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Abstract

We address scene layout modeling for recognizing agent-

in-place actions, which are actions associated with agents

who perform them and the places where they occur, in the

context of outdoor home surveillance. We introduce a novel

representation to model the geometry and topology of scene

layouts so that a network can generalize from the layouts

observed in the training scenes to unseen scenes in the test

set. This Layout-Induced Video Representation (LIVR) ab-

stracts away low-level appearance variance and encodes

geometric and topological relationships of places to explic-

itly model scene layout. LIVR partitions the semantic fea-

tures of a scene into different places to force the network

to learn generic place-based feature descriptions which are

independent of specific scene layouts; then, LIVR dynami-

cally aggregates features based on connectivities of places

in each specific scene to model its layout. We introduce a

new Agent-in-Place Action (APA) dataset to show that our

method allows neural network models to generalize signifi-

cantly better to unseen scenes.

1. Introduction

Recent advances in deep neural networks have brought

significant improvements to many fundamental computer

vision tasks, including video action recognition [8, 36, 46,

48, 22, 37, 19, 4]. Current action recognition methods are

able to detect, recognize or localize general actions and

identify the agents (people, vehicles, etc.) [8, 36, 46, 22, 37,

19, 4, 7, 28, 26, 42, 40, 18]. However, in applications such

as surveillance, relevant actions often involve locations and

moving directions that relate to to scene layouts–for exam-

ple, it might be of interest to detect (and issue an alert about)

a person walking towards the front door of a house, but not

∗Work done at the Comcast Applied AI Research.
†Was affiliated with the University of Maryland during the work.

<pet, move along, sidewalk>
<person, move along, sidewalk>

<vehicle, move away
(home), driveway>

<person, move away
(home), driveway>

Figure 1. Example agent-in-place actions and segmentation maps.

Different colors represent different places. We zoom in to the

agents performing the actions for clarity. An agent-in-place action

is represented as <agent, action, place>. Same colors indicate

same place types (e.g., green for lawn, blue for walkway, etc.).

to detect a person walking along the sidewalk. So, what

makes an action "interesting" is how the it interacts with the

geometry and topology of the scene.

Examples of these actions in outdoor home surveillance

scenarios and the semantic segmentation maps of scenes

are shown in Fig.1. We refer to these actions as "agent-

in-place" actions to distinguish them from the widely stud-

ied generic action categories. From those examples we

observe that although the types of place are limited (e.g.,

street, walkway, lawn), the layout (i.e., structure of places,

including reference to location, size, appearance of places

and their adjacent places) vary significantly from scene to

scene. Without large-scale training data (which is hard to

collect considering privacy issues), a naive method that di-

rectly learns from raw pixels in training videos without lay-

out modeling can easily overfit to scene-specific patterns

and absolute pixel coordinates, and exhibit poor general-

ization on layouts of new scenes.

To address the generalization problem, we propose the

Layout-Induced Video Representation (LIVR), which ex-

plicitly models scene layout for action recognition by en-

coding the layout in the network architecture given seman-

tic segmentation maps. The representation has three com-
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Figure 2. Framework of LIVR. Given the segmentation map, we

decompose the semantic features into different places and extract

place-based feature descriptions individually. Then we dynami-

cally aggregate them at inference time according to the topology

of the scene. ⊙ denotes the masking operation for spatial decom-

position. "NN" stands for neural network.

ponents: 1) A semantic component represented by a set of

bitmaps used for decomposing features in different "places"

(e.g., walkway, street, etc.), which forces the network to

learn place-based features that are independent of scene

layout; 2) A geometric component represented by a set

of coarsely quantized distance transforms of each semantic

place incorporated into the network to model moving direc-

tions; 3) A topological component represented through the

connection structure in a dynamically gated fully connected

layer of the network–essentially aggregating representa-

tions from adjacent (more generally h-connected for h hops

in the adjacency graph of the semantic map) places. By

encoding layout information (class membership of places,

layout geometry and topology) into the network architec-

ture using this decompotision-aggregation framework, we

encourage our model to abstract away low-level appearance

variations and focus on modeling high-level scene layouts,

and eliminate the need to collect massive amounts of train-

ing data.

