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Abstract

Remote photoplethysmography (rPPG), which aims at

measuring heart activities without any contact, has great

potential in many applications (e.g., remote healthcare).

Existing rPPG approaches rely on analyzing very fine de-

tails of facial videos, which are prone to be affected by

video compression. Here we propose a two-stage, end-

to-end method using hidden rPPG information enhance-

ment and attention networks, which is the first attempt to

counter video compression loss and recover rPPG signals

from highly compressed videos. The method includes two

parts: 1) a Spatio-Temporal Video Enhancement Network

(STVEN) for video enhancement, and 2) an rPPG net-

work (rPPGNet) for rPPG signal recovery. The rPPGNet

can work on its own for robust rPPG measurement, and

the STVEN network can be added and jointly trained to

further boost the performance especially on highly com-

pressed videos. Comprehensive experiments are performed

on two benchmark datasets to show that, 1) the proposed

method not only achieves superior performance on com-

pressed videos with high-quality videos pair, 2) it also gen-

eralizes well on novel data with only compressed videos

available, which implies the promising potential for real-

world applications.

1. Introduction

Electrocardiography (ECG) and Photoplethysmograph

(PPG) provide common ways for measuring heart activi-

ties. These two types signals are important for healthcare

applications since they provide the measurement of both

basic average heart rate (HR) and more detailed informa-

tion like heart rate variability (HRV). However, these sig-

nals are mostly measured from skin-contact ECG/BVP sen-

sors, which may cause discomfort and are inconvenient for

long-term monitoring. To solve this problem, remote pho-

toplethysmography (rPPG) , which targets to measure heart
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Figure 1. rPPG measurement from highly compressed videos.

Due to video compression artifact and rPPG information loss, the

rPPG in (a) has very noisy shape and inaccurate peak counts which

lead to erroneous heart rate measures, while after video enhance-

ment by STVEN, the rPPG in (b) shows more regular pulse shape

with accurate peak locations comparing to the ground truth ECG.

activity remotely and without any contact, has been devel-

oping rapidly in recent years [4, 12, 19, 18, 31, 32, 22].

However, most previous rPPG measurement works did

not take the influence of video compression into considera-

tion, whereas the fact is that most videos captured by com-

mercial cameras are compressed through different compres-

sion codecs with various bitrates. Recently, two works [7,

16] pointed out and demonstrated that the performance of

rPPG measurement dropped to various extents when us-

ing compressed videos with different bitrates. As shown in

Fig. 1(a), rPPG signals measured from highly compressed

videos usually suffer from noisy curve shape and inaccu-

rate peak locations due to information loss caused by both

intra-frame and inter-frame coding of the video compres-

sion process. Video compression is inevitable for remote

services considering the convenient storage and transmis-
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sion in Internet. Thus it is of great practical value to de-

velop rPPG methods that can work robustly on highly com-

pressed videos. However, no solution has been proposed yet

to counter this problem.

To address this problem, we propose a two-stage, end-

to-end method using hidden rPPG information enhance-

ment and attention networks, which can counter video com-

pression loss and recover rPPG signals from highly com-

pressed facial videos. Figure 1(b) illustrates the advantages

of our method on rPPG measurement from highly com-

pressed videos. Our contributions include:

• To our best knowledge, we provide the first solu-

tion for robust rPPG measurement directly from com-

pressed videos, which is an end-to-end framework

made up of a video enhancement module STVEN

(Spatio-Temporal Video Enhancement Network) and

a powerful signal recovery module rPPGNet.

• The rPPGNet, featured with a skin-based attention

module and partition constraints, can measure ac-

curately at both HR and HRV levels. Compared

with previous works which only output simple HR

numbers[17, 25], the proposed rPPGNet produces

much richer rPPG signals with curve shapes and peak

locations. Moreover, It outperforms state-of-art meth-

ods on various video formats of a benchmark dataset

even without using the STVEN module.

• The STVEN, which is a video-to-video translation

generator aided with fine-grained learning, is the first

video compression enhancement network to boost

rPPG measurement on highly compressed videos.

• We conduct cross-dataset test and show that the

STVEN can generalize well to enhance unseen, highly

compressed videos for rPPG measurement, which im-

plies promising potential in real-world applications.

2. Related Work

Remote Photoplethysmography Measurement. In past

few years, several traditional methods explored rPPG mea-

surement from videos by analyzing subtle color changes

on facial regions of interest (ROI), including blind source

separation [19, 18], least mean square [12], majority vot-

ing [10] and self-adaptive matrix completion [31]. How-

ever, ROI selection in these works were customized or ar-

bitrary, which may cause information loss. Theoretically

speaking, all skin pixels can contribute to the rPPG signals

recovery. There are other traditional methods which utilized

all skin pixels for rPPG measurement, e.g., chrominance-

based rPPG (CHROM) [4], projection plane orthogonal

to the skin tone (POS) [35], and spatial subspace rota-

tion [36, 34, 13]. All these methods treat each skin pixel

with equal contribution, which is against the fact that differ-

ent skin parts may bear different weights for rPPG recovery.

