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Abstract

In this paper we present a novel deep learning method

for 3D object detection and 6D pose estimation from RGB

images. Our method, named DPOD (Dense Pose Object

Detector), estimates dense multi-class 2D-3D correspon-

dence maps between an input image and available 3D mod-

els. Given the correspondences, a 6DoF pose is computed

via PnP and RANSAC. An additional RGB pose refinement

of the initial pose estimates is performed using a custom

deep learning-based refinement scheme. Our results and

comparison to a vast number of related works demonstrate

that a large number of correspondences is beneficial for

obtaining high-quality 6D poses both before and after re-

finement. Unlike other methods that mainly use real data

for training and do not train on synthetic renderings, we

perform evaluation on both synthetic and real training data

demonstrating superior results before and after refinement

when compared to all recent detectors. While being precise,

the presented approach is still real-time capable.

1. Introduction

Object detection has always been an important problem

in computer vision and a large body of research has been

dedicated to it in the past. This problem, like many other

vision problems, witnessed a complete renaissance with the

advent of deep learning. Detectors like R-CNN [8], and

its follow-ups Fast-RCNN [7], Faster-RCNN [28], Mask-

RCNN [9], then YOLO [27] and SSD [20] marked this re-

search field with excellent performance. All these works lo-

calize objects of interest in images in terms of tight bound-

ing boxes around them. However, in many applications,

e.g., augmented reality, robotics, machine vision, etc., this

is not enough and a full 6D pose is necessary. While this

problem is easier to solve in depth images, in RGB images

it is still quite challenging due to perspective ambiguities

∗These authors contributed equally to the work.

Figure 1: Example output of the DPOD method: Given

a single RGB image, we regress its ID mask and its 2D-

3D correspondences. PnP+RANSAC is then applied to es-

timate the final pose. The green bounding box shows the

ground truth pose, while the blue one corresponds to the es-

timated pose. The almost perfect overlap of the bounding

boxes indicates that estimations are very accurate.

and significant appearance changes of the object when seen

from different viewpoints.

Recent deep learning-based approaches, such as

SSD6D [15], YOLO6D [33], AAE [31], PoseCNN [34]

and PVNet [25], are the current top performers for this

task in RGB images. Even though they all perform eval-

uation on LineMOD and OCCLUSION datasets, each of

them focuses on different aspects of the 6D pose estimation

pipeline. The majority is trained on real data [33, 34, 25, 14]

while only SSD6D [15] and AAE [31] are trained on syn-
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thetic renderings. Some are presented without refinement,

like YOLO6D [33] and PoseCNN [34], while the others

perform refinement. The most recent refiners are based on

deep learning, e.g., DeepIM [18] that acts on poses from the

PoseCNN detector and the refiner of Manhardt et al. [21]

that uses SSD6D poses.

Inspired by the methods of Gueler et al. [1] and Tay-

lor et al. [32], which estimate dense correspondences be-

tween the human body model and the humans in the image,

we propose a novel 3D object detector and pose estimator

that also estimates dense 2D-3D correspondences. Unlike

DensePose for humans, which requires a sophisticated an-

notation tool and enormous annotation efforts, our method

is annotation-free and only requires creation of arbitrary

UV texture maps of the objects, that we do automatically—

mainly by spherical projections. The two key elements of

our approach are: the pixel-wise prediction of the multi-

class object ID masks and classification of correspondence

maps that directly provide a relation between image pixels

and 3D model vertices. In this way, we end up with a large

number of pixel-wise correspondences, which allow for a

much better pose estimation than, for example, 9 regressed

virtual points of the object’s bounding box as in YOLO6D.

In addition to this, we introduce a deep learning-based

pose refinement network that takes initial poses estimated

with our DPOD detector and enhances them. The proposed

refinement approach builds on the successes of [18, 22], but

is shown to be faster, simpler to train, able to be trained both

on synthetic and real data, and it outperforms the former

solutions in terms of pose quality. We demonstrate that even

our poses, which are already of high quality, can be further

improved with our refiner.

We experimented by training our detector with only

synthetic and only real images. In both cases, our uni-

fied method, named DPOD, composed of the dense pose

detector and the refiner outperforms other related works.

