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Abstract

We aim to learn deep person re-identification (ReID)

models that are robust against noisy training data. Two

types of noise are prevalent in practice: (1) label noise

caused by human annotator errors and (2) data outliers

caused by person detector errors or occlusion. Both types of

noise pose serious problems for training ReID models, yet

have been largely ignored so far. In this paper, we propose a

novel deep network termed DistributionNet for robust ReID.

Instead of representing each person image as a feature vec-

tor, DistributionNet models it as a Gaussian distribution

with its variance representing the uncertainty of the ex-

tracted features. A carefully designed loss is formulated

in DistributionNet to unevenly allocate uncertainty across

training samples. Consequently, noisy samples are assigned

large variance/uncertainty, which effectively alleviates their

negative impacts on model fitting. Extensive experiments

demonstrate that our model is more effective than alterna-

tive noise-robust deep models. The source code is available

at: https://github.com/TianyuanYu/DistributionNet.

1. Introduction

Person re-identification (ReID) aims to match people

across a camera network with non-overlapping camera

views. When a person is captured by different cameras

with different viewing conditions, his/her appearance often

changes significantly. Meanwhile, there are many different

people in public spaces wearing similar clothes, making dis-

tinguishing them difficult. Most recent ReID models there-

fore employ deep convolutional neural networks (CNNs)

to learn a feature embedding space that is robust against

the appearance changes as well as discriminative against

impostors (different identities but of similar appearance)

[2, 3, 7, 10, 18, 24, 27, 30, 33, 39]. As the performance

of state-of-the-art ReID models on public benchmarks ap-

proaches saturation, more realistic real-world ReID chal-

lenges are being considered. For example, instead of using

Figure 1: Outlying samples in existing ReID benchmarks. Each

pair of images contain the same identity, with the left being an

inlier and right an outlier.

manually cropped person images, recent ReID benchmarks

all provide person images produced by off-the-shelf person

detectors. The open-world ReID problem has also started

to attract attention [38, 19, 1], whereby a small gallery set

is matched against a much larger probe set.

However, one important ReID challenge has largely been

ignored, that is, how to learn a robust ReID model with

noisy training data. There are two types of data noise in

practice. The first type is label noise, i.e., people assigned

with the wrong identities. Label noise is caused by human

errors [8]: matching people across camera views in the pres-

ence of impostors is a hard job even for humans who have

short attention spans, and mistakes are made. More subtly,

outliers provide a second source of noise. These are samples

that have the correct identity labels, but are visually outly-

ing due to either imperfect person detection or occlusion,

as illustrated in Fig. 1. These outlying samples are found

to be prevalent in existing benchmarks. Having both types

of noisy samples in a training set inevitably has a detrimen-

tal effect on the learned feature embedding: Noisy samples

are often far from inliers of the same class in the input (im-

age) space. To minimise intra-class distance and pull the

noisy samples close to their class centre, a ReID model of-

ten needs to sacrifice inter-class separability, leading to per-

formance degradation (see Fig. 2(a) for an illustration).

In this paper, we propose a novel ReID model termed

DistributionNet to deal with both types of noisy samples.

With DistributionNet, each image is represented by a fea-

ture distribution, rather than a feature vector as in conven-

tional deep models. Specifically, each image is now repre-
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(a) Conventional Network (b) DistributionNet

Figure 2: Illustrative comparison of the embedding space learned

by (a) a conventional deep ReID model and (b) our DistributionNet

in the presence of noisy training samples. Circle/ellipse colours

denote class labels. Solid circles/ellipses indicate noisy samples.

sented as a Gaussian distribution. The mean of the distri-

bution acts like the normal feature vector for ReID match-

ing whilst the variance measures feature uncertainty. That

is, given a noisy training sample, instead of forcing it to

be closer to other inliers of the same class, Distribution-

Net computes a large variance, indicating that it is uncertain

about what feature values should be assigned to the sample.

Training samples of larger variances have less impact on the

learned feature embedding space. This extra dimension thus

allows the model to focus more on the clean inliers rather

than overfitting to noisy samples, resulting in better class

separability as illustrated in Fig. 2(b), and better generalisa-

tion to test data.

The inference and training of a deep CNN that repre-

sents an image as a feature distribution is nontrivial. In

this work, we consider a feature vector as a random vari-

able. Instead of delivering a point estimate using a CNN,

we assume that the vector is drawn from a Gaussian distri-

bution. From the distribution, we randomly sample feature

vectors to compute training losses together with the distri-

bution mean. This random sampling process prevents con-

ventional end-to-end training. Therefore, a reparameterisa-

tion trick is introduced to enable our DistributionNet to be

trainable using any off-the-shelf CNN optimiser. In addi-

tion to a supervised identity classification loss, we ensure

that DistributionNet models uncertainty and allocates it ap-

propriately by introducing losses to promote high net un-

certainty. Together with the supervised loss, they help the

model identify noisy training samples and discount them by

assigning large variances.

