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Abstract

Deep metric learning, in which the loss function plays a

key role, has proven to be extremely useful in visual recog-

nition tasks. However, existing deep metric learning loss

functions such as contrastive loss and triplet loss usually

rely on delicately selected samples (pairs or triplets) for fast

convergence. In this paper, we propose a new deep metric

learning loss function, tuplet margin loss, using randomly

selected samples from each mini-batch. Specifically, the

proposed tuplet margin loss implicitly up-weights hard sam-

ples and down-weights easy samples, while a slack margin

in angular space is introduced to mitigate the problem of

overfitting on the hardest sample. Furthermore, we address

the problem of intra-pair variation by disentangling class-

specific information to improve the generalizability of tu-

plet margin loss. Experimental results on three widely used

deep metric learning datasets, CARS196, CUB200-2011,

and Stanford Online Products, demonstrate significant im-

provements over existing deep metric learning methods.

1. Introduction

Deep metric learning focuses on learning a deep feature

embedding consistent with semantic similarity, i.e., a small

intra-class variation and a large inter-class variation [38,

35]. It has been proven that deep metric learning methods

are extremely valuable in visual recognition tasks such as

one-shot learning [5, 29], image retrieval [9, 18], person re-

identification [39, 12], and face recognition [27, 23]. With

the growing scale of training data, i.e., both the number

of samples and classes, deep metric learning loss function

has attracted more and more attention in large-scale visual

recognition tasks [23, 17].

Deep metric learning loss function can be divided into

two main groups: (1) classification-based loss functions,

e.g., large-margin softmax loss [14] and center loss [36];

and (2) distance-based loss functions, e.g., contrastive

loss [2, 27] and triplet loss [24, 23]. However, existing

loss functions usually suffer from several inherent draw-
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Figure 1: An illustration of tuplet margin loss function.

Given a tuplet (xa, xp, xn1
, . . . , xnk−1

), tuplet margin loss

exponentially up-weights hard triplets and down-weights

easy triplets within the tuplet. Specifically, the loss of each

triplet (xa, xp, xni
) is defined by the scale factor s > 1 and

the violate margin cos θani
−cos θap. A slack margin β > 0

is used to mitigate the problem of overfitting on the hard-

est triplets by paying more attention to “moderately hard

triplets” (the shaded area). See more details in Section 3.3.

backs. Specifically, classification-based loss functions usu-

ally use a classification layer or a reference point for each

class [36], in which both the computation and the require-

ments on device memory increase linearly with the num-

ber of classes [8]. Recently, several methods such as dy-

namic class selection [43] and distributed parallel accelera-

tion [4] have been developed to relieve the computation and

memory bottlenecks in classification-based loss functions,

while the discussion of approximation algorithms for mas-

sive classification is beyond the scope of this paper. Re-

gardless of the heavy classification layer or massive ref-

erence points, distance-based loss functions directly opti-

mize the margin between intra- and inter-class distances,

and are independent with the number of classes [23]. How-

ever, existing distance-based loss functions, e.g., triplet loss,
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Figure 2: An illustration of intra-pair variation. The height

of each bar indicates pairwise distance, i.e., color-fill bar

for positive pair and pattern-fill bar for negative pair. In

both (a) and (b), there is a clear margin between positive

and negative pairs, i.e., ∀i = 1, 2, we have d(xai
, xpi

) <
d(xai

, xni
). However, in (a), the distance metric on each

specific type of pairs (positive or negative pairs) varies

among different classes, i.e., the distribution of pairwise

distance is class-dependent on training set. Comparing with

the class-independent distribution shown in (b), the intra-

pair variation increases the risk of failing to find a proper

threshold τ to separate all positive and negative pairs and

degrades the performance for visual recognition such as ver-

ification task. A class-independent distance metric can be

learned by minimizing the intra-pair variances, i.e., σap for

positive pairs and σan for negative pairs. See more details

in Section 3.4.

usually suffer from the problem of slow convergence, and

rely heavily on mining informative samples for fast conver-

gence [23, 8], raising a number of severe sampling prob-

lems: (1) the number of possible triplets grows cubically

with the number of training samples [8]; (2) mining in-

formative triplets tends to be difficult, e.g., both randomly

selected triplets and the hardest triplets lead to bad local

minima [23, 6]; and (3) the training stability benefits from

large mini-batches, in which cross-device synchronization

is a non-trivial engineering task [23, 17].