The first two components require semantic feature de-

composition (Fig.2). We utilize bitmaps encoded with the

semantic labels of places to decompose video representa-

tions into different places and train models to learn place-

based feature descriptions. This decomposition encourages

the network to learn features of generic place-based motion

patterns that are independent of scene layouts. As part of

the semantic feature decomposition, we encode scene ge-

ometry to model moving directions by discretizing a place

into parts based on a quantized distance transform w.r.t. an-

other place. Fig.2 (brown) shows the discretized bitmaps

of walkway w.r.t. porch. As illustrated in Fig.3(a), features

decomposed by those discretized bitmaps capture moving

agents in spatial-temporal order, which reveals the moving

direction, and can be generalized to different scene layouts.

The actions occurring in one place may be projected

onto adjacent places from the camera view (see Fig.3(b)).

Original
Walkway Mask Discretized Masks

Time t

Time t t/

nearmiddlefar

Zoomed Representations
on Each Part

+

(a) Place Discretization

Aggregated

Representation

Decomposed

Representations

…

(b) Topological Feature Aggre-

gation

Figure 3. (a) illustrates distance-based place discretization. We

segment the bit mask representing a given semantic class based on

the distance transform with respect to a second class, to explicitly

represent the spatial-temporal order of moving agents which cap-

tures the moving direction w.r.t. that place. For example, this fig-

ure shows the partition of the walkway map into components that

are "far," "middle" and "near" to the porch class. We use move to-

ward (home) action as an example: we first observe the person on

the part of far and middle (distance), and after some time, the per-

son appears in the part of near. We use orange ellipses to highlight

person parts. (b) illustrates the motivation behind topological fea-

ture aggregation. We seek a representation that covers the entire

body of the person, which can be accomplished by aggregating the

masked images from places that are connected to walkway.

We propose topological feature aggregation to dynamically

aggregate the decomposed features within the place asso-

ciated with that action and adjacent places. The aggrega-

tion controls the "on/off" state of neuron connections from

generic place-based feature descriptions to action nodes

to model scene layout based on topological connectivity

among places.

We created the Agent-in-Place Action (APA) dataset,

which to the best of our knowledge, is the first dataset that

addresses recognizing actions associated with scene lay-

outs. APA dataset contains over 5,000 15s videos obtained

from 26 different surveillance scenes with around 7,100 ac-

tions from 15 categories. To evaluate the generalization of

LIVR, we split the scenes into observed and unseen scenes.

Extensive experiments show that LIVR significantly im-

proves the generalizability of the model trained on only ob-

served scenes and tested on unseen scenes (improving the

mean average precision (mAP) from around 20% to more

than 50%). Consistent improvements are observed on al-

most all action categories.

2. Related Work

Video Action Recognition Methods and Datasets. Re-

cent advances in video action recognition were driven by

many large scale action recognition datasets. UCF101 [37],

HMDB [22] and Kinetics [19] were widely used for recog-

nizing actions in video clips [42, 30, 47, 8, 36, 46, 7, 28,
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26, 40, 18, 43]; THUMOS [17], ActivityNet[4] and AVA

[13] were introduced for temporal/spatial-temporal action

localization [34, 50, 27, 38, 54, 55, 3, 5, 24]. Recently, sig-

nificant attention has been drawn to model human-human

[13, 39] and human-object interactions in daily actions

[32, 35, 44, 29]. In contrast to these datasets that were

designed to evaluate motion and appearance modeling,

or human-object interactions, our Agent-in-Place Action

(APA) dataset is the first one that focuses on actions that are

defined with respect to scene layouts, including interaction

with places and moving directions. Recognizing these ac-

tions requires the network to not only detect and recognize

agent categories and motion patterns, but also how they in-

teract with the layout of the semantic classes in the scene.