Our contributions are as follows: (1) For the first time,

the problem of learning ReID models robust against both

label noise and outlying samples is identified, and a unified

solution is provided. (2) A novel deep ReID model termed

DistributionNet is proposed which uniquely models each

learned deep feature as a distribution to account for fea-

ture uncertainty and alleviate the impact of noisy samples.

Extensive comparative evaluations demonstrate the superi-

ority of the proposed model over existing models on four

benchmarks including Market-1501 [36], DukeMTMC-

ReID [23], CUHK01 [16], and CUHK03 [17]. We show

that the proposed model is particularly effective given a

large amount of label noise or under the more challenging

open-world ReID setting.

2. Related Work

Deep Person ReID Models Existing deep ReID mod-

els [2, 3, 7, 10, 18, 24, 27, 30, 33, 39] typically adopt an

off-the-shelf CNN architecture for deep feature learning,

with recent methods mostly using ResNet [6]. To over-

come misalignment and pose variations, several works use

pose detectors to identify body parts on which part-specific

features are learned [34, 25, 31, 32]. By contrast, [15, 18]

learn spatial transformer networks to automatically localise

body parts and [35] constructs a self-attention layer to pro-

duce spatial attention maps, which highlight potential body

parts. Hard attention based on reinforcement learning is

also attempted [13]. All these efforts have the potential to

cope with some of the outlying samples caused by imper-

fect person detection shown in Fig. 1. However, none of

the existing deep ReID models is able to provide a prin-

cipled solution to identifying different outliers in order to

reduce their impact. Furthermore, the label noise problem

has never been addressed, to the best of our knowledge.

Most existing works treat ReID as a closed-world re-

trieval problem. That is, the gallery set and the probe set

contain exactly the same set of person identities. In prac-

tice, however, there is little demand in matching every-

one present in a public space. Instead, there is typically a

watchlist containing a small number of targets, e.g., fugi-

tives/crime suspects. Using the watchlist as the gallery,

the probe set includes everyone observed by a camera net-

work, thus being much bigger than the gallery set. This

open-world ReID problem is first defined in [37]. Trans-

fer learning frameworks for mining discriminant informa-

tion from non-target people are proposed to solve the prob-

lem [37, 38]. More recently, [19] uses adversarial learn-

ing in a deep ReID model to synthesise impostors for the

gallery, in order to make the model less prone to attack from

real impostors in the probe set. Our DistributionNet does

not require a Generative Adversarial Network (GAN) that

is tricky to train; and is particularly effective in the open-

world setting, beating [19] by a clear margin (see Sec. 4.3).

Robust Deep Learning with Label Noise Although

the problem of label noise has never been considered in

ReID, it has been studied extensively in machine learn-

ing [4]. Existing robust deep learning approaches can be

grouped into two categories depending whether human su-

pervision/verification of noise is required. In the first cate-

gory, no such additional human noise annotation or pattern
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estimation is needed. These methods address label noise

by either iterative label correction via bootstrapping [22],

adding additional layers on top of a classification layer to

estimate the noise pattern [26, 5], or loss correlation [21].

The second category of methods requires a subset of noisy

data to be re-annotated (cleaned) by more reliable sources

to verify which samples contain noise. This subset is then

used as seed/reference set so that noisy samples in the full

training set can be identified. The recently proposed Clean-

Net [14] learns the similarity between class- and query-

embedding vectors, which is then used to detect noisy sam-

ples. MentorNet [9] on the other hand resorts to curricu-

lum learning and knowledge distillation to focus on samples

whose labels are more likely to be correct.

Compared to the existing robust deep learning ap-

proaches, our DistributionNet gains noise robustness by

modelling feature uncertainty, which is a completely differ-

ent approach. It is also more generally applicable. Specif-

ically, it belongs to the first category and thus does not

need any additional noise verification as in [14, 9]. Unlike

[26, 5, 21], it does not assume any noise pattern. Impor-

tantly, it does not assume the noisy samples must be caused

by label flipping (assigning to wrong labels); it can thus

also handle the outlying samples in Fig. 1. Our experiments

show that DistributionNet outperforms representative exist-

ing models from both categories (see Sec. 4.2 and Sec. 4.3).

Feature Distribution Modelling In most studies, the

high-level representation of an image is modelled as a fixed-

length feature vector. However, for other data types, it

is possible to model an instance’s feature as a distribu-

tion. E.g., [28] proposes to represent a video, consisting of

multiple key frames, as a Gaussian distribution, where the

mean/covariance is the empirical statistics of those frames,

with each modelled as a vector. Besides, it is intuitive to

model a class centre as a distribution, as a class typically

has many members. Based on this motivation, [29] presents

a reformulation of the widely used cross-entropy loss. On

the other hand, in many generative models, a single image’s

feature is often modelled as a distribution, e.g., in varia-

tional autoencoders [12], for the ease of placing prior for

unconditional image generation. This has been extended

for metric learning by disentangling intra-class variance and

invariance [20]. In our work, we do not build a generative

model, but still model a single image’s feature as a distribu-

tion. Importantly, we deal with the noisy sample robustness

problem, a completely different problem to [28, 29, 20].