Recently, significant improvements on distance-based

loss function have been achieved by using the notation of

tuplet, which generalizes a triplet with multiple negative

examples to form a better approximation of inter-class dis-

tance [18, 25, 17]. Although delivering impressive perfor-

mance improvements, tuplet-based loss functions further

exacerbate the sampling problems, because the computa-

tional complexity exponentially increases with the number

of negative examples. Therefore, here we develop a new

tuplet-based loss function, tuplet margin loss, using a set of

randomly sampled tuplets. Unlike previous distance-based

loss functions [18, 25], in which informative samples are

explicitly selected by sampling heuristics, we address infor-

mative samples from the view of loss function, while us-

ing only a set of randomly sampled tuplets. Inspired by the

focal loss for object detection [13], we exponentially up-

weight hard triplets and down-weight easy triplets within

each tuplet (see an example in Figure 1). However, the ex-

ponential weighting scheme usually tends to form a rela-

tively large margin between the intra- and inter-class dis-

tances by overfitting the hardest triplet in each tuplet. To

solve this problem, we introduce a slack margin in angular

space to pay more attention to “moderately hard triplets”

rather than “the hardest triplets” [23]. An intuitive example

of the slack margin for changing the weighting scheme is

shown in Figure 1.

Distance-based loss functions, including the proposed

tuplet margin loss, focus on optimizing the margin between

intra- and inter-class distances by penalizing the margin

between positive and negative pairs with the same anchor

point, while leaving a risk of learning a class-dependent dis-

tance metric from the training set. A class-dependent dis-

tance metric indicates that the distance distribution of posi-

tive pairs (or negative pairs) varies among different classes,

which has not been well-addressed in previous work [1].

We refer to the variation within each type of pairs (pos-

itive or negative pairs) as the intra-pair variation, and ar-

gue that the intra-pair variation degrades the generalizabil-

ity of deep metric learning model. An intuitive failure case

induced by the intra-pair variation is shown in Figure 2.

To solve this problem, we disentangle the intra-pair vari-

ation from intra/inter-class variation and try to learn a class-

independent distance metric by minimizing the intra-pair

variances in both positive and negative pairs.

In this paper, our main contribution is a new tuplet-based

deep metric learning loss function: (1) we propose a tuplet

margin loss by using a set of randomly selected samples,

which is computationally more efficient than explicitly min-

ing informative samples; (2) we introduce a slack margin to

address the problem of overfitting on the hardest sample;

and (3) we address the problem of intra-pair variation to

further improve the generalizability of deep metric learn-

ing model. Specifically, with the proposed tuplet margin

loss, we achieve the state-of-the-art results on three widely

used deep metric learning datasets, i.e., CARS196 [11],

CUB200-2011 [30], and Stanford Online Products [18].

2. Related Work

Classification-based Loss Function. Feature embeddings

learned by the classification loss generalize well to a vari-

ety of visual recognition tasks [21, 40]. Inspired by this,

center loss [36] and large-margin softmax loss [14] have

been proposed to further improve the discriminability of

classification-based loss function. Specifically, center loss

minimizes the distance between each example and its class

center, forming a class-dependent constraint. Large-margin

softmax loss has since been significantly improved by both
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Figure 3: An illustration of the tuplet-based deep metric learning framework. We first randomly sample a mini-batch of

training data, which contains kn training samples from k different classes, i.e., n samples per class. The deep neural network

is used to learn a fixed-dimensional feature embedding, e.g, 512d. We then construct a set of tuplets using all kn(n − 1)
positive pairs within the mini-batch and negative examples are randomly sampled from each of the other k − 1 classes.