More recently, a few deep learning based methods

were proposed for average HR estimation, including Syn-

Rhythm [17], HR-CNN [25] and DeepPhys [3]. Convo-

lutional neural networks (CNN) were also employed for

skin segmentation [2, 28] and then to predict HR from skin

regions. These methods were based on spatial 2D CNN,

which failed to capture temporal features which are essen-

tial for rPPG measurement. Moreover, the skin segmen-

tation task was treated separately from the rPPG recovery

task, which lacks the mutual feature sharing between such

two highly related tasks.

Video Compression and Its Impact for rPPG. In real-

world applications, video compression is widely used be-

cause of its great storage capacities with minimal quality

degradation. Numerous codecs for video compression have

been developed as standards of the Moving Picture Ex-

perts Group (MPEG) and International Telecommunication

Union Telecommunication Standardization Sector (ITU-T).

These include MPEG-2 Part 2/H.262 [8] and the low bitrate

standard MPEG-4 Part 2/H.263 [21]. Current-generation

standard AVC/H.264 [37] achieves an approximate dou-

bling in encoding efficiency over H.262 and H.263. More

recently, next-generation standard HEVC/H.265 [27] uti-

lizes increasingly complex encoding strategies for an ap-

proximate doubling in encoding efficiency over H.264.

In the stage of video coding, compression artifacts are

inevitable as a result of quantization. Specifically, the ex-

isting compression standards drop subtle changes that hu-

man eyes cannot see. It does not favor the purpose of rPPG

measurement, which mainly relies on subtle changes at in-

visible level. The impact of video compression on rPPG

measurement was not explored until very recently. Three

works[7, 16, 24] consistently demonstrated that the com-

pression artifacts do reduce the accuracy of HR estima-

tion. However, these works only tested on small-scale pri-

vate datasets using traditional methods, and it was unclear

whether compression also impacted deep learning based

rPPG methods on large dataset. Furthermore, these works

just pointed out the problem of compression on rPPG, but

no solution has been proposed yet.

Quality Enhancement for Compressed Video. Fueled

by the high performance of deep learning, several works in-

troduce it to enhance the quality of compressed videos and

get promising results, including ARCNN [5], deep resid-

ual denoising neural networks (DnCNN) [39], generative

adversarial networks [6] and multi-frame quality enhance-

ment network [38]. However, all of them were designed for

solving general compression problems or other tasks like

object detection, but not for rPPG measurement. There are

two works [15, 40] about rPPG recovery from low quality

videos. The [15] focused on frame resolutions but not about

video compression and format. The other one [40] tried to

address the rPPG issue on compressed videos, but the ap-
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Figure 2. Illustration of the overall framework. There are two models in our framework: video quality enhancement model STVEN (left)

and rPPG recovery model rPPGNet (right). Both of them work well by learning with corresponding loss functions. We will also introduce

an elaborate joint training, which further improves the rPPG recovery performance.

proach was only on bio-signal processing level AFTER the

rPPG was extracted, which has nothing to do with video

enhancement. To the best of our knowledge, no video en-

hancement method has ever been proposed for the problem

of rPPG recovery from highly compressed videos.

In order to overcome the above-mentioned drawbacks

and fill in the blank, we propose a two-stage, end-to-end

deep learning based method for rPPG measurement from

highly compressed videos.

3. Methodology

As a two-stage end-to-end method, we will first in-

troduce our video enhancement network STVEN in Sec-

tion 3.1, then introduce the rPPG signal recovery network

rPPGNet in Section 3.2, and at last explain how to jointly

train these two parts for boosting performance. The overall

framework is shown in Fig 2.

3.1. STVEN

For the sake of enhancing the quality of highly com-

pressed videos, we present a video-to-video genera-

tor called Spatio-Temporal Video Enhancement Networks

(STVEN), which is shown in the left of Fig.2. Here we

perform a fine-grained learning by assuming that compres-

sion artifacts from different compression bitrates are with

different distributions. As a result, compressed videos are

placed into the buckets [0, 1, 2, ..., C] denoted as C based on

their compression bitrate. Here, 0 and C represent videos

with lowest and highest compression rate, respectively. Let

cτk = [ck1, ck2, ..., ckτ ] be a sequence of the compressed

video with length of τ for k ∈ C. Then our goal is to train

a generator G which can enhance the quality of compressed

videos cτk so that the distribution of the video is identical to

the one of which k = 0, that is original video cτ0 . Let say

the output of generator G is ĉτ0 = [ĉ01, ĉ02, ..., ĉ0τ ]. Then

the conditional distribution of ĉτ0 given input videos cτk and

video quality target 0 should be equal to the cτ0 given input

videos cτk and target 0. That is

p(ĉτ0 |c
τ
k, 0) = p(cτ0 |c

τ
k, 0). (1)

By learning to match the video distributions, our model gen-

erates the video sequences with the quality being enhanced.

