

Abstract

 We propose a new, filtering approach for solving a large

number of regularized inverse problems commonly found in

computer vision. Traditionally, such problems are solved by

finding the solution to the system of equations that expresses

the first-order optimality conditions of the problem. @is can

be slow if the system of equations is dense due to the use of

nonlocal regularization, necessitating iterative solvers such

as successive over-relaxation or conjugate gradients. In this

paper, we show that similar solutions can be obtained more

easily via filtering, obviating the need to solve a potentially

dense system of equations using slow iterative methods. Our

filtered solutions are very similar to the true ones, but often

up to 10 times faster to compute.

1. Introduction

 Inverse problems are mathematical problems where one’s

objective is to recover a latent variable given observed input

data. In computer vision, a classic inverse problem is that of

estimating the optical flow [1], where the goal is to recover

the apparent motion between an image pair. ?e problems of

image super-resolution, denoising, deblurring, disparity and

illumination estimation are examples of inverse problems in

imaging and computer vision [2]–[5]. ?e ubiquity of these

inverse problems for real-time computer vision applications

places significant importance on efficient numerical solvers

for such inverse problems. Traditionally, an inverse problem

is formulated as a regularized optimization problem and the

optimization problem then solved by finding the solution to

its first-order optimality conditions, which can be expressed

as a system of linear (or linearized) equations.

 Recently, edge-preserving regularizers based on bilateral

or nonlocal means weighting have found use in many vision

problems [5]–[7]. Whereas such nonlocal regularizers often

produce better solutions than local ones, they generate dense

systems of equations that in practice can only be solved via

slow numerical methods like successive over-relaxation and

conjugate gradients. Such numerical methods are inherently

iterative, and are sensitive to the conditioning of the overall

problem. Iterative methods such as conjugate gradients also

require the problem to be symmetric (and semi-definite).

 In this work, we solve regularized optimization problems

of the form

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋𝐮 (1)

using fast non-iterative filtering, obviating the need to solve

dense systems of linear equations produced by geodesic and

bilateral regularizers for example. We validate our approach

on three classic vision problems: optical flow (and disparity)

estimation, depth superresolution, and image deblurring and

denoising, all of which are expressible in the form (1). Our

filtered solutions to such problems are all very similar to the

the true ones as seen in Figure 1, but 10× faster to compute

in some cases. Compared to the fast bilateral solver [5], our

formalism is not specific to the bilateral regularizer, and can

solve more advanced inverse problems such as the disparity

and the optical flow estimation problems.

Solving Vision Problems via Filtering

 Sean I. Young1 Aous T. Naman2 Bernd Girod1 David Taubman2

 sean0@stanford.edu aous@unsw.edu.au bgirod@stanford.edu d.taubman@unsw.edu.au

 1Stanford University 2University of New South Wales

Figure 1. Solving regularized inverse problems in vision typically

requires using iterative solvers like conjugate gradients. We solve

the same type of problems via filtering for a 10× speed-up.

D
ep

th
 S

R

D
is

p
ar

it
y

O
p
ti

ca
l

fl
o
w

D
eb

lu
rr

in
g

D
en

o
is

in
g

 True solvers Our filtering solvers

5592

2. Inverse Problems

 One feature of many inverse problems is that they either

do not have a unique solution, or the solution is unstable—it

does not depend continuously on the input. We refer to such

problems as ill-posed. ?erefore, inverse problems are often

reformulated for uniqueness and stability. ?e reformulation

can be demonstrated with a simple least-squares problem of

the form

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22, (2)

in which 𝐇 ∈ ℝ.×/, 𝐳 ∈ ℝ/. Problem (2) admits infinitely

many solutions when 𝑛 ≤ 𝑚, failing the uniqueness test, so

a reformulation of (2) is needed in this case.

 Even when 𝑛 > 𝑚, problem (2) can still fail the stability

test. Consider the problem instance with input data

 𝐇 = [1.0 0.0
1.0 0.0
0.9 0.1

] , 𝐳 = [1.0
1.0
1.0

] + 𝝐, (3)

for example. One can consider 𝝐 a perturbation on the exact

right-hand side vector of 𝟏—unless 𝝐 = 𝟎, there is no vector 𝐮 such that 𝐇𝐮 = 𝐳. While problem (2) admits the (unique)

solution 𝐮ls = 𝐇†𝐳 = (𝐇∗𝐇)−1𝐇∗𝐳, the solution becomes

unduly influenced by perturbation if 𝝐 lies along a particular

direction. ?is direction is 𝐇𝐮1, where 𝐮1 is a vector along

the minor eigen-axis of 𝐇∗𝐇. ?is calls for a reformulation

of (2) similarly to the case where 𝑛 ≤ 𝑚.

2.1. Regularization

 In computer vision problems, 𝐮 often represents a hidden

field of variables (such as the scene depth), each element of 𝐳 associated with a particular pixel location in the image. In

such problems, (2) is often reformulated by regularization:

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋𝐮, (4)

in which 𝐋 ∈ 𝕊+
.×. is a (graph) Laplacian matrix penalizing

the changes between adjacent vertices, and parameter 𝜆 > 0

specifies a tradeoff between the fidelity of the solution to the

input (𝐇, 𝐳) and solution smoothness. Problem (4) admits a

unique solution when 𝐤𝐞𝐫(𝐇∗𝐇) ∩ 𝐤𝐞𝐫(𝐋) = {𝟎}, and this

condition holds under most circumstances since 𝐋 is often a

high-pass operator corresponding to the Laplacian matrix of

some graph whereas 𝐇∗𝐇 is a low-pass operator (for image

deblurring), or a non-negative diagonal matrix (for disparity

and optical flow estimation). Since problem (4) is quadratic

in 𝐮, its solution may be expressed in closed form concisely

as 𝐮opt = (𝐇∗𝐇 + 𝜆𝐋)−1𝐇∗𝐳.

 Despite the simplicity, the objective of problem (4) has a

sufficiently general form, and suitably defining 𝐇 expresses

most inverse problems in vision and imaging like depth and

optical flow estimation, depth super-resolution, colorization

[6], image inpainting [8], de-blurring and de-noising [4]. By

suitably defining 𝐋, the objective of (4) expresses both local

[1], [2] and non-local [5]–[11] regularity terms. Problem (4)

is also sufficiently general to express non-quadratic models

based on, for example, Charbonnier and Huber losses.