Finally, the loss function is evaluated on the tuplets constructed from each mini-batch.

feature normalization [22, 32, 16, 45] and weight normal-

ization [15, 16]. Recently, several different types of margin,

such as additive cosine margin [33, 31] and additive angular

margin [4] have been explored to further improve the large-

margin softmax loss performance.

Distance-based Loss Function. Due to the scalability for

a large number of classes, distance-based loss functions,

especially the triplet loss, have attracted considerable at-

tention in many visual recognition tasks such as image re-

trieval [9, 18], person re-identification [39, 12], and face

recognition [27, 23]. However, triplet loss usually suf-

fers from slow convergence, so the triplet selection method

has become central to improving the performance of triplet

loss [23]. Inspired by this, several improvements to triplet

selection have been proposed: (1) novel triplet selection

methods, e.g., batch-hard triplets [8], and distance-weighted

sampling [37]; (2) correcting selection bias by learning

an invariant representation [41]; and (3) generating hard

triplets via adversarial networks [44].

Recently, deep metric learning loss functions have been

further improved by exploring new pairwise structures [18,

28, 25, 17, 26]. Specifically, both lifted structured loss [18]

and N-pair loss [25] share similar motivation by making full

use of each mini-batch or exploring negative examples from

multiple different classes to give a better approximation for

inter-class distance. The proposed tuplet margin loss falls

within the same category with [18] and [25], i.e., tuplet-

based loss functions.

Ensemble Deep Metric Learning. Besides improved loss

functions, improvements have also been achieved by ex-

ploring ensemble methods in deep metric learning, such as

boosting [19, 20], cascades [42], hierarchical structures [6],

and attention-based ensembles [10]. Specifically, these en-

semble methods usually are complementary with different

loss functions [10] and might be used to further improve

the performance of the proposed tuplet margin loss.

3. Method

In this section, we first introduce tuplet-basd loss func-

tion for deep metric learning. We then formulate the pro-

posed tuplet margin loss as well as the random tuplet selec-

tion method. Lastly, we introduce the problem of intra-pair

variation and the proposed intra-pair variance minimization

method.

3.1. Tupletbased Deep Metric Learning

Let x ∈ X denote the data and y ∈ Y denote its la-

bel, deep metric learning aims to learn a discriminative fea-

ture embedding f(x) with a small intra-class distance and a

large inter-class distance, i.e.,

‖f(xa)− f(xp)‖
2
2 < ‖f(xa)− f(xn)‖

2
2, (1)

where xa, xp share the same label and xn has a different

label. This constraint is known as the triplet constraint and

we usually refer to (xa, xp, xn) as a triplet, in which xa is

called anchor example, xp is the positive example, and xn

is the negative example. The notation of tuplet generalizes

the triplet to explore multiple negative examples [18, 25].

In this paper, we use the definition of tuplet similar to [25]

as follows:

t = (xa, xp, xn1
, . . . , xnk−1

), (2)

where k is the number of classes in each mini-batch and all

negative examples xni
, i = 1, . . . , k − 1 come from dif-

ferent classes. Specifically, the relationship between the

tuplet and triplet can be described as follows: each tuplet

(xa, xp, xn1
, . . . , xnk−1

) contains k−1 triplets, sharing the

same positive pair (xa, xp), i.e.,

(xa, xp, xni
), ∀ i = 1, . . . , k − 1. (3)

The triplet constraint then can be generalized to the tuplet

as follows: ∀ i = 1, 2, . . . , k − 1,

‖f(xa)− f(xp)‖
2
2 < ‖f(xa)− f(xni

)‖22. (4)
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Similar to [25], a typical tuplet-based loss function can be

defined as follows:

Ltuplet = log

(

1 +

k−1
∑

i=1

ed(xa,xp)−d(xa,xni)

)

, (5)

where d(·, ·) is the distance function, i.e.,

d(x1, x2) = ‖f(x1)− f(x2)‖
2
2. (6)

3.2. Random Tuplet Selection

Mining informative samples is not only a delicate prob-

lem for the convergence of distance-based loss functions,

but also computation intensive in practice, especially for

tuplet-based loss functions. Previous work puts a lot of

efforts on more effective and efficient sampling methods.