Likewise, in order to make the model more generalizable,

the framework is also set to be able to compress the origi-

nal video with a specific compression bitrate. This means

that when our model is fed with video cτ0 and outputs lower

quality target k, the model G should also be able to gen-

erate the video which fits the distribution with the specific

compression bitrate k. That is

p(ĉτk|c
τ
0 , k) = p(cτk|c

τ
0 , k), (2)

here ĉτk is the output of our generator with the inputs cτ0 and

k. Therefore, there will be two parts of the loss function

Lrec in STVEN: one is the reconstruction loss, for which

we introduce a mean squared error (MSE) to deal with the

video details, and the other one is the lose for compression

reconstruction, here we employ a L1 loss. Then

Lrec =Ek∼C,t(c
τ
0(t)− G(cτk, 0)(t))

2

+ Ek∼C,t||c
τ
k(t)− G(cτ0 , k)(t)||

(3)

Here t ∈ [1, τ ] is the t-th frame of the output video. In ad-

dition, like in [41], we also introduce a cycle-loss for better

reconstruction. In this way, we expect our model to satisfy

this case: when taking (ĉτ0 ) of G, which is fed with cτk and

the specific compression bitrate label 0, and the compres-

sion bitrate label k as its inputs, the following output should

match the distribution of the initial input videos. Similarly,

we perform the cycle processing for original video. As a

result, the cycle loss Lcyc in STVEN is

Lcyc =Ek∼C,t||c
τ
k(t)− G(G(cτk, 0), k)(t)||

+ Ek∼C,t||c
τ
0(t)− G(G(cτ0 , k), 0)(t)||.

(4)

153



Layer Output size Kernel size

STVEN

Conv 1 64× T × 128× 128 3× 7× 7
Conv 2 128× T × 64× 64 3× 4× 4
Conv 3 512× T

2 × 32× 32 4× 4× 4
ST Block 512× T

2 × 32× 32
[

3× 3× 3
]

× 6
DConv 1 128× T × 64× 64 4× 4× 4
DConv 2 64× T × 128× 128 1× 4× 4
DConv 3 3× T × 128× 128 1× 7× 7

rPPGNet

Conv 1 32× T × 64× 64 1× 5× 5
ST Block 64× T × 16× 16

[

3× 3× 3
]

× 4
SGAP 64× T × 1× 1 1× 16× 16
Conv 2 1× T × 1× 1 1× 1× 1

Table 1. The architecture of STVEN and rPPGNet. Here ”Conv x”

means 3D convolution filters and ”DConv x” denotes 3D trans-

posed convolution filters. ”ST Block” represents spatio-temporal

block [30], which is constructed by two sets of cascaded 3D con-

volution filters with kernel size of 1×3×3 and 3×1×1, respec-

tively. Besides, we introduce instance normalization and ReLU

into STVEN while batch normalization and ReLU into rPPGNet.

”SGAP” is short for spatial global average pooling.

Therefore, the total loss of STVEN LSTV EN is the sum of

Lrec and Lcyc. To achieve this goal, we build our model

STVEN with a spatial-temporal convolutional neural net-

work. The architecture is composed of two downsampling

layers and two upsampling layers at the two ends, with six

spatio-temporal blocks in the middle. The details of the ar-

chitecture is shown in the top of Table. 1.

3.2. rPPGNet

The proposed rPPGNet is composed of a spatio-temporal

convolutional network, a skin-based attention module and a

partition constraint module. Skin-based attention helps to

adaptively selected skin regions, and partition constraint is

introduced for learning better rPPG feature representation.

Spatio-Temporal Convolutional Network. Previous

works like [4, 35], usually projected spatial pooled RGB

into another color space for better representation of the

rPPG information. Then temporal context based normal-

ization was used to get rid of irrelevant info (e.g., noise

caused by illumination or motion). Here we merge these

two steps into one model and propose an end-to-end spatio-

temporal convolutional network, which takes T -frame face

images with RGB channels as the inputs and outputs rPPG

signals directly. The backbone and architecture of rPPGNet

is shown in Fig. 2 and Table. 1 respectively.

Aiming to recover rPPG signals y ∈ R
T , which should

have accurate pulse peak locations compared with the cor-

responding ground truth ECG signals yg ∈ R
T , negative

Pearson correlation is used to define the loss function. It

can be formulated as

Figure 3. Illustration of the skin-based attention module of the

rPPGNet, which is parameter-free. It assigns importance to differ-

ent locations in accordance with both skin confidence and rPPG

feature maps. The softmax operation can be either spatial-wise or

spatio-temporal-wise.

Lnp = 1−

T
T
∑

i=1

yiy
g
i −

T
∑

i=1

yi
T
∑

i=1

y
g
i

√

(T
T
∑

i=1

y2

i −(
T
∑

i=1

yi)2)(T
T
∑

i=1

(yg
i )

2−(
T
∑

i=1

y
g
i )

2)

.

(5)
Unlike Mean Square Error (MSE), our loss is to minimize

the linear similarity error instead of the point-wise intensity

error. We tried MSE loss in prior test, which achieved much

worse performance because the intensity values of signals

are irrelevant with our task (i.e., to measure accurate peak

locations) and introduces extra noise inevitably.