3. Methodology

Problem Definition Two types of noisy training samples

in ReID are considered. The first is the outlier, where poor

person detection and/or severe occlusion mean that assign-

ing to the image any identity label would be harmful for

(a) Conventional Network

(b) DistributionNet
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Figure 3: (a) A conventional ReID model trained for identity clas-

sification. (b) The proposed DistributionNet.

learning a ReID model. The second is label noise, which

can be divided into two sub-types. One is random noise,

where a random person’s identity is randomly assigned.

And the other is patterned noise, where the wrongly as-

signed identity corresponds to a person of similar visual

appearance. Given a training set containing an unknown

amount of both or either type of noisy samples, the objec-

tive of our deep ReID model is to learn a feature embed-

ding space where people of different identities are well sep-

arable. Note that we do not make any assumption on the

noise type (label noise or outlier), or its percentage, nor do

we require any additional annotation on a subset to enable

estimation of the noise pattern. Given such a space, dur-

ing testing, both gallery set images and a probe image will

be represented in the space, where their distance is used to

measure their visual similarity for matching.

Feature Distribution Modelling As shown in Fig. 3(a),

when a conventional deep neural network model is applied

to person ReID, there are normally two modules: feature

extractor fθ(·) and person identity classifier gφ(·). Given

the i-th input image X(i) and its one-hot encoding label

y(i), the model is usually trained by minimising the cross-

entropy loss1 between y(i) and gφ(fθ(X
(i))). In the test

stage, the output of fθ(·), i.e., the so-called feature vector,

is used for distance calculation.

In contrast, our DistributionNet (see Fig. 3(b)) models

the variance of the feature vector produced by a feature em-

bedding network, as a measure of uncertainty. As a result,

what our neural network delivers is no longer a feature vec-

tor (as a fixed point estimation) but a distribution over that

vector, parameterised by mean and variance. Specifically,

we propose to explicitly model the feature distribution of an

individual image as Gaussian. From the probabilistic per-

spective, this means that we think of the feature vector as a

random variable. That is, we assume the feature vector of

1Note that other training objectives such as triplet ranking can also be

used in a deep ReID model, though identity classification has dominated

recent models. They can be added readily in our framework.
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the i-th image fθ(X
(i)) is drawn from a Gaussian distribu-

tion parametrised by a mean vector µ(i) and a covariance

matrix Σ
(i), which are produced by a neural network.

Network Architecture As shown in Fig. 3(b), in order

to generate µ and Σ from given input images X , we split

the network at the penultimate feature extraction layer and

build two separate branches for µ and Σ respectively. Con-

cretely, assume the conventional feature extraction module

fθ(X) can be decomposed as fθ(X) = f
(l)
θ (f

(l−1)
θ (X)).

At the layer indexed by (l− 1), i.e., f
(l−1)
θ , we drop its suc-

cessive layer, i.e., f
(l)
θ , and link it to two newly introduced

layers: fθµ(f
(l−1)
θ (X)) → µ and fθΣ(f

(l−1)
θ (X)) → Σ.

We can think of fθµ as a drop-in replacement of f
(l)
θ and

fθΣ produces a measure of uncertainty of f
(l)
θ . Modelling a

full covariance matrix is prohibitively expensive, so we con-

strain it to be diagonal. Therefore, fθΣ produces a vector of

the same size as fθµ .

Classification Loss Conventionally, the output of fθ(X)
will be fed into a classifier gφ(·), and the cross-entropy loss

ℓ(ŷ,y) =
∑c

i=1 yi log ŷi, where c is the class number, will

be computed as

Lce = ℓ(gφ(fθ(X)),y). (1)

With DistributionNet, Eq. 1 becomes

Lce = ℓ(gφ(µ),y) + λ(
1

N

N∑

j=1

ℓ(gφ(z
(j)),y)). (2)

where z(j) ∼ N (µ,Σ). Thus, we feed two kinds of in-

puts to the classifier: (i) the mean vector µ, which serves

as a direct replacement of fθ(X) and (ii) N random sam-

ples drawn from the Gaussian parametrised by (µ,Σ). λ is

the weight for the sampled feature vectors and is set to 0.1.

Without the sampling part, Eq. 2 is reduced to Eq. 1.

Note that large variance leads to drastically different fea-

tures z(j) with the same label as X . This leads to a large

loss in the second term of Eq. 2. Therefore, in optimisation,

the classification loss has an incentive to reduce the vari-

ance of the training samples. Indeed, as training progresses,

the variance Σ always decreases with this loss alone. Thus

training Eq. 2 alone will eventually revert DistributionNet

back to the conventional model. So we add another loss to

ensure that the variance is maintained.