Specifically, the distance-weighted sampling method [37]

aims to perform an unbiased sampling towards all distances,

while the hard negative class mining method [25] tries to

reduce the computation complexity by keeping only 2 sam-

ples for positive class.

Unlike previous work, we address the sampling prob-

lems from the perspective of loss function itself. Therefore,

we use randomly sampled tuplets in this paper and we in-

troduce the random tuplet selection method as follows. The

proposed random tuplet selection method works in an on-

line manner, i.e., tuplets are sampled from each mini-batch.

Specifically, each mini-batch contains kn randomly sam-

pled training examples from k classes with n samples per

class. We then collect all positive pairs within the mini-

batch, i.e., kn(n− 1) positive pairs in total. For each posi-

tive pair (xa, xp), we randomly sample one negative exam-

ple from each of the other k − 1 classes to form a tuplet,

(xa, xp, xn1
, . . . , xnk−1

). Finally, we obtain kn(n − 1) tu-

plets from each mini-batch.

3.3. Tuplet Margin Loss

Considering that both the norm ‖f(x)‖2 and the direc-

tion of feature embedding f(x) have influence on the mar-

gin between positive and negative pairs, tuplet-based loss

function usually minimizes the L2-norm of feature embed-

ding ‖f(x)‖2 to remove the influence of feature norm, i.e.,

the classification decision is only related to the direction of

feature embedding [25]. However, we find that the mar-

gin between positive and negative pairs is upper bounded

by the norm of feature embedding. Furthermore, it has

been observed that the loss function tends to be minimized

by increasing the norm of the feature embedding for easy

samples [22]. Inspired by this, we argue that the feature

norm also changes the weighting scheme on easy samples

and hard samples. Therefore, we disentangle the norm and

the direction of feature embedding by (1) preserving the di-

rection of feature embedding f(x) using L2-normalization,

(a) β = 0 (b) β = 0.1

Figure 4: An illustration of the slack margin for the tuplet-

based loss function. A relative large margin between intra-

class and inter-class distance is usually achieved by overfit-

ting on the hardest triplets in training data. The slack margin

can be directly used to change the distribution of positive

and negative pairs in the embedding space.

i.e., ‖f(x)‖22 = 1, and (2) introducing a scale factor s ≥ 0
to control the norm of feature embedding. We then refor-

mulate the tuplet-based loss function as follows:

Ltuplet = log

(

1 +

k−1
∑

i=1

es(cos θani
− cos θap)

)

, (7)

where θap is the angle between f(xa) and f(xp), and θani

is the angle between f(xa) and f(xni
).

An intuitive explanation of the scale factor s is the ra-

dius of the hyper-sphere where the feature embeddings are

located [33, 31, 4]. That is, the scale factor s has severe

influence on the convergence due to a lower bound on the

difference between cosine similarities, i.e., ∀ θ1, θ2,

ecos θ1−cos θ2 ≥ 1/e2 ≫ 0. (8)

Considering that deep metric learning models are mainly

optimized by using stochastic gradient descent (SGD)

method, we also consider the influence of the scale factor

s from the view of gradient. Specifically, given w as the

model parameter and the tuplet-based loss function defined

in (7), we then have

∂Ltuplet

∂w
=

s

1 +
∑k−1

j=1 e
sαj

k−1
∑

i=1

(

e
sαi

∂αi

∂w

)

(9)

∝

k−1
∑

i=1

(

e
sαi

∂αi

∂w

)

,

where αi is the violate margin, i.e.,

αi = cos θani
− cos θap, ∀ i = 1, . . . , k − 1. (10)

As we can see from (9) and (10), the gradient with respect to

the hard triplet (αi > 0) will be exponentially up-weighted,

6493



while the gradient with respect to the easy triplet (αi >
0) will be exponentially down-weighted. That is, the scale

factor s can be used to implicitly explore hard triplets from

randomly sampled tuplets for fast convergence.

