. Both our 

method and EpicFlow use 3 outer warping iterations. We set 

our filter parameters adaptively using  

 𝜎Z,[ = 10, 𝜎] = 12, 𝜎� = 0.5𝑠 (41) 

for the bilateral variant of our method, in which 𝑠 is the root 

mean-square magnitudes of the initial flow vectors, and 

 𝜎Z,[ = 20, 𝜎] = 96, 𝜎� = 𝑠 (42) 

for the geodesic variant. We set the parameters of EpicFlow 

to the Sintel settings. Table 2 provides the average endpoint 

errors and the run times after optical flow estimation. 

 ?e geodesic variant of our method has a similar average 

end-point error as the variational optimizer of EpicFlow (or 

successive overrelaxation) while being 1.8 times fast. In the 

timing results, we include the time spent on computation of 

the elements of 𝐙 (30), which is 0.13s per warping iteration 

for all methods. Figure 3 visualizes our flow estimates. 

7.3. Deblurring and Denoising 

 For deblurring, we assume that the point spread function 

of the blur is known. ?e blur kernels we use have the form 𝐡𝐡∗, where 𝐡 is a discrete Gaussian with the 𝑧-transform  

 ℎ(𝑧) = 2−2.(1𝑧−1 + 2𝑧0 + 1𝑧1)., (43) 

that is, the B-spline kernel of order 2𝑛. As 𝑛 increases from 

1 to 8, we increase 𝜎Z,[  and 𝜎]  from 4 to 10, and 28 to 36 

respectively for our geodesic variant, and from 3 to 4, and 9 

to 12 respectively for our bilateral one. 

 Table 3 provides the peak SNRs of the de-blurred images 

for different blur kernels. For comparison, the results for 𝐿2 

(quadratic regularity), TV (total variation) [43] and Wiener-

filtered solutions. All algorithm parameters used in different 

models are found using a grid search. ?e Wiener filter uses 

a uniform image power spectrum model. Separability of the 

blur kernels may be used to accelerate the iterative methods 

further (our times are for direct 2D deconvolution). Note the 

bilateral filter is not optimal for de-noising as pointed out by 

Buades et al. [9], who demonstrate the advantages of patch-

based filtering (nonlocal means denoising) over pixel-based 

filtering (bilateral filter), so we can also choose the nonlocal 

means for 𝐀. Figure 4 shows crops of our deblurred images. 

8. Conclusion 

 In this paper, we solved regularized inverse problems via 

filtering. While such optimization problems are traditionally 

solved by finding a solution to a system of equations which 

expresses the optimality conditions, we showed that the act 

of solving such equations can actually be seen as a filtering 

operation, and reformulated the regularized inverse problem 

as a filtering task. We proceeded to solve a number of vision 

problems which are traditionally solved using iterations. We 

showed that the performance of our method is comparable to 

the methods specifically tailored and implemented for these 

applications. We hope that other vision researchers also find 

our approach useful for solving their own vision problems. 

Blur 

scale 

Input 

PSNR 

 FFT-based  Iterative methods  Our methods 

 Wiener 𝐿2  TV Geo Bilat  Geo Bilat √
0.5 √
1.0 √
2.0 √
4.0 

30.70 

28.39 
26.64 

25.28 

 34.84 

31.93 
29.43 

27.62 

35.40 

32.11 
29.53 

27.66 

 36.27 

32.90 
29.86 

28.06 

36.44    

32.79 
30.18 

28.15 

36.41 

32.56 
29.86 

27.86 

 36.42 

32.95 

30.10 

28.07 

36.29 

32.95 

30.13 

28.12 

Average 27.75  30.96 31.18  31.77 31.89 31.67  31.89 31.87 

Time –  0.10s 0.14s  1.46s 0.65s 4.80s  0.07s 1.68s 

 
Table 3. Average peak SNR (dB) of the deblurred images (Kodak 

dataset, 24 images). ?e Gaussian blur kernels used are discrete B-

splines of order 2𝑛, for 𝑛 = 1, 2, 4, 8. ?e noise variance is 10−5.  

Table 2. Average EPE on MPI-Sintel (3 warping stages). All flow 

initialized using [41]. In each warping iteration, EpicFlow, NL and 

HS use SOR (iterative), while we use non-iterative filtering. 

Sequence 
Initial 

EPE 

Iterative solutions  Ours 

HS5 NL Epic Geo6 Bilat7  Geo Bilat 

alley1 
alley2 

ambush7 
bamboo1 

bamboo2 
bandage1 

bandage2 
cave4 

market2 
mountain1 

shaman2 
shaman3 

sleeping1 
temple2 

0.797 
0.741 

0.738 
0.893 

1.969 
0.999 

0.619 
3.940 

1.100 
0.817 

0.514 
0.589 

0.486 
2.508 

0.438 
0.381 

2.436 
0.473 

2.322 
0.973 

0.516 
5.822 

1.155 
0.471 

0.239 
0.279 

0.134 
4.537 

0.232 
0.257 

0.573 
0.335 

1.543 
0.578 

0.294 

3.503 

0.619 

0.409 

0.182 

0.180 

0.110 
1.993 

0.280 
0.244 

0.538 

0.390 

1.562 
0.610 

0.296 
3.567 

0.635 
0.379 

0.206 
0.174 

0.082 

2.011 

0.256 
0.279 

0.592 
0.345 

1.543 
0.598 

0.304 
3.610 

0.650 
0.429 

0.215 
0.193 

0.110 
2.041 

0.248 
0.273 

0.566 
0.346 

1.536 

0.603 

0.302 
3.587 

0.628 
0.442 

0.205 
0.174 

0.111 
2.032 

 0.231 

0.245 

0.577 
0.343 

1.556 
0.600 

0.304 
3.583 

0.648 
0.388 

0.198 
0.182 

0.087 
2.037 

0.228 

0.252 

0.549 
0.351 

1.561 
0.606 

0.305 
3.544 

0.638 
0.390 

0.191 
0.167 

0.093 
2.022 

Average 1.194 1.441 0.772 0.784 0.797 0.790  0.784 0.778 

Time – 0.53s 18.2s 1.19s 2.69s 14.4s  0.65s 3.32s 

 

5Using 𝜆 = 40 and successive over-relaxation (SOR). 
6Using 𝜎Z,[ = 8, 𝜎] = 48, 𝜎� = 0.5 + 0.25𝑠 and 𝜆 = 2. 
7Using 𝜎Z,[ = 6, 𝜎] = 10, 𝜎� = 0.5 + 0.25𝑠 and 𝜆 = 2. 
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