 One notable non-quadratic objective is the total-variation

function of Rudin et al. [2]

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆‖𝑤(𝐊𝐮)‖1, (5)

in which 𝑤(𝑥) = |𝑥|, and 𝐊 is the difference matrix, so that 𝐋 = 𝐊∗𝐊. Although (5) appears quite different from (4), it

is shown by Chambolle and Lions [12] that (5) can readily

be solved using the lagged diffusivity method (or iteratively

re-weighted least-squares), which solves in the 𝑘th iteration

the least-squares problem

 minimize 𝑓C+1(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋C𝐮, (6)

in which

 𝐋C = 𝐊∗ 𝐝𝐢𝐚𝐠(abs(𝐊𝐮C))† 𝐊, (7)

and 𝐮C is the minimizer of 𝑓C. Since each problem (6) is in

the same form as (4), we do not need to separately consider

a fast method for solving (5).

2.2. Local vs Non-Local

 Solving regularized inverse problems of the form (4) can

be traced back to Phillips [13], Tikhonov [14], and Twomey

[15], [16] in the one-dimensional case, which was extended

to the two-dimensional case by Hunt [17]. A popular choice

of 𝐋 in two dimensions is one based on the finite-difference

(fd) or the finite-element (fe) stencils, which are

 𝕃fd = [−1 −1 4 −1
 −1

] , 𝕃fe = [−1 −2 −1−2 12 −2−1 −2 −1
], (8)

respectively. ?e latter is used by Horn and Schunck [1].

 Gilboa and Osher [8] demonstrate the benefits of using a

non-local Laplacian for image denoising and inpainting. As

the authors pointed out, their non-local Laplacian is itself an

adaptation of graph Laplacians of [18]. Given an 𝑁-sample

image whose 𝑁 vertices are 𝐩., 1 ≤ 𝑛 ≤ 𝑁 , we can define

a graph Laplacian over the vertices as 𝐋 = 𝐃 − 𝐀, with 𝐀

denoting the weighted adjacency matrix of some graph over

the vertices {𝐩.}, and 𝐃 = 𝐝𝐢𝐚𝐠(𝐀𝟏) is the degree matrix

of this graph. In vision applications, the weighted adjacency

between 𝐩. and 𝐩/ is usually a function of ‖𝐩. − 𝐩/‖, so

one can define 𝐀 as 𝑎/. = 𝑟(‖𝐩. − 𝐩/‖) in terms of some

non-increasing function 𝑟 ∈ ℝ+ → ℝ+.

2.3. Bilateral vs Geodesic

 One notable graph Laplacian is inspired by the success of

the bilateral filter [19], [20]. Suppose we have an 𝑁-sample

image 𝐳 ∈ ℝS ≅ ℝU, whose sample locations are the points 𝐷 of a rectangular grid in the 𝑥-𝑦 plane. ?e bilateral-space

representation [21] of the image vertices is

5593

 𝐩. = (𝑥.𝜎Z
𝑦.𝜎[

𝑧.𝜎]) ∈ 𝐷 ⊕ [0,255], (9)

in which 𝜎Z,[,] are the scales of the bilateral space in their

respective dimensions. If we define the graph adjacencies 𝐀

over 𝐩. as 𝑎/. = e−|ab−ac|2/2, then 𝐃†𝐀 and 𝐃 − 𝐀 are

respectively, the bilateral filter and the bilaterally-weighted

graph Laplacian matrices. Observe that when 𝜎] = ∞, 𝐀 is

simply a Gaussian blur operator with scales 𝜎Z and 𝜎[.

 Another graph Laplacian often found in edge-preserving

regularization is one based on the geodesic distance. In such

a case, matrix 𝐀 is defined as 𝑎/. = e−geod(ab,ac), where

geod(𝐩., 𝐩/) is the distance of the shortest path from point 𝐩. to point 𝐩/ on the two-dimensional manifold defined by

the vertices {𝐩.}. ?at is,

geod(𝐩., 𝐩/) = minh,(ij)1≤j≤l: ij∼ij+1,ab=i1, il=ac
 ∑  |𝐯s − 𝐯s+1|
h−1
s=1

, (10)

in which 𝐯 ∼ 𝐯′ means that 𝐯 and 𝐯′ are adjacent pixels on

the two-dimensional grid.

 Since bilateral and geodesic graph Laplacians often have

degrees that differ across vertices, normalization is typically

applied for more uniform regularization. ?e most common

form of normalization is �̃� = 𝐃†/2𝐋𝐃†/2, referred to as the

symmetric-normalized Laplacian, and �̂� = 𝐃†𝐋, referred to

as the random-walk normalized Laplacian [18], [22]. Barron

et al. [7] use the Sinkhorn-normalized form [23], [24] of the

bilateral-weighted graph Laplacian. By contrast, Laplacians

based on stencils (8) are already normalized up to a constant

scaling factor (except possibly at the image boundaries).

3. Related Work

 Whereas the solution 𝐮opt = (𝐇∗𝐇 + 𝜆𝐋)−1𝐇∗𝐳 of (4)

is simple, its numerical evaluation can be expensive. Except

in a handful of scenarios, 𝐮opt must be evaluated iteratively

using numerical methods such as successive over-relaxation

or conjugate gradients, both of which require us to evaluate

the mappings 𝐭 ↦ 𝐇∗𝐇𝐭 and 𝐭 ↦ 𝐋𝐭 repeatedly. ?e latter

mapping can be particularly expensive to evaluate if 𝐋 has a

nonlocal (dense) matrix structure. Krylov-subspace methods

like conjugate gradients additionally require the spectrum of 𝐇∗𝐇 + 𝜆𝐋 to be clustered for faster convergence.

3.1. Fast Solvers

 For optical flow estimation, Krähenbühl and Koltun [11]

consider the bilaterally-regularized instance of (4), but with

the Charbonnier penalty for regularization. ?ey essentially

use the fact that 𝐋 = 𝐃 − 𝐀, where 𝐀 is the unnormalized

bilateral filter, and evaluate the mapping 𝐭 ↦ 𝐀𝐭 efficiently

inside conjugate gradients with a fast implementation of the

bilateral filter. However, ten or more iterations of conjugate

gradients are usually required even when preconditioning is

used, which is not as efficient as a non-iterative approach.

 Barron and Poole [5] propose their bilateral solver for the

specific case where 𝐋 is bilateral-weighted, and 𝐇 is square

and diagonal. Forming the Laplacian �̃� = 𝐈 − �̃� in terms of

the bi-stochasticized �̃�, they factorize �̃� = 𝐒𝐁𝐒∗, where 𝐒

and 𝐁 are the slice and the blur operators respectively. ?ey

reformulate problem (4) in terms of 𝐮 = 𝐒𝐲 as

 minimize 𝑓(𝐲) = ∥�̂�𝐲 − 𝐳∥̂22 + 𝜆𝐲∗(𝐈 − 𝐁)𝐲, (11)

the solution 𝐲opt of which is obtained using pre-conditioned

conjugate gradients. ?e solution of the original problem (4)

is finally obtained as 𝐮opt ≈ 𝐒𝐲opt.