Feature Uncertainty Loss To prevent the trivial solution

of variance decreasing to zero, we add a feature uncertainty

loss to encourage the model to maintain the uncertainty

level about the training samples as a whole. To this end, we

first use entropy to measure the uncertainty level of an indi-

vidual training sample given its variance Σ. The entropy of

any multivariate Gaussian distribution ǫ ∼ N (µ,Σ) is:

q =
1

2
log(det (2πeΣ)). (3)

Large variance leads to large entropy. Recall that our

learned feature distribution is a diagonal multivariate nor-

mal distribution. So the above equation for the i-th input

image is equivalent to

q(i) =
1

2
log

m∏

k

(2πe ∗ diag(Σ(i))k)

=
1

2

m∑

k

log (2πe ∗ diag(Σ(i))k)

=
m

2
(log 2π + 1) +

1

2

m∑

k

log (diag(Σ(i))k)

(4)

where diag(·) means the diagonal vector of the input ma-

trix, m is the total feature dimension, and k indexes each

dimension. The feature uncertainty loss is then formulated

as,

Lfu = max(0, γ −

n∑

i=1

q(i)), (5)

where n is mini-batch size, i indexes images in the batch,

and γ is a margin to bound of the total uncertainty. Clearly,

with Lfu, the model prefers to maintain the total uncertainty

level/variance of the training samples. As the clean samples

always have smaller variance caused by the classification

loss, variance of noisy samples are expected to be larger to

hold the total uncertainty of all samples.

Reparameterisation Trick When using the random

sample z to train gφ, a problem arises: the error will not

propagate back to the preceding layers due to the nature of

it being a random sample. In order to make those layers

benefit from the random samples as well, we use a repa-

rameterisation trick during sampling. Concretely, instead

of drawing a sample from N (µ,Σ) directly, we first draw a

sample ε from a standard Gaussian with zero mean and unit

covariance, i.e., ε ∼ N (0, I), and then we get the sample

by computing µ + εΣ. By doing so, we split the random

part and the trainable part in the sample, so the gradient can

be passed through the trainable part.

Discussion With the losses, DistributionNet exhibits two

behaviours: (1) It gives large variances to noisy samples

(either with wrong labels or outlying) and small variances

to clean inliers. (2) Training samples with larger variances

contribute less to learning the feature embedding space. By

combining the two, the model in effect focuses mostly on

the clean inliers to learn a better embedding space for ReID.

Next, we explain why DistributionNet behaves in these two

ways.

Why large variances for noisy samples? First, we need

to understand what the supervised classification loss Lce

wants: we mentioned earlier that samples with large vari-

ances will lead to large loss values of Lce; it is also noted

that samples with wrong labels or outlying also have the
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same effect because they are normally far away from the

class centres and the clean inliers. Second, we explained

that with the feature uncertainty loss Lfu, the model cannot

simply satisfy Lce by reducing the variance of every sam-

ple to zero – the overall variance/uncertainty level has to

be maintained. So who will get the large variance? Now

the decision is clear: reducing variances of noisy samples

would still lead to large Lce, whilst reducing those of clean

inliers will have a direct impact of reducing Lce; the model

therefore allocates large variance to noisy samples.

Why samples with larger variance contribute less for model

training? The reason is intuitive – if an image embedding

has a large variance, when it is sampled, the outcome z

will be far away from its original point (the mean vector

µ) but with the same class label. So when several diverse

z(1), z(2), ..., z(N) and µ are fed to the classifier, it is likely

that their gradients will cancel each other out. On the other

hand, when a sample has a small variance, all z(j) will

be close to µ; feeding these to the classifier gives consis-

tent gradients thus reinforcing the importance of the sam-

ple. The variance/uncertainty thus provides a mechanism

for DistributionNet to give more/less importance to differ-

ent training samples. Since noisy samples are given large

variance, their contribution to model training is reduced, re-

sulting in a better feature embedding space (see Fig. 4 for

an example).

4. Experiments

4.1. Baselines and Implementation Details

We adopt ResNet50 [6] as our backbone feature extractor

as it is used by most recent ReID models. DistributionNet is

compared against four baselines. Unless otherwise stated,

for a fair comparison, ResNet50 with the same hyperpa-

rameters is used as the backbone in all baselines, and the

training steps are the same as our DistributionNet. ResNet-

baseline is the main baseline. Our model introduces a few

more parameters in order to predict the variance. To ensure

a fair comparison, we add a parallel layer to the penultimate

(feature) layer in the baseline. The input of the added layer

is the same as the feature layer, and its output is element-

wise added along with the output of the feature layer to get

the final feature, which is then fed to a fully connected layer

for computing the classification loss. This way, our Distri-

butionNet and the ResNet-baseline have an identical num-

ber of parameters. Bootstrap hard and Bootstrap soft are

introduced in [22]. Both iteratively use the model-predicted

labels to refine the original labels that are potentially cor-

rupted by noise. They are as generally applicable as ours

because no assumption on the noise distribution is made.