We also aggregate the mid-level features (outputs of the

third ST Block) into pseudo signals and then constrain them

by Lmid
np for stable convergence. So the basic learning ob-

ject for recovering rPPG singals is described as

LrPPG = αLnp + βLmid
np , (6)

where α and β are the weights for balancing the loss.

Skin Segmentation and Attention. Various skin re-

gions have varying density degrees of blood vessels as well

as biophysical parameter maps (melanin and haemoglobin),

thus contribute at different levels for rPPG signal measure-

ment. So the skin segmentation task is highly related to

rPPG signals recovery task. These two tasks can be treated

as a multi-task learning problem. Thus we employ a skin

segmentation branch after the first ST Block. The skin

segmentation branch projects the shared low-level spatio-

temporal features into skin domain, which is implemented

by spatial and channel-wise convolutions with residual con-

nections. As there is no ground truth skin map in related

rPPG datasets, we generate the binary labels for each frame

by adaptive skin segmentation algorithms [29]. With these

binary skin labels, the skin segmentation branch is able to

predict high quality skin maps S ∈ R
T×H×W . Here we

adopt binary cross entropy Lskin as the loss function.

In order to eliminate the influence of non-skin regions

and enhance dominant rPPG features, we construct a skin-

based parameter-free attention module which refines the
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Figure 4. Partition constraints with N = 4.

rPPG features by predicted attention maps M ∈ R
T×H×W .

The module is illustrated in Fig. 3 and the attention maps

are computed as

M(F, S) = ς(σ(AvgPool(F )) + σ(MaxPool(F )) + S), (7)

where S and F donote the predicted skin maps and rPPG

feature maps respectively. σ and ς represent the sigmoid

and softmax function respectively.

Partition Constraint. In order to help the model learn

more concentrated rPPG features, local partition constraint

is introduced. As shown in Fig. 4, the deep features D ∈
R

C×T×H×W are divided into N uniform spatio-temporal

parts Di ∈ R
C×T×(H/

√
N)×(W/

√
N), i ∈ {1, 2, ..., N}.

Afterwards, spatial global average pooling is adopted by

each part-level feature for feature aggregation and an in-

dependent 1 × 1 × 1 convolution filter is deployed for fi-

nal signals prediction. The partition loss is described as

Lparts =
∑N

i=1 L
parti
np , where Lparti

np is the negative Pear-

son loss of the i-th part-level feature.

The partition loss can be considered as a dropout [26]

for high-level features. It has a regularization effect because

each partition loss is independent to each other, thus forcing

part features to be powerful enough to recover the rPPG sig-

nal. In other words, via the partition constraint, the model

can focus more on the rPPG signals instead of interference.

In sum, the loss function of rPPGNet can be written as

LrPPGNet = LrPPG + γLskin + δLparts, (8)

where γ and δ are the weights for balancing the loss.

3.3. Joint Loss Training

When STVEN is trained separately from rPPGNet, the

output video cannot guarantee its effectiveness for the lat-

ter. Inspired by [14], we design an advanced joint train-

ing strategy to ensure that STVEN can enhance the video

specifically in favor of rPPG recovery, which boosts the per-

formance of rPPGNet even on highly compressed video.

First, we train the rPPGNet on the high quality videos

with the training method described in Section 3.2. Second,

we train the STVEN on compressed videos with different

bitrates. Finally, we train the cascaded networks, which

is illustrated in Fig. 2, with all high-level task model pa-

rameters fixed. Therefore, all the following loss functions

are designed for the updating of STVEN. Here we employ

an application-oriented joint training, where we prefer the

end-to-end performance rather than the performance of both

stages. In this training strategy, we take away the cycle-loss

part since we expect STVEN to recover richer rPPG signals

instead of irrelevant information loss during video compres-

sion. As a result, we only need to know its target label, and

the compression labels of all input videos fed into STVEN

can be simply set to 0 as default. This allows the model

to be more generalizable since it does not require subjec-

tively compression labeling of input videos, thus can work

on novel videos with unclear compression rate. Besides,

like [9], we also introduce a perceptual loss Lp for joint

training. That is

Lp =
1

TfWfHf

Tf
∑

t=1

Wf
∑

i=1

Hf
∑

j=1

(φ(cτ0)(t, i, j)

− φ(G(cTk , 0))(t, i, j))
2.

(9)

Here, φ denotes a differentiable function in rPPGNet

and the feature maps φ(x) ∈ R
Tf×Wf×Hf . Cost func-

tion in Eq. (9) keeps the recovered video and the original

video consistent in the feature map space. Besides, we also

let STVEN contribute directly to rPPG task by introducing

LrPPG as in Eq. (8). In the joint training, we use the rPPG

signals recovered from high quality videos as a softer tar-

get for the updating of STVEN, and it converges faster and

more steadily than using the ECG signals, which might be

too far-fetched and challenging as the target for highly com-

pressed videos, as our prior tests proved. In all, the joint cost

function Ljoint for STVEN can be formulated as

Ljoint = LrPPGNet + εLp + ρLSTV EN , (10)

here ε and ρ are hyper-parameters.