Dense correspondences not only allow for standard PnP

and RANSAC to estimate accurate poses without refine-

ment, but also pave the way for a successful pose refine-

ment. For the models trained on real data, one iteration of

refinement is enough to outperform all other reported re-

sults, even SSD6D with the depth-based ICP refinement.

In the remainder of the paper we first review related

approaches, then introduce our approach, explaining data

preparation, training, architectures and pose refinement. Fi-

nally, we present an exhaustive experimental validation and

comparison with recent works, where we demonstrate the

superiority of our approach.

2. Related Work

Detecting 3D objects and estimating their 6D pose has

been addressed in many works in the past, but the majority

of them used depth or RGB-D cameras [2, 5, 16, 17, 23,

30, 35]. Depth information disambiguates the object’s scale

that is the most critical in RGB images due to perspective

projection. Therefore, using only RGB images for detec-

tion and 6D pose estimation is a quite challenging prob-

lem. Recent solutions are mainly based on deep learning

and automatically learned features, while older ones use

hand-crafted features or image information, e.g., gradients,

or image pixel intensities directly.

Template matching approaches, e.g., [11, 12, 29], ren-

der synthetic image patches from different viewpoints dis-

tributed on a sphere around the 3D model of the object and

store them as a database of templates. Then the input im-

ages are searched using this template database sequentially

in a sliding window fashion. Efficient and robust template

matching strategies have been presented for color, depth and

RGB-D images. The most popular approach is arguably

LineMOD [11], which also provided a first dataset with la-

beled poses. This dataset is still used as a benchmark for

object detection and pose estimation. Another alternative

to template matching approaches is the learning approaches

that employ random forests [2, 3, 4].

Deep Learning 6D Pose Detectors. In the last two

years deep learning approaches have shown that impres-

sive results can be obtained for detection and pose esti-

mation in RGB images. Here we review the following

ones: SSD6D [15], YOLO6D [33], BB8 [26], iPose [14],

AAE [31], PoseCNN [34] and PVNet [25].

SSD6D [15] extended the ideas of the 2D object detec-

tor [20] by 6D pose estimation based on a discrete viewpoint

classification rather than direct regression of rotations. The

method is rather slow and poses predicted this way are quite

inaccurate since they are only a rough discrete approxima-

tion of the real poses. The refinement is a must in order

to produce presentable results. BB8 [26] uses a three-stage

approach. In the first two stages the coarse-to-fine segmen-

tation is performed, the result of which is then fed to the

third network trained to output projections of the object’s

bounding box points. Knowing 2D-3D correspondences, a

6D pose can be estimated with PnP. The main disadvan-

tage of this pipeline is its multi-stage nature, resulting in

very slow run times. Building on YOLO and BB8 ideas,

YOLO6D [33] proposed a novel deep learning architecture

capable of efficient and precise object detection and pose

estimation without refinement. As is the case with BB8, the

key feature here is to perform the regression of reprojected

bounding box corners in the image. The advantages of this

parametrization are its relative compactness and that it does

not introduce a pose ambiguity as opposed to a direct re-

gression of the rotation. Moreover, in contrast to SSD6D,

it does not suffer from pose discretization resulting in much

more accurate pose estimates without refinement.

Among the methods that are specifically designed to be

robust to occlusions we would like to highlight iPose [14],
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PoseCNN [34], and PVNet [25]. iPose [14] operates in

3 separate stages: segmentation, 3D coordinate regression

and pose estimation. By contrast, our approach unifies the

first two stages into the end-to-end network. Moreover, we

do not regress 3D coordinates, but rather UV maps that

turned out to be a much easier task for the network, resulting

in less erroneous correspondences. PoseCNN [34] also esti-

mates object masks, but then separately estimates the trans-

lation of the object’s centroid and regresses a quaternion for

rotation. PVNet [25] takes a different approach and designs

a network which for every pixel in the image regresses an

offset to some predefined keypoints. Instead of bounding

box points, they vote for the points located on the object it-

self. This allows them to handle occlusions very well. AAE

(Augmented Autoencoders) [31] concentrates on pose es-

timation and training from synthetic models, while using

already computed SSD detection bounding boxes as input.