CleanNet [14] achieves state-of-the-art results on a num-

ber of visual recognition tasks. Different from all other

compared methods, CleanNet requires a subset of the train-

ing set to be ‘cleaned’ manually, that is, verified regarding

which images contain noise. This thus gives CleanNet an

unfair advantage over other compared models. In our ex-

periments, 10% of the training set is used as a clean refer-

ence set to train CleanNet using the author-provided code.

After training, 20% of the whole training set deemed most

likely to be noisy are removed before the final ReID model

is trained on the remainder. This is again different from all

other models which do not require explicit noisy sample re-

moval.

The training has two steps: (1) Using a ResNet50 pre-

trained on ImageNet, we fine-tune it using the given ReID

training set (for training identity classification) for 60, 000
steps with a batch size of 32. The ADAM optimiser [11]

is used with learning rate 3.5 × 10−3 and the default mo-

mentum terms: β1 = 0.9 and β2 = 0.999. (2) We initialise

the parameters of DistributionNet with the trained model in

step (1), and only train the last ResNet50 block unit and

variance generating modules for another 20, 000 steps with

the same batch size but lower learning rate 5×10−4. Weight

of feature uncertainty loss is 0.001.

4.2. Experiments with Noisy Labels

Existing ReID benchmarks contain many outlying sam-

ples (see Fig. 1), yet the identity labels are clean. To simu-

late real-world large-scale ReID datasets (annotated by real

imperfect workers), we additionally introduce label noise in

this experiment.

Datasets and Settings Four large-scale ReID datasets are

used, including Market-1501 [36], DukeMTMC-ReID [23],

CUHK01 [16], and CUHK03 [17]. We adopt the standard

training/test splits provided by the datasets (see Supplemen-

tary Material). Note that, following these standard splits,

the testing gallery set and probe set contain the same num-

ber of identities, i.e., this is a closed-world setting. Two

types of noise are considered. For random noise, a certain

percentage of training images are randomly selected, and

their identity labels are then randomly assigned to wrong

ones. For patterned noise, we use a ResNet50 trained on

the clean data to obtain the feature of each training sam-

ple and search for the most visually similar samples using

Euclidean distance. Then for the randomly selected train-

ing samples, their identity labels are assigned to that of the

most similar sample that has a different identity. For both

noise types, three percentages are considered: 10%, 20%,

and 50%. For each noise percentage, due to the randomness

in sample selection and label assignment, 5 runs are carried

out. The final result reported is the average of the 5 runs.

Results The comparative results of random noise on the

four datasets are shown in Tab. 1 and Tab. 2. Patterned noise

results are shown in Tab. 3 and Tab. 4. The following obser-

vations can be made: (1) Our DistributionNet achieves the

best results among all compared models. In most cases, the
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Dataset Market-1501 DukeMTMC-ReID

noise mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10

10%

B 55.50 79.39 91.87 94.96 42.60 63.78 78.82 83.55

H 57.28 80.79 92.20 94.97 42.62 64.54 78.73 83.53

S 55.37 79.77 91.69 94.91 41.84 62.79 78.14 83.53

C 59.14 81.41 91.99 94.82 47.88 68.09 80.61 85.77

D 61.47 82.31 93.13 95.76 47.99 68.61 81.87 86.09

20%

B 45.36 71.68 87.79 91.68 34.94 56.73 73.75 79.58

H 46.03 72.71 87.31 91.33 34.23 55.66 71.63 78.73

S 45.49 71.46 86.89 91.42 34.13 55.52 71.27 77.56

C 44.22 71.40 87.28 91.93 33.98 55.07 71.72 76.48

D 53.40 77.03 90.60 94.01 40.87 62.39 77.38 82.49

50%

B 28.01 55.14 75.75 82.56 18.83 37.47 54.67 61.69

H 28.22 54.87 76.20 83.11 19.88 38.87 56.69 63.91

S 27.78 55.17 74.98 82.42 19.27 37.70 55.79 63.02

C 26.08 52.73 72.89 79.98 19.01 38.96 55.52 62.21

D 35.14 61.08 81.05 87.07 25.82 45.98 63.91 70.87

Table 1: Results on Market-1501 and DukeMTMC-ReID with

random noise. Model abbreviations: B: ResNet-Baseline, H:

Bootstrap hard [22], S: Bootstrap soft [22], C: CleanNet [14], D:

DistributionNet.