4. Experiments

We test the proposed system in four sub-experiments,

the first three on OBF [11] dataset and the last one

on MAHNOB-HCI [23] dataset. Firstly, we evaluate the

rPPGNet on OBF for both average HR and HRV feature

measurement. Secondly, we compress OBF videos and ex-

plore how video compression influence the rPPG measure-

ment performance. Thirdly, we demonstrate that STVEN

can enhance the compressed videos and boost the rPPG

measurement performance on OBF. Finally, we cross test

the joint system of STVEN and rPPGNet on MAHNOB-

HCI, which has only compressed videos, to validate the

generalizability of the system.

4.1. Datasets and Settings

Two datasets - OBF [11] and MAHNOB-HCI [23] are

used in our experiments. The OBF is a recently release
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Table 2. Performance comparison on OBF. HR is the averaged heart rate within 30 seconds, RF, LF, HF and LF/HF are HRV features

that require finer inter-beat-interval measurement of rPPG signals. Smaller RMSE and bigger R values indicate better performance.

”rPPGNet base” denotes the spatio-temporal networks with LrPPG constraint, while ”Skin”, ”Parts” and ”Atten” indicate corresponding

modules of rPPGNet described in Section 3.2. ”rPPGNet (full)” includes all modules of the rPPGNet.

HR(bpm) RF(Hz) LF(u.n) HF(u.n) LF/HF

Method SD RMSE R SD RMSE R SD RMSE R SD RMSE R SD RMSE R

ROI green [11] 2.159 2.162 0.99 0.078 0.084 0.321 0.22 0.24 0.573 0.22 0.24 0.573 0.819 0.832 0.571

CHROM [4] 2.73 2.733 0.98 0.081 0.081 0.224 0.199 0.206 0.524 0.199 0.206 0.524 0.83 0.863 0.459

POS [35] 1.899 1.906 0.991 0.07 0.07 0.44 0.155 0.158 0.727 0.155 0.158 0.727 0.663 0.679 0.687

rPPGNet base 2.729 2.772 0.98 0.067 0.067 0.486 0.151 0.153 0.748 0.151 0.153 0.748 0.641 0.649 0.724

rPPGNet base+Skin 2.548 2.587 0.983 0.067 0.067 0.483 0.145 0.147 0.768 0.145 0.147 0.768 0.616 0.622 0.749

rPPGNet base+Skin+Parts 2.049 2.087 0.989 0.065 0.065 0.505 0.143 0.144 0.776 0.143 0.144 0.776 0.594 0.604 0.759

rPPGNet base+Skin+Atten 2.004 2.051 0.989 0.065 0.065 0.515 0.137 0.139 0.79 0.137 0.139 0.79 0.591 0.601 0.76

rPPGNet (full) 1.756 1.8 0.992 0.064 0.064 0.53 0.133 0.135 0.804 0.133 0.135 0.804 0.58 0.589 0.773

dataset for study about remote physiological signal mea-

surement. It contains 200 five-minute-long RGB videos

recorded from 100 healthy adults and the corresponding

ground truth ECG signals are also provided. The videos are

recorded at 60 fps with resolution of 1920x2080, and com-

pressed in MPEG-4 with average bitrate ≈ 20000 kb/s (file

size ≈ 728 MB). The long videos are cut into 30-seconds-

long clips for our training and testing. The MAHNOB-HCI

dataset is one of the most widely used benchmark for re-

mote HR measurement evaluations. It includes 527 facial

videos with corresponding physiological signals from 27

subjects. The videos are recorded with 61 fps with reso-

lution of 780x580, which are compressed in AVC/H.264,

average bitrate ≈ 4200 kb/s. We use the EXG2 signal as

the ground truth ECG in our experimental evaluation. We

follow the same routine as in previous works [17, 25, 3] and

use 30 seconds (frames 306 to 2135) of each video.

Highly Compressed Videos. Video compression was

performed using the latest version of FFmpeg [1]. We used

three codecs (MPEG4, x264 and x265) in order to imple-

ment the three mainstream compression standards (H.263,

H.264 and H.265). In order to demonstrate the effect of

STVEN on highly compressed videos (i.e., with small file

size and bitrates below 1000 kb/s), we compressed OBF

videos into three qualities levels of average bitrate (file size)

= 1000 kb/s (36.4 MB),500 kb/s (18.2 MB) and 250 kb/s

(9.1 MB). The bitrates (file size) are about 20, 40 and 80

times smaller than those of original videos respectively.

4.2. Implementation Details

Training Setting. For all facial videos, we use the

Viola-Jones face detector [33] to detect and crop the coarse

face area (see Figure 8 (a)) and remove background. We

generate binary skin masks by open source Bob1 with

threshold=0.3 as the ground truth. All face and skin images

are normalized to 128x128 and 64x64 respectively.

The proposed method is trained in Nvidia P100 using Py-

1https://gitlab.idiap.ch/bob/bob.ip.skincolorfilter

Torch. The length of each video clip is T = 64 while videos

and ECG signals downsample into 30 fps and 30 Hz respec-

tively. The partition for rPPGNet is N = 4. The weights for

different losses are set as α = 1, β = 0.5, γ = 0.1, δ = 0.5.