Deep Learning 6D Pose Refiners. Deep learning-based

6D pose refinement has shown promising results in recent

publications [22, 18]. Both refiners are conceptually very

similar and are designed to output relative transformation

between the real input image patch and the patch contain-

ing the object rendered with the predicted pose. Main dif-

ferences are the used backbone architectures and loss func-

tions. Both refinement algorithms rely on external object

detection and pose estimation algorithms: for DeepIM [18]

it is PoseCNN, for [22] it is SSD6D [15]. The former re-

lies on real data, whereas the latter focuses on training on

synthetic images. We propose a network architecture which

takes the best of above architectures and is independent of

the type of training data used.

Our work differs from the above approaches by be-

ing a complete end-to-end pipeline integrating a detector

and pose estimator based on dense correspondences. We

demonstrate that we can train either from real or synthetic

data and in both cases we outperform all related approaches

by a large margin on the LineMOD and OCCLUSION

datasets.

3. Methodology

In this section we first discuss the training data prepara-

tion steps, followed by the neural network architecture and

loss functions used, as well as the pose estimation step from

dense correspondences. Finally, we describe our deep learn-

ing model-based pose refiner.

3.1. Data Preparation

Most recent RGB-based detectors can be divided in two

groups based on the type of data they use for training:

synthetic-based and real-based. The first group of meth-

ods, e.g., SSD6D [15] and AAE [31], makes use of textured

3D models, usually provided with the public 6D pose de-

tection datasets. The objects are rendered from different

viewpoints, producing a synthetic training set. The meth-

ods of the second group on the other hand, e.g., BB8 [26],

YOLO6D [33], PVNet [25], use the training split of the real

dataset. They utilize ground truth poses provided with the

dataset and compute object masks to crop the objects from

real images producing a training set.

Both types of data generation have their pros and cons.

When real images sufficiently covering the object are avail-

able, it is more advantageous to use them for training. The

reason is that their close resemblance to the actual objects

allows for faster convergence and better results. However,

training on real images biases the detector to light condi-

tions, poses, scales and occlusions present in the training

set, which might lead to problems with generalization in

new environments. When, however, no pose annotations are

available, which can often be the case since acquiring pose

annotations is an expensive process, we are left with 3D

models of the objects. With synthetic renderings, one can

produce a virtually infinite number of images from differ-

ent viewpoints. Despite being advantageous in terms of the

pose coverage, one has to deal with the domain gap prob-

lem severely hindering the performance if no additional data

augmentation is applied. Potentially, one can benefit from

the advantages of both data types by mixing real and syn-

thetic data in the training set. Therefore, approaches which

can be trained on both types of data are desirable. Since our

pipeline is not data-specific, we show how to generate the

training data for both scenarios.

Synthetic Training Data Generation. Given 3D models

of the objects of interest, the first step is to render them from

different poses sufficiently covering the object. The poses

are sampled from the half-sphere above the object. Addi-

tionally, in-plane rotations of the camera around its viewing

direction from -30 to 30 degrees are added. Then, for each

of the camera poses, an object is rendered on a black back-

ground and both RGB and depth channels are stored.

Having the renderings at hand, we use a generated depth

map as a mask to define a tight bounding box for each gen-

erated rendering. Cropping the image with this bounding

box position, we store RGB patches, masks separating them

from the background, and the camera poses. At this point,

we have everything ready for the online augmentation stage,

which is described in the later subsection. This step of data

preparation is identical for the detector and for the refine-

ment pipelines.

Real Training Data Generation. In this case, an avail-

able dataset with pose annotations is divided into non-

overlapping train and test subsets. Here, we follow the pro-

tocol defined by BB8 [26] and YOLO6D [33] and use 15%

of data for training and the rest 85% for evaluation. Poses

are selected such that the relative orientation between them
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Pose Block OutputCorrespondence block OutputInput