 Although the bilateral solver produces efficient solutions

in practice, the solver is iterative, and does not generalize to

problems with other edge-preserving regularizers. Also, the

solution 𝐒𝐲opt suffers from block artifacts, requiring further

post-processing by a second edge-preserving filter, as stated

by the authors themselves.

3.2. Fast Filtering

 Fast solvers like the bilateral solver ultimately depend on

the ability to perform bilateral filtering efficiently. Many fast

bilateral filtering methods have been proposed. ?ey include

the adaptive manifold [25], the Gaussian 𝐾D-tree [26], and

the permutohedral lattice [21] filters. All of them exploit the

fact that filtering with a large kernel can also be achieved by

(i) down-sampling the input, (ii) filtering the down-sampled

signal using a smaller filter kernel, finally (iii) up-sampling

the filtered signal. ?is series of operations is often referred

to as the splat-blur-slice pipeline. Such a pipeline guarantees

a computational complexity constant in the size of the filter

kernel. By contrast, the complexity of a naïve bilateral filter

implementation would scale linearly with kernel size.

 Similarly, efficient geodesic regularization depends upon

efficient geodesic filtering. Fast implementations of the filter

include the geodesic distance transform [27] and the domain

transforms [28]. Since geodesic filtering requires computing

the shortest path between every pair of vertices (10), a naïve

implementation of the filter would be quite expensive. As an

example, if Dijkstra’s algorithm is used to find all pixelwise

shortest paths, geodesic filtering would have an 𝑂(𝑁3) cost

in the number 𝑁 of pixels.

4. Our Filtering Method

 We now present the main result of our work. We assume

that 𝐋 is Sinkhorn-normalized as in [5], although this is not

required in practical implementations. ?e proposed method

originates from the observation that without regularization,

 argmin� ‖𝐇𝐮 − 𝐳‖22 = argmin � ‖𝐇(𝐮 − 𝐇†𝐳)‖22, (12)

so we can consider 𝐇†𝐳 some transformed signal to filter by

least-squares using the weights (inverse covariance matrix)

5594

𝐇∗𝐇 (but the problem is still ill-posed). Note the structural

(in contrast to the numeric) pseudo-inverse of 𝐇 ∈ ℝ.×/ is

defined as

 𝐇† = {𝐇∗(𝐇𝐇∗)−1 if 𝑛 ≤ 𝑚
(𝐇∗𝐇)−1𝐇∗ if 𝑛 > 𝑚 ,

 (13)

so whereas relationship (12) always holds, it is generally not

the case that ‖𝐇𝐮 − 𝐳‖22 = ‖𝐇(𝐮 − 𝐇†𝐳)‖22 when 𝑛 > 𝑚.

 Using the weighing 𝐂 = 𝐇∗𝐇, we propose to obtain the

solution of the regularized problem (4) non-iteratively as1

 𝐮filt = 𝐅†𝐀𝐂𝐇†𝐳 𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝐂𝟏), (14a)
 = 𝐅†𝐀𝐇∗𝐳,

in which 𝐀 is the graph adjacency (or low-pass filter) matrix

of 𝐋. Said simply, 𝐮filt is filtering of the naïve solution 𝐇†𝐳

of the ill-posed problem (2) using the least-squares weights 𝐂, normalized by 𝐅 to preserve the mean of the signal. ?is

is the idea of normalized convolution [29] applied to solving

regularized inverse problems.

 For some instances of problem (3), the weighting by 𝐂 is

neither necessary nor desirable. In the deblurring instance of

problem (2) for example, the original ill-posed problem is to

solve 𝐇𝐮 − 𝐳 = 𝟎 for 𝐮. ?e blur operator 𝐇 is structurally

(but not numerically) invertible, and it would have been just

as valid to formulate the regularized inverse problem as2

 minimize 𝑓(𝐮) = ‖𝐮 − 𝐇†𝐳‖22 + 𝜆𝐮∗𝐋𝐮, (15)

in which case the weighting by 𝐂 disappears. Depending on

the application, we therefore use the de-weighted variant of

our filtering strategy

 �̂�filt = 𝐅†𝐀𝐇†𝐳, 𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝟏), (14b)

cf. the original pixelwise weighted formulation (14a).

 Note that since 𝐀 is a low-pass filter, our approach (14a)

is valid only if (𝐂 + 𝜆𝐋)−1 has a low-pass response. ?is is

fortunately the case for most inverse problems in vision. ?e

image deblurring problem is unique in that (𝐂 + 𝜆𝐋)−1 has

a high-pass response, and is ill-approximated by 𝐀. In such

a case, one can apply the de-weighted variant of our method

(14b) to solve the problem. ?e supplement discusses this in

more detail. We make no specific assumptions regarding the

structural rank of 𝐇 ∈ ℝ.×/, while we continue to assume

that 𝐤𝐞𝐫(𝐂) ∩ 𝐤𝐞𝐫(𝐋) = {𝟎} for a unique solution.

4.1. Analysis when 𝐂 = 𝐈

 To observe 𝐮filt ≈ 𝐮opt in (14a), let us consider a simpler

instructive instance of problem (4), where 𝐂 = 𝐈. ?en, our

solution (14a) can be written as 𝐮filt = 𝐀𝐳, and the true one

as 𝐮opt = 𝐆𝐳 with 𝐆 = (𝐈 + 𝜆𝐋)−1. Since 𝐋 is symmetric

and positive semi-definite, we can write 𝐋 = 𝐔𝚲𝐔∗, where 𝐔 are the eigenvectors of 𝐋, the corresponding eigenvalues

of which are 𝚲 = 𝐝𝐢𝐚𝐠(𝜆1, 𝜆2, . . . , 𝜆S). We assume 𝜆. are

ordered as 0 = 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆S ≤ 1.

 One can observe that the filter 𝐀 = 𝐔(𝐈 − 𝚲)𝐔∗ has the

spectral filter [22] factors

 1 = 1 − 𝜆1 ≥ 1 − 𝜆2 ≥. . . ≥ 1 − 𝜆S ≥ 0, (16)

and 𝐆 = 𝐔(𝐈 + 𝜆𝚲)−1𝐔∗ has the factors

 1 =
1

1 + 𝜆1 ≥ 1

1 + 𝜆2 ≥. . . ≥ 1

1 + 𝜆S ≥ 1

2
, (17)

assuming 𝜆 = 1 for simplicity. ?e eigenvalues of 𝐀 decay

towards 0 while those of 𝐆, towards 1 2⁄ . However, we can

easily equalize the two spectral filter responses by applying

the mapping 𝐀 ↦ (𝐀 + 𝐈)/2. In any case, they both have a

unit DC gain (or a unit filter response to the constant vector 𝟏) as can be seen in the left-hand side of (16)–(17) (the first

eigenvector of 𝐋 is 𝑁−1/2𝟏).

