
DeceptionNet: Network-Driven Domain Randomization

Sergey Zakharov *,✝, Wadim Kehl ✣, and Slobodan Ilic *,✝

* Technical University of Munich ✣ Toyota Research Institute ✝ Siemens Corporate Technology

sergey.zakharov@tum.de, wadim.kehl@tri.global, slobodan.ilic@siemens.com

Abstract

We present a novel approach to tackle domain adapta-

tion between synthetic and real data. Instead, of employ-

ing ”blind” domain randomization, i.e., augmenting syn-

thetic renderings with random backgrounds or changing il-

lumination and colorization, we leverage the task network

as its own adversarial guide toward useful augmentations

that maximize the uncertainty of the output. To this end, we

design a min-max optimization scheme where a given task

competes against a special deception network to minimize

the task error subject to the specific constraints enforced by

the deceiver. The deception network samples from a family

of differentiable pixel-level perturbations and exploits the

task architecture to find the most destructive augmentations.

Unlike GAN-based approaches that require unlabeled data

from the target domain, our method achieves robust map-

pings that scale well to multiple target distributions from

source data alone. We apply our framework to the tasks of

digit recognition on enhanced MNIST variants, classifica-

tion and object pose estimation on the Cropped LineMOD

dataset as well as semantic segmentation on the Cityscapes

dataset and compare it to a number of domain adaptation

approaches, thereby demonstrating similar results with su-

perior generalization capabilities.

1. Introduction

The alluring possibility of training machine learning

models on purely synthetic data allows for a theoretically

infinite supply of both input data samples and associated la-

bel information. Unfortunately, for computer vision appli-

cations, the domain gap between synthetic renderings and

real-world imagery poses serious challenges for generaliza-

tion. Despite the apparent visual similarity, synthetic im-

ages structurally differ from real camera sensor data. First,

synthetic image formation produces clear edges with ap-

proximate physical shading and illumination, whereas real

images undergo many types of noise, such as optical aber-

rations, Bayer demosaicing, or compression artifacts. Sec-

ond, the visual differences between synthetic CAD models

and their actual physical counterparts can be quite signifi-

cant. Apart from the visual gap, supervised approaches also

require cumbersome and error-prone human labeling of real

training data in the form of 2D bounding boxes, segmenta-

tion masks, or 6D poses [25, 17]. For other approaches,

such as robotic control learning, solutions must be found

by exploration in tight simulation-based feedback loops that

require synthetic rendering [28, 39, 31].

The gap between the visual domains is nowadays mainly

bridged with adaptation and/or randomization techniques.

In the case of supervised domain adaptation approaches [54,

32, 3, 30], a certain amount of labeled data from the tar-

get domain exists, while in unsupervised approaches [13,

46, 41, 4] the target data are available but unlabeled. In

both cases, the goal is to match the source and target

distributions by finding either a direct mapping, a com-

mon latent space, or through regularization of task net-

works trained on the source data. Recent unsupervised ap-

proaches are mostly based on generalized adversarial net-

works (GANs) [4, 22, 26, 46, 49, 24, 43, 36, 1] and although

these methods perform proper target domain transfers, they

can overfit to the chosen target domain and exhibit a decline

in performance for unfamiliar out-of-distribution samples.

Domain randomization methods [47, 21, 29, 52, 45]

have no access to any target domain and employ the rather

simple technique of randomly perturbing (synthetic) source

data during training to make the tasks networks robust to

perceptual differences. This approach can be effective, but

is generally unguided, and needs an exhaustive evaluation

to find meaningful augmentations that increase the target

domain performance. Last but not least, results from pixel-

level adversarial attacks [6, 44] suggest the existence of

architecture-dependent effects that cannot be addressed by

”blind” domain randomization for robust transfer.

We propose herein a general framework that performs

guided randomization with the help of an auxiliary decep-

tion network trained in a similar min-max fashion as GAN

532



Input

Input + Transformed Input

Transformed Input

Deception Net (Fixed)

Deception Net Recognition Net (Fixed)

Class

Pose

Recognition Net

CNN

Class

Pose

1

2

G
ra

d
ie

n
t 

R
e

v
e

rs
a

l

CNN

DecoderEncoder

M1

M2

M3

Mn

DecoderEncoder

M1

M2

M3

Mn

Figure 1: Training pipeline. Training is performed in two alternating phases. Phase 1: The weights of the deception network

are updated, while those of the recognition network are frozen. The recognition network’s objective is maximized instead

of being minimized, forcing the deception network to produce increasingly confusing images. Phase 2: The generated

deceptive images provided by the deception network, whose weights are now frozen, are passed to the recognition network

and its weights are updated such that the loss is minimized. As a result of this min-max optimization, the input images are

automatically altered by the deception network, forcing the recognition network to be robust to these domain changes.

networks. This is done in two alternating phases, as illus-

trated in Fig. 1. In the first phase, the synthetic input is

fed to our deception network responsible for producing aug-

mented images that are then passed to a recognition network

to compute the final task-specific loss with provided labels.