Cat𝑅11 𝑅12 𝑅13𝑅21 𝑅22 𝑅23𝑅31 𝑅32 𝑅33 𝑇𝑥𝑇𝑦𝑇𝑧

Camera𝑅11 𝑅12 𝑅13𝑅21 𝑅22 𝑅23𝑅31 𝑅32 𝑅33 𝑇𝑥𝑇𝑦𝑇𝑧

Eggbox𝑅11 𝑅12 𝑅13𝑅21 𝑅22 𝑅23𝑅31 𝑅32 𝑅33 𝑇𝑥𝑇𝑦𝑇𝑧

Correspondences

ID Mask

RGB

3D Models

PnP + RANSAC

Figure 2: Pipeline description: Given an input RGB image, the correspondence block, featuring an encoder-decoder neural

network, regresses the object ID mask and the correspondence map. The latter one provides us with explicit 2D-3D corre-

spondences, whereas the ID mask estimates which correspondences should be taken for each detected object. The respective

6D poses are then efficiently computed by the pose block based on PnP+RANSAC.

is larger than a certain threshold. This approach guaran-

tees that selected poses cover the object from all sides. For

training the detector, objects are cut out from the original

image using the provided mask and then stored as patches

for the online augmentation stage. Additional in-plane rota-

tions are added to artificially simulate new poses. For train-

ing the refinement, objects are left as they are.

3.1.1 Correspondence Mapping

To be able to learn dense 2D-3D correspondences, each

model of the dataset is textured with a correspondence map

(see Figure 3). A correspondence map is a 2-channel image

with values ranging from 0 to 255. Objects are textured us-

ing either simple spherical or cylindrical projections. Once

textured, we get a bijective mapping between the model’s

Figure 3: Correspondence model: Given a 3D model of

interest (1), we apply a 2 channel correspondence texture

(2) to it. The resulting correspondence model (3) is then

used to generate GT maps and estimate poses.

vertices and pixels on the correspondence map. This pro-

vides us with easy-to-read 2D-3D correspondences since

given the pixel color, we can instantaneously estimate its

position on the model surface by selecting the vertex with

the same color value. For convenience, we call the copies of

the original models textured with the correspondence map

correspondence models. Given the predicted correspon-

dence map, we estimate the object pose with respect to the

camera using the pose estimation block, which is described

later. Similar to the synthetic or real data generation steps,

we render correspondence models under the same poses as

for training data and store correspondence patches for each

RGB patch.

3.1.2 Online Data Generation and Augmentation

Detection and Pose Estimation. The final stage of data

preparation is the online data generation pipeline, which

is responsible for providing full-sized RGB images ready

for training. Generated patches (real or synthetic) are ren-

dered on top of images from MS COCO dataset [19] pro-

ducing training images containing multiple objects. It is an

important step, which ensures that the detector generalizes

to different backgrounds and prevents it from overfitting to

backgrounds seen during training. Moreover, it forces the

network to learn the model’s features needed for pose esti-

mation rather than to learn contextual features which might

not be present in images when the scene changes. This step

is performed no matter whether the training is being done

with synthetic or real patches. We additionally augment
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the RGB image by random changes in brightness, satura-

tion, and contrast, and by adding Gaussian noise. More-

over, object ID masks and correspondence patches are also

rendered on top of the black background in order to gener-

ate ground truth correspondence maps. An object ID mask

is constructed by assigning a class ID number to each pixel

that belongs to the object.

Pose Refinement. In the case of pose refinement, pairs of

images containing the object in the current (searched) pose

and in the predicted pose are provided to the network. The

final stage of data preparation differs considerably depend-

ing on the type of data used. In case of synthetic data, im-

ages are generated by in-painting objects on random back-

grounds in a current pose. A crucial part of the augmenta-

tion is to add random light sources for every image. If real

images are used for training, no in-painting is performed.

In any case, produced images are further augmented as dis-

cussed above. Then a random pose is sampled around the

current pose simulating the predicted pose from the detec-

tor, which will be used as an original guess of the poses to

be refined. It is crucial to choose the proper prior distribu-

tion from which distorted poses are sampled.

4. Dense Object Detection Pipeline

Our inference pipeline is divided into two blocks: the

correspondence block and the pose block (see Figure 2). In

this section, we provide their detailed description.