 Since the two spectral factors (𝐈 − 𝚲) and (𝐈 + 𝚲)−1 are

generally not the same, our filtered solutions 𝐮filt = 𝐀𝐳 are

necessarily an approximation of 𝐮opt = 𝐆𝐳. However, such

an approximation is reasonable since our true objective is to

obtain a good solution to a vision problem, not to accurately

solve problem (4) per se.

4.2. Analysis when 𝐂 ≠ 𝐈 but (block-) diagonal

 Let us relate our filter solution 𝐮filt to the true 𝐮opt when 𝐂 is no longer the identity but diagonal. We write 𝐳̂ = 𝐇†𝐳

for convenience. ?en, the solution of problem (4) becomes 𝐮opt = (𝐂 + 𝜆𝐋)−1𝐂𝐳 ̂and 𝐮filt = 𝐅†𝐀𝐂𝐳 ̂(14a). Suppose

all weights are initially 𝐂 = 𝐈 as in 4.1. To observe how the

solution 𝐮opt changes when an arbitrary weight 𝑐.. is set to

1 − 𝜖., we invoke the Sherman-Morrison formula to write

 (𝐂 + 𝜆𝐋)−1 = (𝐈 + 𝜆𝐋 − 𝜖𝐝.𝐝.∗)−1

(18)
 = 𝐆 +

𝜖.𝐆𝐝.𝐝.∗ 𝐆∗
1 − 𝜖.𝐝.∗ 𝐆𝐝.

 = 𝐆 + 𝛼.𝐠.𝐠.∗ ,
in which

 𝛼. =
𝜖.

1 − 𝜖.𝑔.. , 0 ≤ 𝛼. ≤ 1, (19)

and 𝐝. is the 𝑛th column of the identity matrix.

 ?e equalities (18) tell us that setting 𝑐.. = 1 − 𝜖. adds 𝛼.𝐠.𝐠.∗ to 𝐆, which is the unique adjustment guaranteeing

that (𝐆 + 𝛼.𝐠.𝐠.∗)𝐂 has a unit row-sum. ?is adjustment

is small if 𝐆 has a large effective filter scale since 𝐠.∗ 𝟏 = 1

implies the elements of 𝐠. are small. We similarly guarantee

that the filter 𝐅†𝐀𝐂 has a unit row-sum but normalizing by 𝐅† explicitly. A similar argument to (18)–(19) may be given

for the general vectorial case where 𝐂 is block-diagonal, as

is the case in the optical flow estimation problem.

1Despite the cosmetic resemblance, 𝐅†𝐀 has no relationship to iteration

matrices seen in e.g. the Jacobi, Gauss-Seidel or SOR methods.
2Numerically, 𝐇† is computed using the truncated SVD in the general

case, or efficiently via the FFT if 𝐇 is shift-invariant (e.g. a blur operator).

5595

5. Robust Estimation

 Our filtering method (14) can be robustified by changing

the filter 𝐀 in the graph domain. By augmenting the vertices

(9) of the underlying graph as

 𝐩. = (𝑥.𝜎Z
𝑦.𝜎[

𝑧.𝜎]
𝑢.𝜎�), (20)

in which 𝑢. is the 𝑛th element of the previous solution, and 𝜎� is the scale of this solution. (For the optical flow and the

illumination estimation problems, both components 𝑢1. and 𝑢2. are added to 𝐩. with their respective scales.)

 If 𝐀 is Gaussianly weighted as 𝑎/. = e−|ab−ac|2/2, the

introduction of 𝑢. corresponds to the use of the Welsch loss

for our regularization. However, in the case where 𝐀 is the

geodesic filter with 𝑎/. = e−geod(ab,ac), introducing 𝑢. is

difficult to interpret within the established robust estimation

framework. Since the Welsch loss

 𝑤(𝑥) = 𝜎2(1 − exp(− 𝑥2 2𝜎2⁄)) (21)

is non-convex (and non-homogeneous), the scale parameter 𝜎� plays an important role in guaranteeing the convexity of

our problem. Observing that 𝑤 is convex across the interval

[−𝜎, 𝜎], we should set 𝜎 such that most of the input to 𝑤 fall

inside this interval. ?e input may fall outside of the convex

interval some of the time as long as the Hessian of the over-

all objective in (5) is positive semidefinite. Krähenbühl and

Koltun [11] on the other hand propose an efficient method to

incorporate other convex robust losses 𝑤 in (5).

6. Solving Vision Problems

 We apply our method to a number of vision problems, all

of which can be written in the form (4). One may also apply

our method to other simpler problems discussed in [5], such

as semantic segmentation and colorization, which can all be

converted into the form (4).

6.1. Depth Super-resolution

 In the depth super-resolution problem [30]–[32], the goal

is to upsample a depth map captured by a depth camera to a

higher resolution one in an edge-aware manner. For a given

low-resolution depth map 𝐳, the super-resolution problem is

expressed by

 minimize 𝑓(𝐮) = ‖𝐇𝐮 − 𝐳‖22 + 𝜆𝐮∗𝐋𝐮, (22)

in which the down-sampler 𝐇 = 𝐒𝐁, where 𝐁 represents a

pre-filter (a windowed sinc, in accordance with the Nyquist

theorem), and 𝐒 is a sub-sampler. We use (14b) to obtain

 𝐮filt = 𝐅†𝐀𝐁∗𝐒∗𝐳, 𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝐁∗𝐒∗𝐒𝐁𝟏), (23)

so we first upsample 𝐳 using 𝐁∗𝐒∗, filter the result using 𝐀

and normalize. Figure 2 illustrates depth super-resolution.