Dataset CUHK01 CUHK03

noise mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10

10%

B 52.02 84.61 93.68 95.40 24.57 25.17 42.43 52.17

H 55.35 87.22 92.78 95.88 23.99 24.00 42.43 51.36

S 54.53 87.42 94.23 96.91 24.48 25.14 41.93 51.86

C 48.69 81.44 91.55 94.02 23.28 23.14 40.21 50.71

D 63.36 89.85 96.25 98.02 31.80 32.29 51.81 61.67

20%

B 43.22 76.91 87.56 90.72 16.45 16.25 31.50 40.54

H 45.62 80.00 90.52 93.20 16.65 16.79 32.00 40.79

S 48.94 83.09 91.96 94.02 16.50 17.57 31.71 41.93

C 40.15 75.88 86.60 91.13 12.92 12.14 25.93 34.00

D 58.07 87.30 94.60 96.58 24.20 24.33 43.09 53.14

50%

B 35.55 71.22 83.30 86.84 6.44 6.05 14.37 20.67

H 34.77 69.07 82.06 86.60 7.22 6.79 16.86 23.21

S 35.65 70.31 82.68 86.19 6.48 5.71 14.57 20.86

C 34.44 70.10 81.86 85.15 5.17 4.86 11.50 16.07

D 44.83 78.89 89.32 92.08 10.61 10.14 21.77 29.86

Table 2: Results on CUHK01 and CUHK03 with random noise.

margins over the baselines are significant. (2) Our model

vs. ResNet-Baseline shows that modelling feature uncer-

tainty brings clear and consistent improvements. (3) As

expected, patterned noise is harder and the performance of

every method on each dataset is lower than that with ran-

dom noise. However, DistributionNet still obtains the best

results. (4) The improvement margin over the baselines in-

creases when the noise level is raised from 10% to 20%;

however, when 50% noise is added, all models struggle and

the gap becomes smaller. In practice, 50% noise is extreme,

and around 10 to 20% noise levels are more realistic. (5)

Among the three compared noise-robust deep models, even

with additional annotation, CleanNet does not have a clear

advantage over the much simpler Bootstrap soft/hard, and

sometimes even fails to beat the ResNet-Baseline.

How Noise Robustness is Achieved by DistributionNet

As explained in Sec. 3, DistributionNet gains its robust-

ness by allocating large variances to noisy samples, which

subsequently reduces their impact on model training, lead-

ing to a better embedding space where different identity

classes become more separable. Fig. 4 shows the average

variance inferred for clean and noisy data in Market-1501.

We can see that, indeed the variance of noisy data is larger

Dataset Market-1501 DukeMTMC-ReID

noise mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10

10%

B 25.87 51.46 70.21 76.81 18.26 36.10 51.87 58.62

H 25.76 5108 70.11 77.06 18.74 36.57 51.93 58.59

S 25.50 50.47 69.43 76.32 18.01 35.68 51.23 58.03

C 26.64 52.47 70.90 77.41 18.80 36.28 51.71 58.22

D 27.04 52.40 71.20 77.67 20.74 37.69 53.21 60.01

20%

B 23.49 48.44 67.85 74.67 16.96 33.71 49.15 56.01

H 23.40 48.25 67.34 74.40 16.93 33.76 49.38 56.40

S 24.08 49.51 68.77 75.62 16.83 33.13 49.21 56.05

C 24.28 49.54 68.35 75.33 17.03 33.79 48.81 55.61

D 24.41 49.25 68.31 75.42 18.49 34.48 50.22 57.08

50%

B 20.74 44.04 64.32 72.27 14.17 29.59 45.50 52.45

H 19.87 42.87 63.37 71.40 14.32 30.00 45.58 52.55

S 20.72 43.86 64.49 72.55 13.65 28.35 44.44 51.82

C 19.90 43.01 63.13 71.34 13.70 28.46 44.25 51.19

D 21.42 44.84 64.77 72.72 15.95 30.75 46.95 53.58

Table 3: Results on Market-1501 and DukeMTMC-ReID with

patterned noise.

Dataset CUHK01 CUHK03

noise mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10

10%

B 42.87 80.33 90.52 93.40 10.10 9.82 19.16 25.98

H 44.66 81.73 90.97 93.86 9.31 8.60 17.93 24.66

S 44.20 80.95 90.10 93.03 9.65 9.39 19.57 25.29

C 39.70 78.14 87.88 90.72 8.17 7.64 16.00 21.39

D 52.72 86.60 94.35 96.41 10.87 10.48 20.11 26.81

20%

B 41.86 79.38 89.40 92.49 8.71 8.17 17.36 23.44

H 43.46 81.07 90.47 93.07 8.75 8.36 17.46 23.36

S 42.97 80.41 90.43 93.07 8.42 7.77 16.54 23.07

C 37.59 75.42 85.85 89.61 7.89 7.13 15.67 21.17

D 49.85 83.30 92.41 95.42 9.46 8.81 18.77 25.32

50%

B 38.67 76.37 87.67 90.85 7.57 7.21 15.47 20.93

H 39.30 77.49 87.84 91.38 7.67 6.98 15.80 21.06

S 38.98 76.91 87.26 90.47 7.76 7.21 16.24 22.21

C 36.21 73.28 84.37 88.45 6.30 5.72 12.96 18.13

D 45.43 81.11 90.23 93.40 8.18 7.61 16.50 22.74

Table 4: Results on CUHK01 and CUHK03 with patterned noise.