Correspondence Block. The correspondence block con-

sists of an encoder-decoder convolutional neural network

with three decoder heads which regress the ID mask and

dense 2D-3D correspondence map from an RGB image of

size 320×240×3. The encoder part is based on a 12-layer

ResNet-like [10] architecture featuring residual layers that

allow for faster convergence. The decoders upsample the

feature up to its original size using a stack of bilinear in-

terpolations followed by convolutional layers. However, in

principle the proposed method is agnostic to a particular

choice of encoder-decoder architecture. Any other back-

bone architectures can be used without any need to change

the conceptual principles of the method. For the ID mask

head the output is a H×W×O tensor, where H and W

are the height and width of the original input image and

O is the number of objects in the dataset plus one additional

class for background. Similar to the ID mask head, the two

correspondence heads regress tensors with the following di-

mensions H×W×C, where C stands for the number of

unique colors of the correspondence map, i.e., 256. Each

channel of the output tensors stores the probability values

for the class corresponding to the channel number. Once

tensors are regressed, we store them as single channel im-

ages where each pixel stores the class with the maximal es-

timated probability, forming the ID mask, U and V channels

of the correspondence image.

Formulating color regression problem as discrete color

class classification problem proved to be useful for much

faster convergence and for the superior quality of 2D-3D

matches. Initial experiments on direct coordinate regression

showed very poor results in terms of correspondence qual-

ity. The main reason for the problem was the infinite contin-

uous solution space, i.e., [−1; 1]3, where 3 is the number of

dimensions and [−1, 1] is the normalized coordinate range

of a 3D model. Classification of the discretized 2D cor-

respondences allowed for a huge boost of the output qual-

ity by dramatically decreasing the output space (now 2562,

where 256 is the size of a single UV map dimension). More-

over, this parametrization also ensures that 3D points of the

predicted correspondences always lie on the object surface.

The network parameters are optimized subject to the

composite loss function:

L = αLm + βLu + γLv, (1)

where Lm is the mask loss, and Lu and Lv are the losses

responsible for the quality of the U and V channels of the

correspondence image. α, β, and γ are weight factors set

to 1 in our case. Both Lu and Lv losses are defined as

multi-class cross-entropy functions, whereas Lm uses the

weighted version of it.

Pose Block. The pose block is responsible for the pose

prediction. Given the estimated ID mask, we can observe

which objects were detected in the image and their 2D loca-

tions, whereas the correspondence map maps each 2D point

to a coordinate on an actual 3D model. The 6D pose is then

estimated using the Perspective-n-Point (PnP) [36] pose es-

timation method that estimates the camera pose given cor-

respondences and intrinsic parameters of the camera. Since

we get a large set of correspondences for each model,

RANSAC is used in conjunction with PnP to make cam-

era pose prediction more robust to possible outliers. For

the results presented in the evaluation section, for each pose

we run 150 RANSAC iterations with the reprojection error

threshold set to 1.

5. Deep model-based pose refinement

The proposed pose refiner is a natural extension of re-

finers presented in [22, 18] and relies on the strengths of

both approaches. Similar to [22, 15, 13] we exploit an idea

of using a network already pre-trained on ImageNet as a

backbone architecture. Analogous to the detector, we used

a ResNet-based architecture. Similar to [18], our loss func-

tion for pose estimation is the ADD measure with a more

robust L1 norm:

m = avg
x∈Ms

∥

∥

∥
(Rx+ t)− (R̂x+ t̂)

∥

∥

∥

1

, (2)
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representing the vertex to vertex distance between the object

in a ground truth pose and predicted pose. R, t denote the

ground truth pose rotation and translation, whereas R̂ and t̂

denote the predicted transformation; Ms is a set of points

sampled from the CAD model. Points are resampled at ev-

ery iteration. The number of sampled points was limited

to ten thousand in order to ensure the efficiency of training

iterations and reasonable memory consumption.

In Figure 4 we show a schematic representation of the

refiner. In order to be able to benefit from the network

weights pretrained on ImageNet, the network has two par-

allel input branches, each composed of the first five ResNet

layers. These layers are initialized from the pre-trained net-

work. One branch receives an input image patch (E11),

while the other (E12) one extracts features from the ren-

dering of the object in the predicted pose. Then features fr
and fs from these two networks are subtracted and fed into

the next ResNet block (E2) producing the feature vector f .