With the large variations of scene layouts, it is critical to ex-

plicitly model scene layout in the network to improve gen-

eralization on unseen scenes.

Surveillance Video Understanding. Prior work focuses on

developing robust, efficient and accurate surveillance sys-

tems that can detect and track actions or events [14, 9, 6, 56,

15, 49]. Recently, ReMotENet [52] skips expensive object

detection [31, 12, 10, 11, 23] and utilizes 3D ConvNets to

detect motion of an object-of-interest in surveillance videos.

We employ a similar 3D ConvNet model as proposed in

[52] as a backbone architecture for extracting place-based

feature descriptions for our model.

Knowledge Transfer. The biggest challenge of agent-in-

place action recognition is to generalize a model trained

with limited scenes to unseen scenes. Previous work on

knowledge transfer for both images and videos has been

based on visual similarity, which requires a large amount

of training data [2, 16, 25, 41, 1, 51, 53]. For trajectory

prediction, Ballan et al.[2] transferred the priors of statis-

tics from training scenes to new scenes based on scene sim-

ilarity. Kitani et al.[21] extracted static scene features to

learn scene-specific motion dynamics for predicting human

activities. Instead of utilizing low-level visual similarity for

knowledge transfer, our video representation abstracts away

appearance and location variance and models geometrical

and topological relationships in a scene. which are more ab-

stract and easier to generalize from limited training scenes.

3. Layout-Induced Video Representation

3.1. Framework Overview

The network architecture of layout-induced video repre-

sentation is shown in Fig.4. For each video, we stack sam-

pled frames of a video clip into a 4-D tensor. Our backbone

network is similar to the architecture of ReMotENet [52],

which is composed of 3D Convolution (3D-conv) blocks.

A key component of our framework is semantic feature de-

composition, which decomposes feature maps according to
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Figure 4. Layout-induced Video Representation Network: The

dashed blue box indicates a shared 3D ConvNet to extract low-

level features. We utilize the segmentation maps to decompose

features into different places, and the solid blue boxes indicate

that we train place-based models to extract place-based feature

descriptions. When relevant to the activities of interest, we con-

duct distance-based place discretization to model moving direc-

tions; finally, we leverage the connectivity of places to aggregate

the place-based feature descriptions at inference level.

region semantics obtained from given segmentation masks.

This feature decomposition can be applied after any 3D-

conv layer. Spatial Global Max Pooling (SGMP) is applied

to extracted features within places, allowing the network to

learn abstract features independent of shapes, sizes and ab-

solute coordinates of both places and moving agents. For

predicting each action label, we aggregate features from dif-

ferent places based on their connectivity in the segmentation

map, referred to as Topological Feature Aggregation.

3.2. Semantic Feature Decomposition

Segmentation Maps. Semantic Feature Decomposition

utilizes a segmentation map of each place to decompose

features and cause the network to extract place-based fea-

ture descriptions individually. The segmentation maps can

be manually constructed using a mobile app we developed 1

to annotate each place by drawing points to construct poly-

gons. This is reasonable since most smart home customers

have only one or two cameras in their home. We employ

human annotations because automatic semantic segmenta-

tion methods segment places based on appearance (e.g.,

color, texture, etc.), while our task requires differentiation

between places with similar appearance based on function-

ality. For example, walkway, street and driveway have dif-

ferent functionalities in daily life, which can be easily and

efficiently differentiated by humans. However, they may

1Details for the app can be found in the supplementary materials.
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confuse appearance-based methods due to their similar ap-

pearance. Furthermore, since home surveillance cameras

are typically fixed, users can annotate one map per camera

very efficiently. However, we will discuss the performance

of our method using automatically generated segmentation

maps in Sec. 5.4.