6.2. Disparity Estimation

 Disparity estimation can be formed as a non-linear least-

squares problem at first, and solved iteratively as a series of

linear(ized) least-squares problems using the Gauss-Newton

algorithm. In the 𝑘 + 1th iteration, the estimated disparity is

given by the solution of the regularized inverse problem

minimize 𝑓C+1(𝐮) = ‖𝐙�(𝐮 − 𝐮C) + 𝐳�C‖22⏟⏟⏟⏟⏟⏟⏟⏟⏟
��(�)

+ 𝜆𝐮∗𝐋𝐮
(24)

in which 𝐮C is the minimizer of 𝑓C, 𝐙� = 𝐝𝐢𝐚𝐠(𝐳�) and 𝐳�C

are the 𝑥- and 𝑡-derivatives of the image pair, warped using

the disparity estimate 𝐮C. We can then write the first term of

the objective function of (24) as

 𝑑C(𝐮) = ‖𝐙�(𝐮 − 𝐳Ĉ)‖22, �̂�C = 𝐮C − 𝐙�† 𝐳�C, (25)

using the relationship (12) on 𝑑C(𝐮). We obtain the 𝑘 + 1th

estimate of the disparity via filtering

 𝐮C+1 = 𝐅†𝐀(𝐙�2𝐮C − 𝐙�∗ 𝐳�C), 𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝐙�2𝟏). (26)

6.3. Optical Flow Estimation

 ?e optical flow estimation problem is a vector extension

of disparity estimation (24). Since there are now two values

to estimate at each pixel, one may wonder if our method can

still be applied. In fact, our formalism remains the same. To

recap, the 𝑘 + 1th flow estimate is the solution of

 minimize 𝑓C+1(𝐮) = 𝜆𝐮�∗ 𝐋𝐮� + 𝜆𝐮�∗𝐋𝐮�

(27)

+ ∥(𝐙�, 𝐙�)(𝐮 − 𝐮C) + 𝐳�C∥22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

��(�)

D
is

p
ar

it
y
 S

R

 Reference image Ground truth disparity Low-resolution disparity Our disparity (geodesic) Our disparity (bilateral)

Figure 2. ?e 16× super-resolution disparity maps produced using the geodesic and the bilateral variants of our method for the 1088 × 1376

Art scene. Best viewed online by zooming in. Results are typical (more results are available in the supplement).

5596

[33], where 𝐮 = (𝐮�∗ , 𝐮�∗)∗, and 𝐮C, 𝐙�, and 𝐙� are defined

similarly as for (24). We can rewrite the last term of (27) as

 𝑑C(𝐮) = ∥(𝐙�, 𝐙�)(𝐮 − 𝐳Ĉ)∥22, (28)

in which 𝐳Ĉ = 𝐮C − (𝐙�, 𝐙�)†𝐳�C.

 Unlike in the disparity estimation problem, we now have

two flow components that cannot be filtered separately—the

inverse covariances (𝐙�, 𝐙�)∗(𝐙�, 𝐙�) now couple the two

flow components 𝐮�∗ and 𝐮�∗ . ?e original equation (14a) is

therefore generalized to the vectorial case. ?e new estimate

of flow is obtained as

 𝐮C+1 = 𝐅†𝐀(𝐙𝐮C − (𝐙�, 𝐙�)∗𝐳�C), (29)

in which

 𝐀 = [𝐀

𝐀], 𝐙 = [𝐙�2 𝐙�𝐙�𝐙�𝐙� 𝐙�2], (30)

and

 𝐅 = [𝐝𝐢𝐚𝐠(𝐀𝐙�2𝟏) 𝐝𝐢𝐚𝐠(𝐀𝐙�𝐙�𝟏)
𝐝𝐢𝐚𝐠(𝐀𝐙�𝐙�𝟏) 𝐝𝐢𝐚𝐠(𝐀𝐙�2𝟏)], (31)

so that as well as filtering the signal 𝐙𝐮C − (𝐙�, 𝐙�)∗𝐳�C, we

need also to filter 𝐙�2𝟏, 𝐙�2𝟏 and 𝐙�𝐙�𝟏.

 Observe that the mapping 𝐱 ↦ 𝐀𝐱 simply filters the two

components of 𝐱 separately, whereas the matrices 𝐙 and 𝐅

can be permuted to be block-diagonal, whose 𝑛th blocks are

the 2 × 2 matrices

 𝐙. = [𝑧�.2 𝑧�.𝑧�.𝑧�.𝑧�. 𝑧�.2], (32)

and

 𝐅. = [𝐚.∗ 𝐚.∗] [𝐙�2𝟏 𝐙�𝐙�𝟏
𝐙�𝐙�𝟏 𝐙�2𝟏], (33)

respectively. Essentially, 𝐅. is a weighted sum of the 2 × 2

inverse covariance matrices with which to normalize the 𝑛th

filtered vector. Figure 3 illustrates optical flow estimation.

6.4. Image Deblurring

 In the classic image deblurring problem, our objective is

to recover a deblurred image from some blurry image 𝐳. We

use the de-weighted variant (14b) of our method to recover

the deblurred image as

 𝐮filt = 𝐅†𝐀𝐇†𝐳, 𝐅 = 𝐝𝐢𝐚𝐠(𝐀𝟏), (34)

in which 𝐇 is some known blur operator. When 𝐇 = 𝐈, (34)

simply reduces to edge-aware filtering.

 One can express 𝐇† = 𝐔𝚲†𝐔∗, where 𝐔 is the discrete

two-dimensional Fourier basis, and 𝚲 is their corresponding

magnitude response. We can compute 𝐇†𝐳 in the frequency

domain by multiplying the Fourier coefficients of 𝐳 with the

inverse magnitude response 𝚲†, and transforming the result

back into the image domain.

 For practical implementations, however, one needs to use

the numerical definition of 𝐇†. Expressing the blur operator

O
p
ti

ca
l

fl
o
w

 e
st

im
at

io
n

 Ground truth Baseline flow Our flow (geodesic) Our flow (bilateral)

Figure 3. Optical flow (top row) and the corresponding flow error (bottom row) produced using the geodesic and the bilateral variants of our

method. ?e baseline flow is [41] and we perform 3 warping iterations. Whiter pixels correspond to smaller flow vectors.

Im
ag

e
d
eb

lu
rr

in
g

 Ground truth Noisy blurred image Our deblurred (geodesic) Our deblurred (bilateral)

Figure 4. Crops of the deblurred images from the Kodak dataset, produced using the geodesic and the bilateral variants of our method when

the standard deviation of the blur kernel is 2. Noise variance is 10−5. Results are typical (more results are available in the supplement).

5597

as 𝐇 = 𝐅𝚲𝐅∗, where 𝐅 denote the discrete Fourier vectors

and 𝚲 is the diagonal matrix of the magnitude response, we

define 𝐇ϵ† = 𝐅𝚲§†𝐅∗, where

 (𝚲§†). = {𝜆.−1 if 𝜆. > 𝜖 ,

0 otherwise
 (35)

is the 𝑛th diagonal element of 𝚲§†. Essentially, the numerical

pseudo-inverse 𝚲§† treats all 𝜆. ≤ 𝜖 as 0. We can regard our

solution 𝐅†𝐀𝐇ϵ†𝐳 as a noiseless Wiener deblurring solution

filtered by an edge-aware filter 𝐀 which is then normalized.