If the refinement is trained on synthetic data, it is essential

to keep the first five layers unchanged and use them as the

feature extractor as was shown in [20, 13, 22]. Freezing

the branch that extracts features from object renderings is

unnecessary as it always operates on synthetic data. The

network ends with three separate output heads: one for re-

gressing the rotation, one for regressing the translation in X

and Y directions, and one for regressing the translation in Z

direction. We opted for three separate heads as the scale of

their outputs is different. Each head is implemented as two

fully connected layers.

Rotation is always represented in the object coordinate

system, which ensures that identically looking objects have

the same rotation and that the network does not have to learn

a more complicated transformation which arises if the world

coordinate system is used. The first layer of the rotation re-

Refinement headsFeature extractionInput

RGB

Rendered

Pose: 

x

y

z’

R
R x y z

x’
y’

z’

R’

Figure 4: Refinement architecture: The network predicts

a refined pose given an initial pose proposal. Crops of

the real image and the rendering are fed into two parallel

branches. The difference of the computed feature tensors is

used to estimate the refined pose.

gression head takes the feature vector f produced by ResNet

and adds four values, which are the quaternion representing

an initial rotation. The second layer takes the output of the

previous one, stacks with the initial quaternion and outputs

the final rotation.

The head responsible for the regression of X and Y trans-

lations operates in the coordinate system of the image rather

than in the full 3D space, which significantly restricts the

space of possible solutions. Similar to the rotation head, the

XY regression head takes the initial 2D location of the ob-

ject as input and refines it. Additionally, it takes the refined

prediction of Z translation.

Weights of the fully connected layers are initialized in

such a way that for the 0th iteration the network just outputs

the input pose, and then during training learns how to refine

those values. That significantly increases stability and speed

of the training procedure as the network produces meaning-

ful results from the very start.

6. Training Details

Our pipeline is implemented using the Pytorch deep

learning framework. All the experiments were conducted

on an Intel Core i7-6900K CPU 3.20GHz with NVIDIA

TITAN X (Pascal) GPU. To train our method, we used the

ADAM solver with a constant learning rate of 3×10−4 and

weight decay of 3× 10−5.

When training on synthetic data, the problem of domain

adaptation becomes one of the main challenges. Train-

ing the network without any prior parameter initialization

makes it impossible to generalize to the real data. The easy

solution to this problem was proposed in several works, in-

cluding [13, 22], where they freeze the first layers of the

network trained on a large dataset of real images, e.g., Im-

ageNet [6] or MS COCO [19], for the object classifica-

tion task. The common observation that the authors con-

clude is that these layers, learning low-level features, very

quickly overfit to the perfect object renderings. We follow

this setup, and freeze the first five layers of our encoder ini-

tialized with the weights of the same network pretrained on

ImageNet. Last but not least, we found it crucial for the per-

formance of the detector to use various light sources during

the rendering of synthetic views to account for changing

light conditions and shadows in the real data.

7. Evaluation

In this section we evaluate our algorithm in terms of its

pose and detection performance, as well as its runtime, and

compare it with the state of the art RGB detector solutions.

7.1. Datasets

All experiments were conducted on LineMOD [12] and

OCCLUSION [2] datasets, as they are the standard datasets
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Table 1: Pose estimation performance: Comparison of our approach to the other RGB detectors on the LineMOD dataset.

The table reports the percentages of correctly estimated poses w.r.t. the ADD score. Among the methods trained on synthetic

data, our method shows the best results significantly surpassing the former state-of-the-art. The variant of our method

trained on real data again demonstrates outstanding performance outperforming most of the competitors. Moreover, our new

refinement pipeline improves the estimated poses even further and shows the best overall results.