Place-based Feature Descriptions (PD). Given a segmen-

tation map, we extract place-based feature descriptions as

shown in the blue boxes in Fig.4. We first use the segmenta-

tion map to decompose feature maps spatially into regions,

each capturing the motion occurring in a certain place. The

decomposition is applied to features instead of raw inputs to

retain context information2. Let XL ∈ R
wL× hL×tL×c be

the output tensor of the Lth conv block, where wL, hL, tL
denote its width, height and temporal dimensions, and c is

the number of feature maps. The place-based feature de-

scription of a place indexed with p is

fL,p(XL) = XL ⊙ I [ML = p] (1)

where ML ∈ I
wL× hL×1 is the segmentation index map

and ⊙ is a tiled element-wise multiplication which tiles the

tensors to match their dimensions. Place descriptions can

be extracted from different levels of feature maps. L = 0
means the input level; L > 0 means after the Lth 3D-conv

blocks. A higher L generally allows the 3D ConvNet to

observe more context and to abstract features. We treat L as

a hyper-parameter and study its effect in Sec. 5.

Distance-based Place Discretization (DD). Many actions

are naturally associated with moving directions w.r.t. some

scene element (e.g., the house in home surveillance). To

learn general patterns of the motion direction in different

scenes, we further discretize the place segmentation into

several parts, and extract features from each part and aggre-

gate them to construct the place-based feature description

of this place. For illustration, we use porch as the anchor

place (shown in Fig.5). We compute the distance between

each pixel and the porch in a scene (distance transform),

and segment a place into k parts based on their distances to

porch. The left bottom map in 5 shows the porch distance

transform of a scene. Let DL(x) be the distance transform

of a pixel location x in the Lth layer. The value of a pixel x

in the part indexing map M∆
L is computed as

M∆

L (x) =

⌊

Dmax
L (x)−Dmin

L (x)

k(DL(x)−Dmin
L (x))

⌋

(2)

where Dmax
L (x) = max{DL(x

′)|ML(x
′) = ML(x)} and

Dmin
L (x) = min{DL(x

′)|ML(x
′) = ML(x)} are the max

2An agent can be located at one place, but with part of its body pro-

jected onto another place in the view of the camera. If we use the binary

map as a hard mask at input level, then for some places such as sidewalk,

driveway and walkway, only a small part of the moving agents will remain

after the masking operation.

and min of pixel distances in the same place. They can

be efficiently pre-computed. The feature description cor-

responding to the ith part of pth place in Lth layer is

f∆

L,p,i(XL) = XL ⊙ I[ML = p ∧M∆

L = i] (3)

where ⊙ is the tiled element-wise multiplication.
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Place-­based Feature

Descriptions

Figure 5. The process of distance-based place discretization.

Discretizing a place into parts at different distances to the

anchor place and explicitly separating their spatial-temporal

features allows the representation to capture moving agents

in spatial-temporal order and extract direction-related ab-

stract features. However, not all places need to be seg-

mented since some places (such as sidewalk, street) are not

associated with any direction-related action (e.g., moving

toward or away from the house). For these places, we still

extract the whole-place feature descriptors fL,p. We discuss

the effect of different choices of place discretization and the

number of parts k, and show the robustness of our frame-

work to these parameters in Sec. 5. To preserve temporal

ordering, we apply 3D-conv blocks with spatial-only max

pooling to extract features from each discretized place, and

concatenate them channel-wise. Then, we apply 3D-conv

blocks with temporal-only max pooling to abstract tempo-

ral information. Finally, we obtain a 1-D place-based fea-

ture description after applying GMP (see Fig.5). The final

description obtained after distance-based place discretiza-

tion has the same dimensionality as non-discretized place

descriptions.

3.3. Topological Feature Aggregation (Topo­Agg)

Semantic feature decomposition allows us to extract a

feature description for each place individually. To explic-

itly model the layout of a scene, we need to aggregate these

place features based on connectivity between places. Each

action category is one-to-one mapped to a place. To predict

the confidence of an action a occurring in a place p, features

from adjacent places might provide contextual information,

while the ones extracted far from place p are distractors.