As a part of the input, the compression bitrate label k is

represented by an one-hot mask vector. When joint train-

ing STVEN with rPPGNet, the loss balance weights ε =
1, ρ = 1e − 4. Adam optimizer is used while learning rate

is set to 1e−4. We train rPPGNet for 15 epochs and STVEN

for 20000 iterations. For the joint training, we fine-tuning

STVEN for extra 10 epochs.

Performance Metrics. For evaluating the accuracy of

recovered rPPG signals, we follow previous works [11, 17]

and report both the average HR and several common HRV

features on OBF dataset, and then evaluated several met-

rics of the average HR measurement on MAHNOB-HCI

dataset. Four commonly used HRV features [11, 18] are

calculated for evaluation, including respiratory frequency

(RF) (in Hz), low frequency (LF), high frequency (HF)

and LF/HF (in normalized units, n.u.). Both the recov-

ered rPPGs and their corresponding ground truth ECGs go

through the same process of filtering, normalization, and

peak detection to obtain the inter-beat-intervals, from which

the average HR and HRV features are calculated.

We report the most commonly used metrics for evaluat-

ing the performance, which include: the standard deviation

(SD), the root mean square error (RMSE), the Pearson cor-

relation coefficient (R), and the mean absolute error (MAE).

△PSNR is also employed to evaluate changes of video

quality before and after enhancement.

4.3. Results on OBF

OBF has large number of high quality video clips, which

is suitable for verifying the robustness of our method in

both average HR and HRV levels. We perform subject-

independent 10-fold cross validation protocol to evaluate

the rPPGNet and STVEN on the OBF dataset. At the test-

ing stage, average HR and HRV features are calculated from
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Figure 5. HR measurement on OBF videos at different bitrates:

all methods’ performance drops with bitrates, while for the same

bitrate level, the rPPGNet outperforms other methods.

output rPPG signals of 30 seconds length.

Evaluation of rPPGNet on High Quality Videos.

Here, we re-implement several traditional methods [4, 11,

35] on original OBF videos and compare the results in Ta-

ble. 2. The results show that rPPGNet (full) outperforms

other methods for both averaged HR and HRV features.

From ablation test results we can conclude that: 1) the skins

segmentation module (the fifth row in Table. 2) slightly im-

proves the performance with multi-task learning, which in-

dicates these two tasks may have mutual hidden informa-

tion. 2) The partition module (sixth row in Table. 2) further

improves the performance by helping the model to learn

more concentrated features. 3) Skin-based attention teaches

the networks where to look and thus improves performance.

In our observation, spatial attention with spatial-wise soft-

max operation works better than spatio-temporal attention,

because in the rPPG recovery task the weights for different

frames should be very close.

Evaluation of rPPGNet on Highly Compressed

Videos. We compressed OBF videos into three bitrates

levels (250, 500 and 1000 kb/s) with three codecs (MPEG4,

x264 and x265) as described in Section 4.1, so that we have

nine groups (3 by 3) of highly compressed videos. We eval-

uate the rPPGNet together with three other methods on each

of the nine groups of videos, using 10-folds cross-validation

as before. The results are illustrated in Fig. 5. From the fig-

ure we can see that, first, the performance of both traditional

methods and rPPGNet drop when bitrate decreases, which

is true for all three compression codecs. The observation

Figure 6. Performance of video quality enhancement networks.

Figure 7. HR measurement using different enhancement methods

on highly compressed videos of OBF, left: with x264 codec; right:

with x265 and MPEG4 codecs (cross-testing). Smaller RMSE in-

dicates better performance

is consistent with previous findings[16, 24] and proved that

compression does impact rPPG measurement. Second, the

important result is that when we compare at the same com-

pression condition, rPPGNet can outperform other methods

in most cases, especially very low bitrate of 250kb/s. This

demonstrate the robustness of rPPGNet. But the accuracy

at low bitrates is not satisfactory, and we hope to further

improve the performance by video enhancement, i.e., using

the proposed STVEN network.

Evaluation of rPPGNet with STVEN for Enhance-

ment on Highly Compressed Videos. Firstly, we demon-

strate the STVEN does enhance the video quality on gen-

eral level in terms of △PSNR. As shown in Fig. 6,

the △PSNR of videos enhanced by STVEN are larger

than zero, which indicate quality improvement. We also

compared the STVEN to two other enhancement networks

(ARCNN[5] and DnCNN[39]) and STVEN achieved even

larger △PSNR than the other two methods.

Then we cascade STVEN with rPPGNet for verify-

ing that the video enhancement model can boost perfor-

mance of rPPGNet for HR measurement. We compare the

performance of two enhancement networks (STVEN vs.

DnCNN[39]) with two training strategies (separate train-

ing vs. joint training) on x264 compressed videos. Sepa-

rate training means that the enhancement networks are pre-

trained on highly compressed videos and the rPPGNet was
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Table 3. Results of average HR measurement on MAHNOB-HCI.