 Another choice of inverse filter is 𝐇ϵg = 𝐅𝚲§g𝐅∗, where

 (𝚲§g). = min(𝜆.−1, 𝜖−1) (36)

and one can verify that 𝐇ϵg defined via (36) is a generalized

inverse but not the pseudo-inverse of 𝐇. Since thresholding

(35) introduces ringing artifacts in the de-blurred image, the

rectified filter factors (36) are preferable over (35). Observe

that the generalized inverse 𝐇g yields the relation

 argmin ‖𝐇𝐮 − 𝐳‖22 = argmin ‖𝐇(𝐮 − 𝐇g𝐳)‖22 (37)

similarly to the relation regarding 𝐇† in (12). Figure 5 plots

the pseudo-inverse and the generalized inverse responses.

7. Experimental Results

 To demonstrate the proposed method, we implement our

filter to solve a few problems from the previous section. ?e

disparity estimation problem (24) is a special case of optical

flow estimation (27), so we consider the latter problem only

in this section. We use the domain transforms filter [28] and

the permutohedral lattice filter [21] implementations for the

geodesic filter, and the bilateral filter, respectively. Running

times are obtained on a single core of an Intel 2.7GHz Core

i7 processor (iMac mid-2011). Note, the bilateral variants of

our methods are slower than their geodesic counterparts due

solely to the speed of the bilateral filter implementation [21]

used. However, the bilateral variants perform slightly better

than the geodesic ones.

 In all applications, we formulate the graph vertices in the 𝑥-𝑦-𝑢-𝑙-𝑎-𝑏 space as

 𝐩. = (𝑥.𝜎Z
𝑦.𝜎[

𝑢.𝜎�
ℓ.𝜎]

𝑎.𝜎]
𝑏.𝜎]), (38)

and optimize 𝜎Z,[, 𝜎] and 𝜎� using grid search separately

for each problem. ?e results for our two iterative solutions

in Tables 1 and 2 (geodesic and bilateral) are computed with

conjugate gradients (24 iterations, norm tolerance of 10−6).

7.1. Depth Super-resolution

 Using the depth map super-resolution dataset of [30], we

measure the accuracy and efficiency of our super-resolution

method based on our filtering formalism. ?e method is also

compared with a number of other well-performing ones. We

assume 𝐁 in (23) is the lanczos3 windowed sinc resampling

operator. We set our filter scales adaptively using

 𝜎Z,[= 𝑠 + 2, 𝜎] = 160 𝑠⁄ , 𝜎� = 𝑠 + 10 (39)

for the bilateral variant of our method, and

 𝜎Z,[= 3𝑠, 𝜎] = 48, 𝜎� = 16
√𝑠 (40)

for the geodesic variant (𝑠 is the super-resolution factor).

 Table 1 lists the peak SNR for the depth super-resolution

Table 1. Depth super-resolution performance of different methods. ?e PSNR (dB) values are of the supperresolution disparity to the ground

truth. Running times are for the 16× case. ?e results for other methods (first six rows) are based on the mean squared errors reported in [5].

Methods
Art Books Möbius Average

Time
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

O
th

er
 m

et
h

o
d

s Guided filter [35]
Diebel and ?run [34]

Chan et al.[36]
Park et al. [30]

Yang et al. [33]
Ferstl et al.[31]

37.13
37.27

37.40
36.63

38.56
38.05

35.44
35.24

35.30
35.11

36.27
35.96

33.18
32.23

32.60
32.86

34.42
34.01

29.83
28.94

29.63
29.29

30.55
30.50

 40.64
41.85

41.73
42.33

42.69
44.49

39.41
38.59

39.28
39.83

40.60
41.24

37.45
35.96

36.58
37.76

39.00
40.28

35.03
33.93

33.40
34.40

35.54
37.15

 40.24
41.56

41.77
42.29

42.46
44.78

39.13
38.30

39.54
40.21

40.49
41.98

37.15
35.79

36.70
38.00

38.70
39.90

35.01
33.95

33.60
35.11

35.32
37.25

 39.19
39.97

40.05
39.98

41.02
41.85

37.80
37.24

37.81
38.05

38.87
39.29

35.70
34.48

35.07
35.87

37.11
37.56

32.93
31.94

32.01
32.52

33.48
34.36

23.9s
–

3.02s
24.1s

–
140.s

It
er

at
iv

e

Bilateral Solver3 [5]
Geodesic4 (22)

Bilateral4 (22)

40.16
41.80

43.02

37.24
37.88

38.59

34.87
35.41

35.94

31.41
31.67

32.26

 47.58
48.95

49.43

44.76
45.53

45.79

42.37
42.41

42.96

39.56
39.74

39.77

 48.47
49.67

49.82

45.80
46.16

45.78

43.37

42.81

43.20

40.84

39.78

40.65

 43.70
45.25

46.22

40.82
41.45

41.96

38.44
38.78

39.29

35.15
35.27

35.82

1.61s
1.60s

8.23s

O
u

rs

Geodesic
Bilateral

41.73
43.63

38.31
38.98

35.79
36.15

31.66
32.22

 49.06
49.72

45.49
45.96

42.77
43.09

39.70
39.87

 49.50
48.89

46.07
45.78

43.23
42.96

40.39
40.30

 45.19
46.51

41.75
42.26

39.16
39.43

35.32
35.76

0.44s

1.41s

3Using 𝜎Z,[= 8, 𝜎± = 4, 𝜎�,² = 3, 𝜆 = 4³−1/2, as suggested in [5].
4Here, 𝜎Z,[, 𝜎] , 𝜎� , 𝜆 are found by separate grid search for each scale.

ℎ̂

ℎ̂§g

ℎ̂§†

ℎ̂§µ

𝜖

Figure 5. Magnitude responses of a blur kernel (left) and different

inverse responses (right). ?e Wiener response ℎ̂µ varies smoothly

across frequencies. ?e pseudo-inverse response ℎ̂† is thresholded

to zero. Our generalized inverse one ℎ̂g has a rectified response.

5598

methods and their running times. ?e results in the top rows

(other methods) are computed using Table 2 of [5] (from the

supplement). ?e results of Bilateral Solver [5] are obtained

using the publicly available code. Our two filtering methods

are 1–100 times faster than most methods specialized to the

super-resolution application. Figure 2 shows our 16× depth

maps obtained using the geodesic variant of our method.