To explicitly model the topological structure of places in a

scene, we propose Topological Feature Aggregation, which

utilizes the spatial connectivity between places to guide fea-

ture aggregation.

Specifically, as shown in Fig.6, given a scene segmen-

tation map, a source place p and a constant h, we employ
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Figure 6. Topological feature aggregation which utilizes the con-

nectivities between different places in a scene to guide the connec-

tions between the extracted place-based feature descriptions and

the prediction labels. For clear visualization, we use the source

places as porch in (b) with h = 1. The X indicates we aggregate

features from a certain place to infer the probability of an action.

a Connected Component algorithm to find the h-connected

set Ch(p) which contains all places connected to place p

within h hops. The constant h specifies the minimum

number of steps to walk from the source to a destina-

tion place. Given the h-connected place set Ch, we con-

struct a binary action-place matrix (T ∈ R
na×np ) for the

scene where na is the number of actions and np is the

number of places. Ti,j = 1 if and only if place j is

in the Ch of the place corresponding to action i. Fig.6

shows an example segmentation map with its action-place

mapping, where C0(porch) = {porch}, C1(porch) =
{porch, walkway, driveway, lawn}, C2(porch) includes

all except for street, and C3(porch) covers all six places. It

is worth noting that since the vocabulary of our actions is

closed, T is known at both training and testing time given

the segmentation maps.

We implement topological feature aggregation using a

gated fully connected layer with customized connections

determined by the action-place mapping T. Given np m-

D features extracted from np places, we concatenate them

to form a (np × m)-D feature vector. We use T to deter-

mine the "on/off” status of each connection of a layer be-

tween the input features and the output action nodes. Let

T∗ = T ⊗ I
1×m be the actual mask applied to the weight

matrix W ∈ R
na×npm where ⊗ is the matrix Kronecker

product. The final output is computed by y = (W⊙T∗)f∗,

where ⊙ is element-wise matrix multiplication, f∗ is the

concatenated feature vector as the input of the layer. We

omit bias for simplicity. Let J be the training loss func-

tion (cross-entropy loss). The derivative of W is ∇WJ =
(∇yJf

⊺
∗ )⊙T∗, which is exactly the usual gradient (∇sJf

T )

masked by T∗. At training time, we only back-propagate

the gradients to connected neurons.

4. Agent-in-Place Action Dataset

We introduce a video dataset for recognizing agent-in-

place actions3. We collected outdoor home surveillance

videos from internal donors and webcams to obtain over

7, 100 actions from around 5, 000 15-second video clips

with 1280×720 resolution. These videos are captured from

26 different outdoor cameras which cover various layouts of

typical American front and back yards.

We select 15 common agent-in-place actions to label

and each is represented as a tuple containing an action,

the agent performing it, and the place where it occurs.

The agents, actions, and places involved in our dataset are:

agent = {person, vehicle, pet}; action = {move along,

stay, move away (home), move toward (home), interact with

vehicle, move across}; place = {street, sidewalk, lawn,

porch, walkway, driveway}.

The duration of each video clip is 15s, so multiple ac-

tions can be observed involving one or more agents in one

video. We formulate action recognition as a multi-label

classification task. We split the 26 cameras into two sets:

observed scenes (5) and unseen scenes (21) to balance the

number of instances of each action in observed and unseen

scenes and at the same time cover more scenes in the unseen

set. We train and validate our model on observed scenes,

and test its generalization capability on the unseen scenes.

Details about the APA dataset including statistics can be

found in the supplementary material.