Figure 4: Comparison between variance (Σ̄) of clean and label-

noise data generated by DistributionNet.

than that of clean data on average. Why having large vari-

ance/uncertainty for noisy samples helps? As explained in

Fig. 2 and Sec. 3, we assume that by introducing feature un-

certainty modelling, DistributionNet is able to explain away

noisy training samples by assigning them with large vari-

ances, rather than distorting the embedding space and sac-

rificing class separability, or overfitting to the training set.

Fig. 5 compares the ResNet-baseline and DistributionNet

embeddings for Market-1501. It is noted that the noisy (cir-

cle) data points are given larger variance by Distribution-
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(a) ResNet-baseline (b) DistributionNet

Figure 5: t-SNE visualisation of feature distributions (ellipses).

Images with noisy (circles) or clean (cross) labels are shown with

different colours. 15 images from 3 identities are randomly se-

lected from Market-1501 with 20% random label noise.
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Figure 6: Evaluation with different values of λ in Eq. 2.
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Figure 7: Evaluation with different values of γ in Eq. 5.

Net. Furthermore, different person identities become more

separable with DistributionNet, which explains its superior

performance.

Hyperparameter Analysis We first analyse the sensitiv-

ities of our model to two important hyperparameters, i.e.,

the weight of loss λ in Eq. 2 and the margin γ in Eq. 5. We

use CUHK01 with random noise to carry out the analysis.

By default, we vary the value of one parameter and keep

the others fixed. For simplicity, we only illustrate mAP and

Rank1 values for different hyperparameters.

In Fig. 6 and Fig. 7, we compare different values of λ in

Eq. 2 and γ in Eq. 5 under the conditions of different noisy

samples respectively. It is clearly shown that, our approach

is impacted just marginally and significantly improves the

baseline at all values of λ and γ. Therefore, it is safe to

make the conclusion that our model is insensitive to λ and

γ.

(a) Market-1501 (b) DukeMTMC-ReID

Figure 8: Examples of person images with the highest (first row)

and lowest (second row) feature variance.

4.3. Experiments without Noisy Labels

In this set of experiments, no label noise is added to the

four benchmarks. However, as mentioned earlier, there are

still numerous noisy training samples caused by imperfect

person detectors (partial body or large proportions of back-

ground) and occlusion (by static objects or other people

in the scene). Their negative effect on the learned feature

space, though not as severe as the noisy labels, should also

be dealt with for effective ReID feature learning. Experi-

ments are carried out under both the conventional closed-

world setting and more practical open-world setting.

4.3.1 Closed-world ReID

Under this setting, the testing gallery and probe set contain

the same number of identities; in other words, a probe im-

age would always have a correct match in the gallery. This

setting has been adopted by the majority of the published

ReID work and it was also used in the noisy label exper-

iments reported earlier. Tab. 6 compares our Distribution-

Net with three baselines used in the label noise experiments.

Note that CleanNet [14] cannot be compared here because it

requires a reference set where noisy samples are manually

identified. Which image is an outlying sample is subjec-

tive; obtaining such a reference set is thus not straightfor-

ward. From Tab. 6, we can see that, again modelling feature

uncertainty using DistributionNet brings a clear improve-

ment (D vs. B). The margin ranges from 1.98% mAP for

DukeMTMC-ReID to 9.64% for CUHK01. Interestingly

both Bootstrap hard and Bootstrap soft can bring a moder-

ate amount of improvement over the ResNet-baseline. This

is despite that they assign outlying samples (identified as

those whose predicted labels disagree with the original (cor-

rect) labels) to other labels. Overall these results show that

our model is capable of dealing with both noise-labels and

outliers. We show some examples of outliers (those with the

largest variance) in Fig. 8. It is clear that, they are mostly

caused by either poor person detection or occlusion. In con-

trast, images with the smallest variance mostly contain peo-

ple of distinct clothing and were produced by perfect person
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Dataset Market-1501 CUHK01 CUHK03

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

Set Verification

B 43.03 81.21 95.15 95.15 95.76 96.36 100.00 100.00 100.00 100.00 100.00 100.00 38.10 80.95 95.24 100.00 100.00 100.00

APN 43.85 82.31 96.92 98.46 99.23 100.00 55.56 55.56 55.56 66.67 77.78 77.78 66.67 78.57 92.86 95.24 95.24 95.24

H 50.30 86.67 96.36 96.97 100.00 100.00 88.89 100.00 100.00 100.00 100.00 100.00 38.10 76.19 97.62 100.00 100.00 100.00

S 38.18 89.09 95.76 96.97 99.39 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 73.81 95.24 95.24 97.62 100.00