7.2. Optical Flow Estimation

 Using the training set of the MPI-Sintel optical flow data

set [34], we now compare the accuracy and the efficiency of

our filtering method with the iterative variational optimizer

of EpicFlow [35] also used by [36]–[40], the Horn-Schunck

[1] and the Classic+NL [41] methods. Our iterative bilateral

baseline is similar to [11], but uses the Welsch loss in place

of the Charbonnier loss for regularity. We initialize the flow

(27) using the interpolation of DeepMatching [42]. Both our

method and EpicFlow use 3 outer warping iterations. We set

our filter parameters adaptively using

 𝜎Z,[= 10, 𝜎] = 12, 𝜎� = 0.5𝑠 (41)

for the bilateral variant of our method, in which 𝑠 is the root

mean-square magnitudes of the initial flow vectors, and

 𝜎Z,[= 20, 𝜎] = 96, 𝜎� = 𝑠 (42)

for the geodesic variant. We set the parameters of EpicFlow

to the Sintel settings. Table 2 provides the average endpoint

errors and the run times after optical flow estimation.

 ?e geodesic variant of our method has a similar average

end-point error as the variational optimizer of EpicFlow (or

successive overrelaxation) while being 1.8 times fast. In the

timing results, we include the time spent on computation of

the elements of 𝐙 (30), which is 0.13s per warping iteration

for all methods. Figure 3 visualizes our flow estimates.

7.3. Deblurring and Denoising

 For deblurring, we assume that the point spread function

of the blur is known. ?e blur kernels we use have the form 𝐡𝐡∗, where 𝐡 is a discrete Gaussian with the 𝑧-transform

 ℎ(𝑧) = 2−2.(1𝑧−1 + 2𝑧0 + 1𝑧1)., (43)

that is, the B-spline kernel of order 2𝑛. As 𝑛 increases from

1 to 8, we increase 𝜎Z,[and 𝜎] from 4 to 10, and 28 to 36

respectively for our geodesic variant, and from 3 to 4, and 9

to 12 respectively for our bilateral one.

 Table 3 provides the peak SNRs of the de-blurred images

for different blur kernels. For comparison, the results for 𝐿2

(quadratic regularity), TV (total variation) [43] and Wiener-

filtered solutions. All algorithm parameters used in different

models are found using a grid search. ?e Wiener filter uses

a uniform image power spectrum model. Separability of the

blur kernels may be used to accelerate the iterative methods

further (our times are for direct 2D deconvolution). Note the

bilateral filter is not optimal for de-noising as pointed out by

Buades et al. [9], who demonstrate the advantages of patch-

based filtering (nonlocal means denoising) over pixel-based

filtering (bilateral filter), so we can also choose the nonlocal

means for 𝐀. Figure 4 shows crops of our deblurred images.

8. Conclusion

 In this paper, we solved regularized inverse problems via

filtering. While such optimization problems are traditionally

solved by finding a solution to a system of equations which

expresses the optimality conditions, we showed that the act

of solving such equations can actually be seen as a filtering

operation, and reformulated the regularized inverse problem

as a filtering task. We proceeded to solve a number of vision

problems which are traditionally solved using iterations. We

showed that the performance of our method is comparable to

the methods specifically tailored and implemented for these

applications. We hope that other vision researchers also find

our approach useful for solving their own vision problems.

Blur

scale

Input

PSNR

 FFT-based Iterative methods Our methods

 Wiener 𝐿2 TV Geo Bilat Geo Bilat √
0.5 √
1.0 √
2.0 √
4.0

30.70

28.39
26.64

25.28

 34.84

31.93
29.43

27.62

35.40

32.11
29.53

27.66

 36.27

32.90
29.86

28.06

36.44

32.79
30.18

28.15

36.41

32.56
29.86

27.86

 36.42

32.95

30.10

28.07

36.29

32.95

30.13

28.12

Average 27.75 30.96 31.18 31.77 31.89 31.67 31.89 31.87

Time – 0.10s 0.14s 1.46s 0.65s 4.80s 0.07s 1.68s

Table 3. Average peak SNR (dB) of the deblurred images (Kodak

dataset, 24 images). ?e Gaussian blur kernels used are discrete B-

splines of order 2𝑛, for 𝑛 = 1, 2, 4, 8. ?e noise variance is 10−5.

Table 2. Average EPE on MPI-Sintel (3 warping stages). All flow

initialized using [41]. In each warping iteration, EpicFlow, NL and

HS use SOR (iterative), while we use non-iterative filtering.

Sequence
Initial

EPE

Iterative solutions Ours

HS5 NL Epic Geo6 Bilat7 Geo Bilat

alley1
alley2

ambush7
bamboo1

bamboo2
bandage1

bandage2
cave4

market2
mountain1

shaman2
shaman3

sleeping1
temple2

0.797
0.741

0.738
0.893

1.969
0.999

0.619
3.940

1.100
0.817

0.514
0.589

0.486
2.508

0.438
0.381

2.436
0.473

2.322
0.973

0.516
5.822

1.155
0.471

0.239
0.279

0.134
4.537

0.232
0.257

0.573
0.335

1.543
0.578

0.294

3.503

0.619

0.409

0.182

0.180

0.110
1.993

0.280
0.244

0.538

0.390

1.562
0.610

0.296
3.567

0.635
0.379

0.206
0.174

0.082

2.011

0.256
0.279

0.592
0.345

1.543
0.598

0.304
3.610

0.650
0.429

0.215
0.193

0.110
2.041

0.248
0.273

0.566
0.346

1.536

0.603

0.302
3.587

0.628
0.442

0.205
0.174

0.111
2.032

 0.231

0.245

0.577
0.343

1.556
0.600

0.304
3.583

0.648
0.388

0.198
0.182

0.087
2.037

0.228

0.252

0.549
0.351

1.561
0.606

0.305
3.544

0.638
0.390

0.191
0.167

0.093
2.022

Average 1.194 1.441 0.772 0.784 0.797 0.790 0.784 0.778

Time – 0.53s 18.2s 1.19s 2.69s 14.4s 0.65s 3.32s

5Using 𝜆 = 40 and successive over-relaxation (SOR).
6Using 𝜎Z,[= 8, 𝜎] = 48, 𝜎� = 0.5 + 0.25𝑠 and 𝜆 = 2.
7Using 𝜎Z,[= 6, 𝜎] = 10, 𝜎� = 0.5 + 0.25𝑠 and 𝜆 = 2.

5599

References

 [1] Berthold K. P. Horn and Brian G. Schunck. Determining

optical flow. Artif. Intell., 17(1):185–203, 1981.

 [2] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear

total variation based noise removal algorithms. Phys.

Nonlinear Phenom., 60(1):259–268, 1992.