Train data Synthetic + Refinement Real + Refinement

Object SSD6D [15] AAE [31] Ours SSD6D [22] Ours YOLO6D [33] PoseCNN [34] PVNet [25] Ours DeepIM [18] Ours

Ape 2.6 3.96 37.22 - 55.23 21.62 - 43.62 53.28 77.0 87.73

Benchvise 15.1 20.92 66.76 - 72.69 81.80 - 99.90 95.34 97.5 98.45

Cam 6.1 30.47 24.22 - 34.76 36.57 - 86.86 90.36 93.5 96.07

Can 27.3 35.87 52.57 - 83.59 68.80 - 95.47 94.10 96.5 99.71

Cat 9.3 17.90 32.36 - 65.10 41.82 - 79.34 60.38 82.1 94.71

Driller 12.0 23.99 66.60 - 73.32 63.51 - 96.43 97.72 95.0 98.80

Duck 1.3 4.86 26.12 - 50.04 27.23 - 52.58 66.01 77.7 86.29

Eggbox 2.8 81.01 73.35 - 89.05 69.58 - 99.15 99.72 97.1 99.91

Glue 3.4 45.49 74.96 - 84.37 80.02 - 95.66 93.83 99.4 96.82

Holepuncher 3.1 17.60 24.50 - 35.35 42.63 - 81.92 65.83 52.8 86.87

Iron 14.6 32.03 85.02 - 98.78 74.97 - 98.88 99.80 98.3 100

Lamp 11.4 60.47 57.26 - 74.27 71.11 - 99.33 88.11 97.5 96.84

Phone 9.7 33.79 29.08 - 46.98 47.74 - 92.41 74.24 87.7 94.69

Mean 9.1 28.65 50 34.1 66.43 55.95 62.7 86.27 82.98 88.6 95.15

for evaluation of object detection and pose estimation meth-

ods. The LineMOD dataset consists of 13 sequences, each

containing ground truth poses for a single object of interest

in a cluttered environment. CAD models for all the objects

are provided as well. The OCCLUSION dataset is an exten-

sion of LineMOD, suitable for testing how well detectors

can deal with occlusions. Although it comprises only one

sequence, all visible objects from the LineMOD dataset are

supplied with their poses.

7.2. Evaluation Metrics

We evaluate the quality of 6DoF pose estimation follow-

ing the procedure suggested at SSD6D [15] also used in

other papers. Analogously to other related papers [33, 15,

25, 34], we measure the accuracy of pose estimation using

the ADD score [12]. ADD is defined as an average Eu-

clidean distance between model vertices transformed with

the predicted and the ground truth pose. More formally it is

defined as follows:

m = avg
x∈M

∥

∥

∥
(Rx+ t)− (R̂x+ t̂)

∥

∥

∥

2

, (3)

where M is a set of vertices of a particular model, R and t

are the rotation and translation of a ground truth transforma-

tion whereas R̂ and t̂ correspond to those of an estimated

transformation. The ADD metric can be extended in order

to handle symmetric objects as in [12]:

m = avg
x2∈M

min
x1∈M

∥

∥

∥
(Rx1 + t)− (R̂x2 + t̂)

∥

∥

∥

2

(4)

Instead of measuring distance from a predicted location of

each particular model’s vertex to its ground truth location, it

suggests to take the closest vertex of the model transformed

with the ground truth transformation.

Conventionally, a pose is considered correct if ADD is

smaller than the 10% of the model’s diameter. The accuracy

of pose estimation is reported as the percentage of correctly

estimated poses.

7.3. Single Object Pose Estimation

Results of the pose estimation experiments on the

LineMOD dataset are reported in Table 1. We separately

compared our method trained either on real data or on syn-

thetic data. The table provides the comparison of deep

learning-based refinement pipelines as well. The left-hand

side of the table reports the accuracy of pose estimation

as percentages of poses which are correct according to the

ADD measure for the training done on synthetic data. If

no refinement is used, our approach outperforms all other

approaches by a significant margin on the majority of the

objects. Moreover, the average percentage of correctly es-

timated poses (50%) is significantly higher than 28.65% of

the second best approach. The accuracy gap is more promi-

nent on small objects such as the ape and duck. The avail-

ability of a large number of 2D-3D correspondences ensures

that the performance of our method is 5 times better than

SSD6D’s and almost 2 times better than AAE’s. If deep

learning-based refinement is used, we significantly outper-

form [22] with 66.43% of correct poses against 34.1%.