The tuplet-based loss function exponentially up-weights

the gradients of hard triplets according to their violate mar-

gins, with the hardest triplet counting for much more than

the other triplets. As a result, the tuplet-based loss function

usually forms a relatively large margin between the intra-

and inter-class distances by overfitting the hardest triplet,

i.e.,

θani
≫ θap, ∀ i = 1, . . . , k − 1. (11)

To address the above problem, we introduce a slack margin

β ≥ 0 to form a relaxation of (11) as follows:

θani
≫ θap − β, ∀i = 1, . . . , k − 1. (12)

The proposed tuplet margin loss then can be derived by ap-

plying the slack margin β into the tuplet-based loss function

as follows:

Ltuplet = log

(

1 +

k−1
∑

i=1

es(cos θani
− cos(θap−β))

)

. (13)

We refer to this new loss function as the tuplet margin loss.

An illustration of the influence of the proposed slack mar-

gin is shown in Figure 4. Specifically, the proposed slack

margin not only changes the distribution of pairwise dis-

tance in positive and negative pairs but also forces the loss to

pay more attention to “moderately hard triplets”. Therefore,

the proposed slack margin improves the performance of the

tuplet-based loss function by reducing the risk of overfitting

on the hardest triplets.

3.4. Intrapair Variation

Distance-based loss functions, including the proposed

tuplet margin loss, optimize the margin between intra- and

inter-class distances. However, a clear margin between pos-

itive and negative pairs sharing the same anchor example

does not always indicate a good generalization [1]. An in-

tuitive example is shown in Figure 2 and we attribute the

poor generalization to the class-dependent distance met-

ric. Specifically, given two triplets (xa1
, xp1

, xn1
) and

(xa2
, xp2

, xn2
), in which xa1

and xa2
are from different

classes, a small intra-class distance and a large inter-class

distance is usually described by the triplet constraint, i.e.,

d(xai
, xpi

) < d(xai
, xni

), ∀i = 1, 2. (14)

From (14), we see that the triplet constraint is dependent

upon the class of the anchor example xai
, while it takes

the risk of an unbalanced distance metric among differ-

ent classes, e.g., d(xa1
, xp1

) > d(xa2
, xn2

). Specifically,

if two random variables D1 and D2 denote the pairwise

(a) λ = 0 (b) λ = 0.5

Figure 5: An illustration of the intra-pair variation mini-

mization. By minimizing the intra-pair variation, all posi-

tive pairs (or negative pairs) have more consistent and com-

pact distribution regardless of the class information. Fur-

thermore, the intra-pair variation minimization can be seen

as a regularization for the distance-based loss function.

distance of positive (or negative) pairs from two different

classes, the difference P (D1) and P (D2) then indicates the

class-dependent information. As a result, we argue that the

class-dependent information learned from the training set

degrades the generalizability of the deep metric learning

model to unseen test data.

We formulate the above class-dependent distributions as

follows. Let Di denote the pairwise distance of positive (or

negative) pairs, in which all anchor examples are from the

class i. Considering that each mini-batch is randomly sam-

pled from k classes with n examples per class, the distribu-

tion of pairwise distance on all positive pairs (or negative

pairs) can be formulated as the averaged mixture of P (Di),
i.e.,

P (D) =
1

k

k
∑

i=1

P (Di).

Theorem 1. Given a set of independent distributions

P (Di), i = 1, . . . , k, and their averaged mixture P (D),
we then have the variance of D as follows:

σ2 =
1

k

k
∑

i=1

σ2
i +

1

k2

∑

i<j

(µi − µj)
2,

where ui and σ2
i denote the mean and variance of Di, re-

spectively.

Proof. In Appendix.