5. Experiments

5.1. Implementation Details

Network Architecture. Unlike traditional 3D ConvNets

which conduct spatial-temporal max-pooling simultane-

ously, we found that decoupling the pooling into spatial-

only and temporal-only leads to better performance (details

are in the supplementary materials). We utilize nine blocks

of 3D ConvNets with the first five blocks using spatial-

only max pooling and the last four blocks using temporal-

only max pooling for each place-specific network. The

first two blocks have one 3D-conv layer each, and there

are two conv layers with ReLU in between for the re-

maining blocks. For each place-specific network, we use

64 3 × 3 × 3 conv filters per 3D-conv layer. After con-

ducting SGMP on features extracted by each place-specific

network, the final concatenated 1-D feature dimension is

6 × 64 for 6 places. The inference is conducted with a

gated fully connected layer, whose connections ("on/off"

status) are determined by action labels and scene topol-

ogy. We decompose semantics after the second conv blocks

(L = 2); we conduct distance-based place discretization on

PLDT = {walkway, driveway, lawn} and choose k = 3;

3The dataset is pending legal review.
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Table 1. The Path from Traditional 3D ConvNets to our Methods. B/L1 and B/L2 are baseline models with raw pixels and and

ConcateMap as input, respectively. For our proposed models: V1 uses segmentation maps to extract place-based feature descriptions only.

V3 applies distance-based place discretization for some places. Both V1 and V3 use a FC layer to aggregate place features; V2 and V4

uses topological feature aggregation. H and FPS2 indicates using higher resolutions and FPS, and MF means using more filters per conv

layer. Besides our baselines, we also compare LIVR with two state-of-the-art action recognition methods: [52, 45].

Network Architecture B/L1 B/L2
B/L2

+MF

LIVR-

V1

LIVR-

V2

LIVR-

V3

LIVR-

V4

LIVR-

V4+H

LIVR-

V4+MF

LIVR-

V4+FPS2

TSN

[45]

ReMotENet

[52]

3D ConvNet? X X X X X X X X X X - -

ConcateMap? X X - -

place-based feature description? X X X X X X X - -

distance-based place discretization? X X X X X - -

topological feature aggregation? X X X X X - -

higher resolutions? X - -

more filters? X X - -

higher FPS? X - -

Observed scenes mAP 51.09 54.12 53.02 55.69 57.12 58.02 59.71 59.64 59.52 59.01 56.71 55.92

Unseen scenes mAP 19.21 21.16 20.45 41.57 43.78 47.76 50.65 49.03 50.98 49.56 23.21 22.05

for topological feature aggregation, we choose h = 1.

Anchor Place. For our dataset, the directions mentioned

are all relative to the house location, and porch is a strong

indicator of the house location. So we only conduct dis-

tance transform to porch 4, but the distance-based place dis-

cretization method can represent moving direction w.r.t any

arbitrary anchor place.

Training and Testing Details. Our action recognition task

is formulated as multi-label classification without mutual

exclusion. The network is trained using the Adam optimizer

[20] with 0.001 initial learning rate. For input video frames,

we follow [52] to use FPS 1 and down-sample each frame

to 160×90 to construct a 15×160×90×3 tensor for each

video as input. Suggested by [52], small FPS and low reso-

lution are sufficient to model actions for home surveillance

where most agents are large and the motion patterns of ac-

tions are relatively simple. We evaluate the performance of

recognizing each action independently and report Average

Precision (AP) for each action and mean Average Precision

(mAP) over all categories.

Dataset Split. We split the 26 scenes into two sets: ob-

served scenes and unseen scenes. We further split the ob-

served scenes into training and validation sets with a sam-

ple ratio of nearly 1 : 1. The model is trained on observed

scenes and test on unseen scenes. The validation set is used

for tuning hyperparameters, which are robust with different

choices (see Sec. 5.4).