If trained on real data, our method is the second best af-

ter [25]. The right-hand side of Table 1 compares the pro-

posed approach to the previous deep learning-based ones. If

no refinement is used, the proposed approach outperforms

PoseCNN and YOLO6D by a significant margin, while per-
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Figure 5: Qualitative results: Poses predicted with the pro-

posed approach on (a) the LineMOD dataset and (b) the

OCCLUSION dataset. Green bounding boxes correspond

to ground truth poses, bounding boxes of other colors to

predicted poses. For both datasets predicted poses are very

close to correct poses.

forming on par with PVNet on most of the objects. On av-

erage, we are better than PoseCNN by 31%, YOLO6D by

23.57%. Again, our approach uses RGB data exclusively

and does not rely on depth data. Figure 5 provides a visual

comparison of ground truth poses versus predicted poses.

Poses are visualized as projections of 3D bounding boxes of

models in given poses on top of a test image. In comparison

to deep learning-based refinement of [18], we perform on

average better by 6.55% reaching 95.15% of correct poses.

When DeepIM was applied to the poses predicted by the

proposed approach, ADD improved to 91.8% which is bet-

ter than the original 88.6% reported in their paper, but still

worse than the result of our refiner.

In conclusion, the proposed detector achieves state-of-

the-art results surpassing other detectors by a large margin

on synthetic data and performs either much better or com-

parable to the other detectors on real data. The proposed

Table 2: Pose estimation for multiple objects: Compari-

son of our approach on real data to the other RGB detectors

on the OCCLUSSION dataset. The table reports percent-

ages of correctly estimated poses w.r.t. the ADD score.

Method
YOLO6D

[33]

PoseCNN

[34]

SSD6D

+ Ref [22]

HMap

[24]

PVNet

[25]
Ours Ours

+Ref

Mean 6.42 24.9 27.5 30.4 40.77 32.79 47.25

Table 3: Detection performance for multiple objects:

Comparison of the state-of-the-art mean average precision

(mAP) scores on the OCCLUSION dataset.

Method SSD6D [15] YOLO6D [33] Brachmann [3] Ours

mAP 0.38 0.48 0.51 0.48

refinement clearly outperforms all the competitors both on

real and synthetic data. Pose quality varies from object

to object, but in general poses are significantly better for

larger objects since there are more 2D-3D correspondences

available. On the other hand, simplicity of the proposed

approach also makes it quick. On average our detector per-

forms at 33 FPS. The runtime can be adjusted by changing

the number of RANSAC iterations, as it is the bottleneck

of the pipeline. One iteration of the refinement takes 5ms,

excluding the rendering time, which heavily depends on the

renderer used. Two refinement iterations suffice for syn-

thetic data, one iteration—for real data.

7.4. Multiple Object Pose Estimation

Performance evaluation of the proposed detector in cases

when the number of objects to detect increases and when

severe occlusions are present was conducted on the OC-

CLUSION dataset [2]. Accuracy of object detection on the

OCCLUSION dataset is conventionally reported in terms

of mean average precision (mAP). The confidence score is

computed based on the RANSAC inlier proportion as con-

fidence, rendering the final score of 0.48, which is compa-

rable the best result on this dataset (see Table 3). Table 2

demonstrates ADD scores for various detectors on the OC-

CLUSION dataset. Before the refinement, the proposed de-

tector shows very competitive results in comparison to other

detectors. After the refinement, the proposed approach per-

forms substantially better and achieves the best results.

8. Conclusion

In this paper we proposed the Dense Pose Object Detec-

tor (DPOD) method that regresses multi-class object masks

and dense 2D-3D correspondences between image pixels

and corresponding 3D models. Unlike the best performing

methods that regress projections of the object’s bounding

boxes [26, 33] or formulate pose estimation as a discrete

pose classification problem [15], dense correspondences

computed by our method allow for more robust and accu-

rate 6D pose estimation. We demonstrated that for both,

real and synthetic training data, our detector outperforms

other related works, such as [33, 34], by a large margin and

performs similarly to [25]. The proposed pose refinement

approach also performs very well and allows for achieving a

pose accuracy that surpasses all other related deep learning-

based pose refinement approaches, while having a simpler

and more lightweight backbone architecture.

1948



References
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