 [3] Antonin Chambolle. An algorithm for total variation

minimization and applications. J. Math. Imaging Vis., 20(1–

2):89–97, 2004.

 [4] Antonin Chambolle and ?omas Pock. A First-Order Primal-

Dual Algorithm for Convex Problems with Applications to

Imaging. J. Math. Imaging Vis., 40(1):120–145, 2011.

 [5] Jonathan T. Barron and Ben Poole. ?e fast bilateral solver.

In ECCV, 2016.

 [6] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization

Using Optimization. In SIGGRAPH, 2004.

 [7] Jonathan T. Barron, Andrew Adams, YiChang Shih, and

Carlos Hernandez. Fast bilateral-space stereo for synthetic

defocus. In CVPR, 2015.

 [8] Guy Gilboa and Stanley Osher. Nonlocal operators with

applications to image processing. Multiscale Model. Simul.,

7(3):1005–1028, 2008.

 [9] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A

non-local algorithm for image denoising. In CVPR, 2005.

 [10] Manuel Werlberger, ?omas Pock, and Horst Bischof.

Motion estimation with non-local total variation

regularization. In CVPR, 2010.

 [11] Philipp Krähenbühl and Vladlen Koltun. Efficient nonlocal

regularization for optical flow. In ECCV, 2012.

 [12] Antonin Chambolle and Pierre-Louis Lions. Image recovery

via total variation minimization and related problems. Numer.

Math., 76(2):167–188, 1997.

 [13] David L. Phillips. A technique for the numerical solution of

certain integral equations of the first kind. J ACM, 9(1):84–

97, 1962.

 [14] Andrei Nikolaevich Tikhonov. On the solution of ill-posed

problems and the method of regularization. In Doklady

Akademii Nauk, 1963.

 [15] Sean Twomey. On the Numerical Solution of Fredholm

Integral Equations of the First Kind by the Inversion of the

Linear System Produced by Quadrature. J ACM, 10(1):97–

101, 1963.

 [16] Sean Twomey. ?e application of numerical filtering to the

solution of integral equations encountered in indirect sensing

measurements. J. Frankl. Inst., 279(2):95–109, 1965.

 [17] Bobby R. Hunt. ?e application of constrained least squares

estimation to image restoration by digital computer. IEEE

Trans. Comput., C–22(9):805–812, 1973.

 [18] Alexander J. Smola and Risi Kondor. Kernels and

regularization on graphs. In Learning @eory and Kernel

Machines, Springer, 2003, pages 144–158.

 [19] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for

gray and color images. In ICCV, 1998.

 [20] Volker Aurich and Jörg Weule. Non-Linear Gaussian Filters

Performing Edge Preserving Diffusion. In Mustererkennung

1995, 17. DAGM-Symposium, 1995.

 [21] Andrew Adams, Jongmin Baek, and Myers Abraham Davis.

Fast high-dimensional filtering using the permutohedral

lattice. Comput. Graph. Forum, 29(2):753–762, 2010.

 [22] Fan R. K. Chung. Spectral Graph @eory. American

Mathematical Soc., 1997.

 [23] Richard Sinkhorn. A Relationship Between Arbitrary Positive

Matrices and Doubly Stochastic Matrices. Ann. Math. Stat.,

35(2):876–879, 1964.

 [24] Peyman Milanfar. Symmetrizing Smoothing Filters. SIAM J.

Imaging Sci., 6(1):263–284, 2013.

 [25] Eduardo S. L. Gastal and Manuel M. Oliveira. Adaptive

manifolds for real-time high-dimensional filtering. ACM

Trans Graph, 31(4):33:1–33:13, 2012.

 [26] Andrew Adams, Natasha Gelfand, Jennifer Dolson, and Marc

Levoy. Gaussian KD-trees for fast high-dimensional filtering.

In SIGGRAPH, 2009.

 [27] Antonio Criminisi, Toby Sharp, Carsten Rother, and Patrick

Pérez. Geodesic Image and Video Editing. ACM Trans

Graph, 29(5):134:1–134:15, 2010.

 [28] Eduardo S. L. Gastal and Manuel M. Oliveira. Domain

transform for edge-aware image and video processing. In

SIGGRAPH, 2011.

 [29] Hans Knutsson and Carl-Fredrik Westin. Normalized and

differential convolution. In CVPR, 1993.

 [30] Jaesik Park, Hyeongwoo Kim, Yu-Wing Tai, Michael S.

Brown, and In So Kweon. High quality depth map

upsampling for 3D-TOF cameras. In ICCV, 2011.

 [31] David Ferstl, Christian Reinbacher, Rene Ranftl, Matthias

Ruether, and Horst Bischof. Image guided depth upsampling

using anisotropic total generalized variation. In ICCV, 2013.

 [32] Jiajun Lu and David Forsyth. Sparse depth super resolution.

In CVPR, 2015.

 [33] Nils Papenberg, Andrés Bruhn, ?omas Brox, Stephan Didas,

and Joachim Weickert. Highly accurate optic flow

computation with theoretically justified warping. Int. J.

Comput. Vis., 67(2):141–158, 2006.

 [34] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and Michael

J. Black. A naturalistic open source movie for optical flow

evaluation. In ECCV, 2012.

 [35] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and

Cordelia Schmid. EpicFlow: Edge-preserving interpolation

of correspondences for optical flow. In CVPR, 2015.

 [36] Qifeng Chen and Vladlen Koltun. Full flow: Optical flow

estimation by global optimization over regular grids. In

CVPR, 2016.

 [37] Yinlin Hu, Rui Song, and Yunsong Li. Efficient coarse-to-fine

patchmatch for large displacement optical flow. In CVPR,

2016.

 [38] Christian Bailer, Bertram Taetz, and Didier Stricker. Flow

fields: Dense correspondence fields for highly accurate large

displacement optical flow estimation. In ICCV, 2015.

 [39] Moritz Menze, Christian Heipke, and Andreas Geiger.

Discrete optimization for optical flow. In GCPR, 2015.

 [40] Yu Li, Dongbo Min, Minh N. Do, and Jiangbo Lu. Fast

guided global interpolation for depth and motion. In ECCV,

2016.

 [41] Deqing Sun, Stefan Roth, and Michael J. Black. A

quantitative analysis of current practices in optical flow

estimation and the principles behind them. Int. J. Comput.

5600

Vis., 106(2):115–137, 2014.

 [42] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and

Cordelia Schmid. DeepFlow: Large Displacement Optical

Flow with Deep Matching. In ICCV, 2013.

 [43] Amir Beck and Marc Teboulle. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM J.

Imaging Sci., 2(1):183–202, 2009.

5601