From Theorem 1, we know that both the variance in

each class σ2
i and the difference between different classes

|µi − µj | can be well-captured by their averaged mix-

ture, i.e., the variance of all positive (or negative) pairs

σ2. Inspired by this, we reduce the influence of the class-

dependent information from the training data, e.g., bias and
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β R@1 R@2 R@4 R@8 R@16

0 89.4 93.9 96.3 97.8 98.8

0.05 90.9 95.0 97.0 98.1 98.9

0.10 91.5 95.4 97.3 98.5 99.2

0.15 89.0 94.4 96.9 98.5 99.2

0.20 85.2 92.0 95.5 97.7 99.0

(a) Comparison of different β

λ R@1 R@2 R@4 R@8 R@16

0 91.5 95.4 97.3 98.5 99.2

0.3 93.5 96.6 97.9 98.8 99.4

0.5 93.7 96.7 98.1 98.9 99.3

1.0 93.6 96.4 98.0 98.8 99.3

1.5 92.6 96.0 97.5 98.5 99.1

(b) Comparison of different λ

Table 1: Effectiveness of the slack margin and the intra-pair variation minimization. In (a), we perform experiments on

different β by using the same λ = 0. In (b), we use β = 0.1 and perform experiments on different λ.

noise, by minimizing the variance σ2 within each type of

pairs. We refer to the variation in each type of pairs as the

intra-pair variation and minimize the intra-pair variation of

all positive pairs as follows:

Lpos = E[(1− ǫ)µap − cos θap]
2
+, (15)

where [·]+ = max(0, ·), µap = E [cos θap] is the mean

cosine similarity of all positive pairs, and a small positive

scalar ǫ = 0.01 is used for convergence. Similarly, we de-

fine the loss function for all negative pairs as

Lneg = E[cos θan − (1 + ǫ)µan]
2
+. (16)

An illustration of the intra-pair variation minimization can

be found in Figure 5. Finally, we learn the deep feature

embedding by jointly minimizing the tuplet margin loss and

the intra-pair loss as follows:

L = Ltuplet + λ (Lpos + Lneg) , (17)

where λ > 0 forms a trade-off between two loss functions.

4. Implementation

We implement the proposed method using Pytorch 1. For

training, all images are resized to 224 × 224, and we crop

images when bounding boxes are available. We horizontally

flip all training images randomly with the probability 0.5 for

data augmentation. We use ResNet-50 [7] as the backbone

network in most of our experiments, while we demonstrate

the scalability of the proposed method to a larger model us-

ing ResNet-101. All our models are initialized from the

weights pretrained on ImageNet [3]. Unless mentioned, we

use the feature dimension of 512 and a batch-size of 256
(i.e., k = 32 and n = 8). We use SGD with a momentum of

0.9 and a weight decay of 0.0001. The learning rate starts

from 0.01 and is divided by 10 for every 30 epochs. We

train our models for maximum 100 epochs and report the

performance at the best epoch.

1https://pytorch.org

5. Experiments

We evaluate the proposed method on three popular image

retrieval datasets, i.e., CARS196 [11], CUB200-2011 [30],

and Stanford Online Products [18]. We use the same evalu-

ation metric, Recall@K metric, and the same train/test pro-

tocol with [18]:

• CARS196 [11] contains 16,185 images of 196 differ-

ent car models and is divided into two parts: all 8054

images from the first 98 classes are used for training,

while the remaining 8131 images are used for testing.

• CUB200-2011 [30] contains 11,788 images of 200 dif-

ferent bird species. All 5864 images from the first 100

classes are used for training and the remaining 5924

images are used for testing.

• Stanford Online Products [18] contains 120,053 im-

ages of 22,634 different products. All 59,551 images

from the first 11,318 classes are used for training and

60,502 images from the remaining 11,316 classes are

used for testing.