5.2. Baseline Models

We follow [52] to employ 3D ConvNets as our baseline

(B/L) model. The baseline models share the same 3D Con-

vNets architecture with our proposed model, except that the

last layer is fully connected instead of gated through topo-

logical feature aggregation. The difference between base-

lines is their input: B/L1 takes the raw frames as input; B/L2

4If there is no porch in a scene, the user draws a line (click to generate

two endpoints) to indicate its location.

incorporates the scene layout information by directly con-

catenating the 6 segmentation maps to the RGB channels in

each frame (we call this method ConcateMap), resulting in

an input of 9 channels per frame in total. We train the base-

line models using the same setting as in the proposed model,

and the performance of the baselines are shown in column

2-5 in Table 1. We observe that: 1) the testing performance

gap between observed and unseen scenes is large, which

reveals the poor generalization of the baseline models; 2)

marginal improvements are obtained by incorporating scene

layout information using ConcateMap, which suggests that

it is difficulty for the network to learn the human-scene in-

teractions directly from the raw pixels and segmentation

maps. In addition, we also train a B/L2 model with 6×
more filters per layer to evaluate whether model size is the

key factor for the performance improvement. The result of

this enlarged B/L2 model is shown in column 5 of Table

1. Overall, the baseline models which directly extract fea-

tures jointly from the entire video suffer from overfitting,

and simply enlarging the model size or directly using the

segmentation maps as features does not improve their gen-

eralization.

5.3. Evaluation on the Proposed Method

The path from traditional 3D ConvNets to our method.

We show the path from the baselines to our method in Table

1. In column 6-9, we report the mAP of our models on ob-

served scene validation set and unseen scene testing set. We

observe three significant performance gaps, especially on

unseen scenes: 1) from B/L2 to LIVR-V1, we obtain around

20% mAP improvement by applying the proposed semantic

feature decomposition to extract place feature descriptions;

2) from LIVR-V1 to LIVR-V3, our model is further im-

proved by explicitly modeling moving directions by place

discretization; 3) when compared to using a fully connected

layer for feature aggregation (V1 and V3), our topological

method (V2 and V4) leads to another significant improve-

ment, which shows the efficacy of feature aggregation based
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Figure 7. Per-category average precision of the baseline 3 and our methods on unseen scenes. The blue dashed box highlights actions which

require modeling moving directions. We observe that the proposed place-based feature descriptions (PD), distance-based place discretiza-

tion (DD) and topological feature aggregation (Topo-Agg) significantly improve the average precision on almost all action categories.

FC-Agg stands for using a FC layer to aggregate place descriptions.

Figure 8. Qualitative examples: The predicted confidences of

groundtruth actions using different methods. We use 3 frames to

visualize a motion and orange ellipses to highlight moving agents.

on scene layout connectivity. We also evaluate the effect of

resolutions, FPS and number of filters using our best model

(LIVR-V4). Doubling the resolution (320 × 180), FPS (2)

and number of filters (128) only results in a slight change of

the model’s accuracy (columns 10-12 in Table 1). Besides

our baselines, we also apply other state-of-the-art video ac-

tion recognition methods (TSN [45] and ReMotENet [52])

on our dataset. LIVR outperforms them by a large margin,

especially on the unseen scenes. Per-category results are

shown in Fig. 7 and more discussions are included in the

supplementary materials.

Qualitative Results. Some example actions are visualized

using three frames in temporal order and the predicted prob-

abilities of the groundtruth actions using different meth-

ods are reported in Fig.8. It is observed that for relatively

easy actions such as <vehicle, move along, street>, perfor-

mance is similar across approaches. However, for challeng-

ing actions, especially ones requiring modeling moving di-

rections such as <person, move toward (home), walkway>,

our method outperforms baselines significantly.

5.4. Ablation Analysis on Unseen Scenes

Place-based Feature Description. The hyper-parameter

for PD is the level L, controlling when to decompose se-

mantics in different places. Fig.9(a) and 9(c) show that the

generalization capability of our model is improved when

we allow the network to observe the entire video at input

level, and decompose semantics at feature level (after the

2nd conv blocks). Generally, the improvements of PD are

robust across different feature levels.