D 55.76 87.88 95.76 96.97 98.18 98.18 100.00 100.00 100.00 100.00 100.00 100.00 54.76 83.33 95.24 97.62 100.00 100.00

Individual Verification

B 76.40 94.33 99.20 99.33 99.73 99.87 61.11 77.78 88.89 94.44 100.00 100.00 77.38 94.05 96.43 97.62 98.81 98.81

APN 84.00 96.72 98.69 99.58 99.58 99.58 44.44 61.11 77.78 77.78 83.33 88.89 79.54 94.05 95.24 95.24 97.15 97.15

H 81.58 97.54 99.47 99.87 100.00 100.00 66.67 77.78 88.89 94.44 94.44 94.44 79.76 88.10 96.43 98.81 100.00 100.00

S 80.86 97.19 100.00 100.00 100.00 100.00 61.11 72.22 88.89 94.44 94.44 100.00 77.38 90.48 97.62 97.62 97.62 98.81

D 86.29 97.77 100.00 100.00 100.00 100.00 61.11 88.89 88.89 94.44 100.00 100.00 86.90 94.05 97.62 98.81 98.81 98.81

Table 5: Open-world person ReID results. The numbers are TTR (%) against different FTR(%) values. Model abbreviations: B: Resnet-

Baseline, H: Bootstrap hard [22], S: Bootstrap soft [22], APN: [19], D: DistributionNet.

mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10

Market-1501 DukeMTMC-ReID

B 67.66 86.57 95.77 96.72 54.17 73.61 84.69 88.55

H 69.09 86.98 94.61 96.90 54.98 72.89 84.29 88.51

S 67.85 86.44 94.88 96.81 53.68 73.16 84.25 87.39

D 70.82 87.26 94.74 96.73 55.98 74.73 85.05 88.82

CUHK01 CUHK03

B 60.70 88.66 95.46 97.32 34.11 34.93 52.00 63.07

H 62.62 89.48 96.70 97.53 38.15 38.86 59.07 68.86

S 61.03 88.66 95.88 97.32 38.20 38.79 59.93 68.36

D 70.70 94.23 97.53 98.56 38.47 39.36 58.93 67.93

Table 6: Closed-world person ReID results. Model abbrevi-

ations: B: Resnet-Baseline, H: Bootstrap hard [22], S: Boot-

strap soft [22], D: DistributionNet.

detection with no occlusion – the model is thus most confi-

dent about the computed features for them.

4.3.2 Open-world ReID

Settings In the open-world ReID setting, a small number

of identities are used to form the targets, and the test gallery

set only contains images of these target identities. For di-

rect comparison with [19], we follow exactly the same set-

ting: Market-1501, CUHK01, and CUHK03 are used with

the same splits as in [19] (see Supplementary Material for

details). For each dataset, two images of the targets form

the gallery list. Half of the remaining images of targets and

all the images of non-targets in training set form the train-

ing set. The other half of the targets’ images and images of

non-targets in the test set are used as the probe list. The key

challenge for this setting is that the probe set contains many

impostors which need to be rejected. We use true target rate

(TTR) and false target rate (FTR) as evaluation metrics for

both set-based and individual-based verification tasks as in

[37, 38, 19]. The definition of these metrics and tasks are

given in Supplementary Material.

Baselines The three baselines used in the closed-world

setting are again compared here. In addition, we add the

state-of-the-art open-world ReID model APN in [19]. The

results reported in [19] were obtained under exactly the

same setting2. In addition, their model also has a ResNet50

backbone. The comparison is thus fair.

Results Comparative results are shown in Tab. 5. We

observe that: (1) Overall, our DistributionNet outperforms

all baselines under both set and individual verification tasks.

The improvement is particularly large at smaller FTR values

which are more important in practice. (2) It is impressive

that our model can beat the state-of-the-art APN model un-

der most settings, sometimes by significant margins. Note

that APN takes a two-stepped approach and in the first step a

GAN model is trained to synthesise more training samples.

Our one-step model is simpler yet more effective thanks to

its ability to model feature uncertainty. (3) Compared with

Tab. 6, it is apparent that the advantages of Distribution-

Net over the baselines are more pronounced under the more

challenging yet realistic open-set setting. This is expected –

when different person identities become inseparable in the

learned feature space using the baselines, its negative im-

pact under the open-set setting is more tangible. For in-

stance, if even a single gallery identity gets overlapped with

other identities in the probe, this will result in a large drop

in the matching performance using the two metrics.

5. Conclusion

In this work, for the first time, we addressed both the

noisy label and outlying sample problems in learning a deep

ReID model. A unified solution to cope with both types of

noisy samples was proposed. The key idea was to model

feature uncertainty explicitly by modelling each feature as

a distribution. The resulting DistributionNet is able to miti-

gate the negative impact of the noisy samples by assigning

large variance to them. Extensive experiments were con-

ducted to validate the effectiveness of DistributionNet. It

was shown to outperform a number of state-of-the-art com-

petitors in various settings.

2Note that the latest ArXiv version of this paper reported higher results

than their conference proceeding version. The higher/newer results are

thus included in our comparison.
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