5.1. Effectiveness of Tuplet Margin Loss

To demonstrate the effectiveness of the proposed tu-

plet margin loss, especially the slack margin and the intra-

pair variation minimization, we conduct a number of ex-

periments for different β and λ on the cropped version of

CARS196 dataset. We use ResNet-50 as the backbone net-

work and fix other hyper-parameters to: s = 64, k = 32 and

n = 8. Experimental results are shown in Table 1. Specifi-

cally, in Table 1(a), we see that the proposed tuplet margin

loss greatly improves the performance of the tuplet-based

loss function by using a proper slack margin, β = 0.1. In

Table 1(b), with the proposed intra-pair variation minimiza-

tion method, the performance of the tuplet margin loss is

further improved by a clear margin, e.g., R@1 from 91.5%
to 93.7%.

5.2. Comparison with Current StateoftheArt

We compare the proposed tuplet margin loss with re-

cent state-of-the-art methods such as Angular [34], HDC
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Method
CARS196 CUB200-2011

R@1 R@2 R@4 R@8 R@16 R@1 R@2 R@4 R@8 R@16

N-pairs [25] 71.1 79.7 86.5 91.6 - 51.0 63.3 74.3 83.2 -

Angular [34] 71.4 81.4 87.5 92.1 - 54.7 66.3 76.0 83.9 -

Proxy-NCA [17] 73.2 82.4 86.4 87.8 - 49.2 61.9 67.9 72.4 -

HDC [42] 73.7 83.2 89.5 93.8 96.7 53.6 65.7 77.0 85.6 91.5

Margin [37] 79.6 86.5 91.9 95.1 97.3 63.6 74.4 83.1 90.0 94.2

BIER [19] 78.0 85.8 91.1 95.1 97.3 55.3 67.2 76.9 85.1 91.7

A-BIER [20] 82.0 89.0 93.2 96.1 97.8 57.5 68.7 78.3 86.2 91.9

ABE [10] 85.2 90.5 94.0 96.1 - 60.6 71.5 79.8 87.4 -

TML (ours) 86.3 92.3 95.4 97.3 98.7 62.5 73.9 83.0 89.4 94.2

Method
CARS196(cropped) CUB200-2011(cropped)

R@1 R@2 R@4 R@8 R@16 R@1 R@2 R@4 R@8 R@16

HDC [42] 83.8 89.8 93.6 96.2 97.8 60.7 72.4 81.9 89.2 93.7

Margin [37] 86.9 92.7 95.6 97.6 98.7 63.9 75.3 84.4 90.6 94.8

BIER [19] 87.2 92.2 95.3 97.4 98.5 63.7 74.0 82.5 89.3 93.8

A-BIER [20] 90.3 94.1 96.8 97.9 98.9 65.5 75.8 83.9 90.2 94.2

ABE [10] 93.0 95.9 97.5 98.5 - 70.6 79.8 86.9 92.2 -

TML (ours) 93.7 96.7 98.1 98.9 99.2 73.7 83.0 89.7 93.6 96.4

Table 2: Results on CARS196 and CUB200-2011.

Method R@1 R@10 R@100 R@1000

Lifted [18] 62.1 79.8 91.3 97.4

Histogram [28] 63.9 81.7 92.2 97.7

N-pairs [25] 67.7 83.8 93.0 97.8

HDC [42] 69.5 84.4 92.8 97.7

Angular [34] 70.9 85.0 93.5 98.0

Margin [37] 72.7 86.2 93.8 98.0

Proxy-NCA [17] 73.7 - - -

BIER [19] 72.7 86.5 94.0 98.0

A-BIER [20] 74.2 86.9 94.0 97.8

ABE [10] 76.3 88.4 94.8 98.2

TML (ours) 78.0 91.2 96.7 99.0

Table 3: Results on Stanford Online Products. Specifically,

we randomly sample 4 images per class for each mini-batch

due to limited images for some classes. To obtain the proper

number of tuplets, each mini-batch contains examples sam-

pled from 96 classes.