Method HRSD HRMAE HRRMSE HRR

(bpm) (bpm) (bpm)

Poh2011 [18] 13.5 - 13.6 0.36

CHROM [4] - 13.49 22.36 0.21

Li2014 [12] 6.88 - 7.62 0.81

SAMC [31] 5.81 4.96 6.23 0.83

SynRhythm [17] 10.88 - 11.08 -

HR-CNN [25] - 7.25 9.24 0.51

DeepPhys [3] - 4.57 - -

rPPGNet 7.82 5.51 7.82 0.78

STVEN+rPPGNet 5.57 4.03 5.93 0.88

pre-trained on high quality original videos, while joint train-

ing fine tunes the results of the two separate training with

joint loss of the two tasks. The results in Fig. 7(left) shows

that: for rPPG recovery and HR measurement on highly

compressed videos, 1) STVEN helps to boost the perfor-

mance of rPPGNet while DnCNN does not; and 2)joint

training works better than separate training. It is surpris-

ing that STVEN boosts rPPGNet while DnCNN[39] sup-

presses rPPGNet in both separate training and joint train-

ing modes, which may be caused by the excellent spatio-

temporal structure with fine-grained learning in STVEN

and the limitation of the single-frame model of DnCNN.

The generalization ability of STVEN-rPPGNet is shown

in Fig. 7(right), in which the joint system trained on

x264 videos was cross-tested on MPEG4 and x265 videos.

Due to the quality and rPPG information enhancement by

STVEN, rPPGNet is able to measure more accurate HR

from untrained videos with MPEG4 and x265 compression.

4.4. Results on MAHNOB­HCI

In order to verify the generalization of our method,

we evaluate our methods on the MAHNOB-HCI dataset.

MAHNOB-HCI is the most widely used dataset in HR mea-

surement and the video samples are challenging because of

the high compression rate and spontaneous motions, e.g.,

facial expressions. Subject-independent 9-fold cross vali-

dation protocol (3 subjects in a fold, totally 27 subjects) is

adopted. As there are no original high quality videos avail-

able, the STVEN is trained with x264 highly compressed

videos on OBF firstly and then cascades with the rPPGNet

trained on MAHNOB-HCI for testing. Compared to the

state-of-the-art methods in Table. 3, our rPPGNet outper-

forms the deep learning based methods [17, 25] in subject-

independent protocol. With the help of video enhancement

with richer rPPG information via STVEN, our two-stage

method (STVEN+rPPGNet) surpasses all other methods. It

indicates that STVEN can cross-boost the performance even

when high-quality videos ground truth are not available.

4.5. Visualization and Discussion.

In Fig. 8, we visualize an example to show the inter-

pretability of our STVEN+rPPGNet method. The predicted

Figure 8. Visualization of model output images. (a) face image in

compressed video; (b) STVEN enhanced face image; (c) rPPGNet

predicted attention map.

Figure 9. Predicted rPPG signals (top) and corresponding video

PSNR curves (bottom).

attention map from rPPGNet Fig. 8(c) focuses on the skin

regions with strongest rPPG information (e.g., forehead and

cheeks), which is in accordance with the priori knowledge

mentioned in [32]. As shown in Fig. 8(b), the STVEN en-

hanced face image seems to have richer rPPG information

and stronger pulsatile flows in similar skin regions, which

indicates the consistency of Fig. 8(c).

We also plot the rPPGNet recovered rPPG signals on

highly compressed videos with and without STVEN. As

shown in Fig. 9(top), benefited from the enhancement

from STVEN, the predicted signals are with more accu-

rate IBIs. Besides, Fig. 9(bottom) shows less objective

quality (PSNR) fluctuation of the highly compressed videos

with STVEN enhancement, which seems to help recover

smoother and robust rPPG signals.

5. Conclusions and Future Work

In this paper, we proposed an end-to-end deep learning

based method for rPPG signals recovery from highly com-

pressed videos. The STVEN is used to enhance the videos,

and the rPPGNet is cascaded to recover rPPG signals for

further measurement. In future, we will try using compres-

sion related metrics like PSNR-HVS-M [20] to constrain

the enhancement model STVEN. Moreover, we will also

explore ways of building a novel metric for evaluating the

video quality specially for the purpose of rPPG recovery.

Aknowledgement This work was supported by the

National Natural Science Foundation of China (No.

61772419), Tekes Fidipro Program (No. 1849/31/2015),

Business Finland Project (No. 3116/31/2017), Academy of

Finland, and Infotech Oulu.

158



References

[1] Fabrice Bellard and M. Niedermayer. Ffmpeg. [online].

available: http://ffmpeg.org. 6

[2] Sitthichok Chaichulee, Mauricio Villarroel, Joao Jorge, Car-

los Arteta, Gabrielle Green, Kenny McCormick, Andrew

Zisserman, and Lionel Tarassenko. Multi-task convolutional

neural network for patient detection and skin segmentation in

continuous non-contact vital sign monitoring. In Automatic

Face & Gesture Recognition (FG 2017), 2017 12th IEEE In-

ternational Conference on, pages 266–272. IEEE, 2017. 2

[3] Weixuan Chen and Daniel McDuff. Deepphys: Video-

based physiological measurement using convolutional atten-

tion networks. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 349–365. 2018. 2, 6, 8