Distance-based Place Discretization. We study different

strategies for determining PLDT and the number of parts to

discretize (k) per place. From our observations, including

the anchor place–porch, the six places in our dataset can be

clustered into three categories with regard to the distance to

camera: C1 includes only porch, which is usually the clos-

est place to camera; C2 includes lawn, walkway, driveway,

and actions occurring in those places usually require mod-

eling the moving direction directly; C3 includes sidewalk

and street, which are usually far away from the house, and

actions on them are not sensitive to directions (e.g., "move

along"). We evaluate our method with two strategies to ap-

ply DD on: 1) all places belong to C2 and C3; 2) only places

in C2. The results are shown in Fig.9(b). We observe that

applying DD on C3 dose not help much, but if we only ap-

ply DD on places in C2, our method achieves the best per-

formance. In terms of the number of discretized parts k, we

evaluate k from 2 to 5 and observe from Fig.9(b) that the

performance is robust when k > 3.

Topological Feature Aggregation. We evaluate different h

values to determine the h-connected set and different strate-

gies to construct and utilize the action-place mapping T.
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Figure 9. Evaluation: (a) The effect of extracting place-based feature descriptions (PD) at different levels using different variants of our

proposed model. (b) Different strategies for distance-based place discretization. (c) Different feature aggregation approaches on unseen

scenes. (d) Performance of LIVR using groundtruth (GT) and automatically generated (Auto) segmentation map.
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Figure 10. Process of Automatically Generating Segmentation

Maps. (a) is the input camera image. (b) is the output of nor-

malized cut method. (d) is the set of all videos captured by this

camera. (e) shows the heatmaps we obtained by analyzing the

patterns of moving objects from the videos. (c) is the generated

segmentation map. (f) is the ground truth map.

The results are shown in Fig.9(c). We set L = 2, and use

both PD and DD. We observe that Topo-Agg achieves its

best performance when h = 1, i.e., for an action occurring

in place P , we aggregate features extracted from place P

and its directly connected places. In addition, we compare

Topo-Agg to the naive fully connected inference layer (FC-

Agg: 1 layer) and two fully-connected layers with 384 neu-

rons each and a ReLU layer in between (FC-Agg: 2 layers).

Unsurprisingly, we observe that the generalizability drops

significantly with an extra fully-connected layer, which re-

flects overfitting. Our Topo-Agg outperforms both methods.

We also conduct an experiment where we train a fully con-

nected inference layer and only aggregate features based on

topology at testing time (“Topo-Agg: 1-hop test only”) and

it shows worse performance.

LIVR with Automatically Generated Segmentation

Maps. To evaluate the performance of LIVR using im-

perfect segmentation maps, we developed an algorithm to

automatically generate the segmentation maps. As shown

in Fig.10, we first apply normalized cut [33] on the cam-

era images to obtain segments (Fig.10 (b))5. Then, to fur-

ther differentiate different places with similar appearance

5We also tried deep learning based methods trained on semantic seg-

mentation datasets, but they perform poorly on our camera images. Details

can be found in the supplementary materials.

(e.g., walkway and street), we developed an algorithm to

utilize the historical statistics obtained from previous videos

(Fig.10 (d)) of a scene to generate heatmaps of some spe-

cific places6 (Fig.10 (e)). Then, the two results are com-

bined to obtain final segmentation maps (Fig.10 (c)). Our

method can generate reasonably good segmentation maps

when compared to the groundtruth maps obtained manu-

ally (Fig. 10 (f)). We evaluate LIVR using the imperfect

maps and observe some performance degradations (around

10%), but LIVR still outperforms the baselines by a large

margin (around 20%), which demonstrate the effectiveness

of our method even if the segmentation maps are imperfect.

Details of how we generate the segmentation maps can be

found in the supplementary materials.

6. Conclusion

To improve the generalization of a deep network that

learns from limited training scenes, we explicitly model

scene layout in a network by using layout-induced video

representations, which abstracts away low-level appearance

variance but encodes the semantics, geometry and topol-

ogy of scene layouts. An interesting future directions would

be to include integrate the estimation of the semantic maps

into the network architecture, which may require collecting

more scenes for training.
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