[42], Margin [37], and Proxy-NCA [17]. Specifically, for

fair comparison on CARS196 and CUB200-2011, we report

both the performance with and without using tight bound-

ing boxes. For experiments in Table 2 and Table 3, we use

ResNet-50 as the backbone network and fix other hyper-

parameters to: s = 64, β = 0.1, and λ = 0.5. Unless men-

tioned, we use k = 32 and n = 8 for each mini-batch. We

see that the proposed tuplet margin loss (TML) significantly

outperforms all other methods, including several ensemble-

based methods, BIER [19], A-BIER [20], and ABE [10].

Furthermore, as a typical deep metric learning loss function,

the proposed tuplet margin loss might be further improved

by these ensemble-based frameworks.

5.3. Ablation Study

We perform several ablation studies on the cropped ver-

sion of CARS196 dataset, to better understand important

hyper-parameters in tuplet margin loss. We use the ResNet-

50 as backbone network and fix other parameters to: β =
0.1 and λ = 0.5. Experimental results on the scale fac-

tor s and the feature embedding dimension are shown in

Table 4 and Table 5. Specifically, a larger scale factor s
makes it easier for the model to fit all training data, while

increasing the risk of overfitting. In Table 4, we find that

s = 64 is a good trade-off in our experiments, which is con-

sistent with the experience in the classification-based loss

functions [22, 33, 31, 4]. In Table 5, we see that the pro-

posed tuplet margin loss also works well with a smaller fea-

ture dimension, e.g., 128, which is computationally more

efficient in practice.

To further demonstrate the influence of different batch-

sizes and backbone networks for the proposed tuplet margin

loss, we perform a number of experiments on the cropped

version of CARS196. For fair comparison, we fix the fol-

lowing hyper-parameters, s = 64, β = 0.1, and λ = 0.5.

In Table 6, we see that tuplet-margin loss achieves better

performance with a more powerful backbone network. In
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Figure 6: Retrieval results on CARS196 and CUB200-2011. The first column refers to query images.

s R@1 R@2 R@4 R@8 R@16

1 69.1 79.9 87.5 92.9 96.3

8 77.6 84.6 89.7 93.5 95.9

16 86.3 91.3 94.2 96.2 97.6

32 91.2 94.5 96.5 97.9 98.7

64 93.7 96.7 98.1 98.9 99.3

128 92.1 96.1 97.9 98.8 99.4

Table 4: Comparison of different scale factors. We use k =
32, n = 8, and the feature dimension 512.

Dim R@1 R@2 R@4 R@8 R@16

128 92.3 95.8 97.5 98.5 99.1

256 93.1 96.2 97.6 98.6 99.1

512 93.7 96.7 98.1 98.9 99.3

1024 93.5 96.4 97.8 98.8 99.1

Table 5: Comparison of different feature dimensions. We

use k = 32, n = 8, and the scale factor s = 64.

Table 7, we find that the proposed tuplet margin loss is not

very sensitive to different batch sizes, while the best perfor-

mance is achieved by a small batch-size, which is similar to

the loss function in classification task.

6. Conclusion

In this paper, we propose a new tuplet-based loss func-

tion, tuplet margin loss, for deep metric learning. We in-

troduce a slack margin to mitigate the problem of overfit-

Backbone R@1 R@2 R@4 R@8 R@16

ResNet-50 93.7 96.7 98.1 98.9 99.3

ResNet-101 94.3 96.7 98.2 98.9 99.3

Table 6: Comparison of different backbone networks. We

use k = 32 and n = 8.

k n R@1 R@2 R@4 R@8 R@16

32 4 93.2 96.3 97.8 98.7 99.3

32 8 93.7 96.7 98.1 98.9 99.3

64 4 92.2 96.2 97.7 98.6 99.2

64 8 92.3 95.8 97.5 98.5 99.1

Table 7: Comparison of different batch-sizes. We use

ResNet-50 as the backbone network.

ting on the hardest sample and address the problem of intra-

pair variation to further improve the generalizability of tu-

plet margin loss. Specifically, the proposed tuplet margin

loss uses randomly sampled data and is not very sensitive

to different batch sizes, making it interesting to examine its

scalability in large-scale distributed training setting and we

leave it for future study.
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