[4] Gerard De Haan and Vincent Jeanne. Robust pulse rate from

chrominance-based rppg. IEEE Transactions on Biomedical

Engineering, 60(10):2878–2886, 2013. 1, 2, 4, 6, 7, 8

[5] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou

Tang. Compression artifacts reduction by a deep convolu-

tional network. In Proceedings of the IEEE International

Conference on Computer Vision, pages 576–584, 2015. 2, 7

[6] Leonardo Galteri, Lorenzo Seidenari, Marco Bertini, and Al-

berto Del Bimbo. Deep generative adversarial compression

artifact removal. In ICCV, 2017. 2

[7] Sebastian Hanfland and Michael Paul. Video format depen-

dency of ppgi signals. In Proceedings of the International

Conference on Electrical Engineering, 2016. 1, 2

[8] ITU-T. Rec. h.262 - information technology - generic coding

of moving pictures and associated audio information: Video.

International Telecommunication Union Telecommunication

Standardization Sector (ITU-T), Tech. Rep., 1995. 2

[9] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European conference on computer vision, pages 694–711.

Springer, 2016. 5

[10] Antony Lam and Yoshinori Kuno. Robust heart rate mea-

surement from video using select random patches. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 3640–3648, 2015. 2

[11] Xiaobai Li, Iman Alikhani, Jingang Shi, Tapio Seppanen,

Juhani Junttila, Kirsi Majamaa-Voltti, Mikko Tulppo, and

Guoying Zhao. The obf database: A large face video

database for remote physiological signal measurement and

atrial fibrillation detection. In 2018 13th IEEE International

Conference on Automatic Face & Gesture Recognition (FG

2018), pages 242–249. IEEE, 2018. 5, 6, 7

[12] Xiaobai Li, Jie Chen, Guoying Zhao, and Matti Pietikainen.

Remote heart rate measurement from face videos under real-

istic situations. pages 4264–4271, 2014. 1, 2, 8

[13] Xiaobai Li, Xiaopeng Hong, Antti Moilanen, Xiaohua

Huang, Tomas Pfister, Guoying Zhao, and Matti Pietikainen.

Towards reading hidden emotions: A comparative study

of spontaneous micro-expression spotting and recognition

methods. IEEE Transactions on Affective Computing, 2017.

2

[14] Ding Liu, Bihan Wen, Xianming Liu, Zhangyang Wang, and

Thomas S Huang. When image denoising meets high-level

vision tasks: A deep learning approach. In IJCAI, 2018. 5

[15] Daniel McDuff. Deep super resolution for recovering phys-

iological information from videos. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pages 1367–1374, 2018. 2

[16] Daniel J McDuff, Ethan B Blackford, and Justin R Es-

tepp. The impact of video compression on remote cardiac

pulse measurement using imaging photoplethysmography. In

Automatic Face & Gesture Recognition (FG 2017), 2017

12th IEEE International Conference on, pages 63–70. IEEE,

2017. 1, 2, 7

[17] Xuesong Niu, Hu Han, Shiguang Shan, and Xilin Chen. Syn-

rhythm: Learning a deep heart rate estimator from general to

specific. In 2018 24th International Conference on Pattern

Recognition (ICPR), pages 3580–3585. 2018. 2, 6, 8

[18] Ming-Zher Poh, Daniel J McDuff, and Rosalind W Picard.

Advancements in noncontact, multiparameter physiologi-

cal measurements using a webcam. IEEE transactions on

biomedical engineering, 58(1):7–11, 2010. 1, 2, 6, 8

[19] Ming-Zher Poh, Daniel J McDuff, and Rosalind W Picard.

Non-contact, automated cardiac pulse measurements using

video imaging and blind source separation. Optics express,

18(10):10762–10774, 2010. 1, 2

[20] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian,

Marco Carli, Jaakko Astola, and Vladimir Lukin. On

between-coefficient contrast masking of dct basis functions.

In Proceedings of the third international workshop on video

processing and quality metrics, volume 4, 2007. 8

[21] Atul Puri and Alexandros Eleftheriadis. Mpeg-4: An object-

based multimedia coding standard supporting mobile ap-

plications. Mobile Networks and Applications, 3(1):5–32,

1998. 2

[22] Jingang Shi, Iman Alikhani, Xiaobai Li, Zitong Yu, Tapio

Seppänen, and Guoying Zhao. Atrial fibrillation detection

from face videos by fusing subtle variations. IEEE Trans-

actions on Circuits and Systems for Video Technology, DOI

10.1109/TCSVT.2019.2926632, 2019. 1

[23] Mohammad Soleymani, Jeroen Lichtenauer, Thierry Pun,

and Maja Pantic. A multimodal database for affect recog-

nition and implicit tagging. IEEE Transactions on Affective

Computing, 3(1):42–55, 2012. 5

[24] Radim Spetlı́k, Jan Cech, and Jiri Matas. Non-contact re-

flectance photoplethysmography: Progress, limitations, and

myths. In Automatic Face & Gesture Recognition (FG 2018),

2018 13th IEEE International Conference on, pages 702–

709. IEEE, 2018. 2, 7
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