Then, instead of minimizing the loss, we maximize it via

gradient reversal [12] and only back-propagate an update

to the deception network parameters. The deception net-

work parameters are steering a set of differentiable modules

M1, ...,MN , from which augmentations are sampled. In the

next phase, we feed the augmented images to the recogni-

tion network together with the original images to minimize

the task-specific loss and update the recognition network.

In this way, the deception network is encouraged to pro-

duce domain randomization by confusing the recognition

network, and the recognition network is made resilient to

such random changes. By adding different modules and

constraints we can influence how much and which parts of

the image the deception network alters. In this way, our

method outputs images completely independent from the

target domain and therefore generalizes much better to new

unseen domains than related approaches. In summary, our

contributions are:

• DeceptionNet framework that performs a min-max opti-

mization for guided domain randomization;

• Various pixel-level perturbation modules employed in

such a framework suited for synthetic data;

• Novel sequences: MNIST-COCO and Extended

Cropped LineMOD that allow to demonstrate our strong

generalization capabilities to unseen domains.

In the experimental section we will show that steered ran-

domization by leveraging the network structure actually

generalizes much better to new domains than unsupervised

approaches with access to the target data while performing

comparably well to them on known target domains.

2. Related Work

Domain Adaptation. Various domain adaptation works

put their efforts to bridge the gap between the domains

mostly based on unsupervised conditional generative adver-

sarial networks (GANs) [46, 41, 4, 1] or style-transfer solu-

tions [14]. These methods use an unlabeled subset of target

data to improve the synthetic data performance. For exam-

ple, the authors of [4, 1] proposed to use GANs to learn the

mapping from synthetic images to real. Extending this idea,

approaches of [43, 36] use GANs to tune the parameters of

user-defined transformations to fit to the target distribution.

As opposed to GANs, work [11] used a sequence autoen-

coder to extract the feature vector pairs from the available

data, which are then decoded to generate new data samples.

Alternatively, domain-invariant features that work well

for both real and synthetic domains can be learned. [35]

mapped real image features to the feature space of synthetic

images and used the mapped information as an input to a

task-specific network, trained on synthetic data only.

Another example is DSN [5], which proposes the extrac-

tion of image representations that are partitioned into two

subspaces: private to each domain and one which is shared

across domains (learning domain-invariant features). The

shared subspace is then used to train a classifier that per-

533



forms well on both domains. Similarly, DRIT [23] em-

beds images on a domain-invariant content space (capturing

shared information across domains) and a domain-specific

attribute space by introducing a cross-cycle consistency loss

based on disentangled representations. Other approaches,

such as DANN [13] or ADDA [49] instead focus on adapt-

ing the recognition methods themselves to make them more

robust to the domain changes.

Domain Randomization. However, what if one does not

have real data available? The answer for this case is do-

main randomization. Domain randomization is a popular

approach [47, 21, 52, 34, 45, 38] that aims to randomize

parts of the domain that we do not want our algorithm to

be sensitive to. For example, [47] and [38] trained com-

plex recognition methods by means of adding variability

to the input render data, i.e., different illumination condi-

tions, texture changes, scene decomposition, etc. This sort

of parameterization allows to learn features that are invari-

ant to the particular properties of the domain. The authors of

[52] used a sophisticated depth augmentation pipeline try-

ing to cover possible artifacts of the common commodity

depth sensors. It was then used to train a network remov-

ing these artifacts from the input and generating a clean,

synthetically-looking image. Building on top of this idea,

the methods of [34, 45] extended this to the RGB domain.

Nevertheless, the main question remains unsolved: What

is the main cause of confusion given the domain change?

Domain randomization tries to target all possible scenarios,

but we do not really know which of them are actually useful

to bridge the domain gap. Moreover, covering all possible

variations present in the real world by applying simple aug-

mentations is almost impossible.

Our approach can be placed between domain random-

ization and GAN methods, however, instead of forcing ran-

domization without any clear guidance on its usefulness, we

propose to delegate this to a neural network, which we call

deception network, which tries to alter the images in an au-

tomated fashion, such that the task network is maximally

confused. Moreover, to do so, we do not require any im-

ages, labeled or unlabeled, from the target domain.

3. Methodology

As outlined, our approach towards steered domain ran-

domization is essentially an extension of the task algorithm.

Therefore, we have the actual task network T (x ; θT ) → ŷ,

which, given an input image x, returns an estimated label ŷ

(e.g., class, pose, segmentation mask, etc.), and (2) a decep-

tion network D that takes the source image xs and returns

the deceptive image xd, which, when provided to the task

net T (D(xs)) → ŷd, maximizes the difference between

ŷd and ys. While the recognition network architectures are

standard and follow related work [4, 12], we will first focus

herein on our structured deception network first, and then

describe the optimization objective and the training.

To formalize our pipeline, let Xs
c := xs

c,i ∀i ∈ Ns
c be

a source dataset composed of Ns
c source images xs

c for an

object of class c. Then, Xs := Xs
c ∀c ∈ C is the source

dataset covering all object classes C. A dataset of real im-

ages Xr (not used by us for training) is similarly defined.

3.1. Deception Modules

The deception network D follows the encoder-decoder

architecture where input xs is encoded to a lower-

dimensional 2D latent space vector z and given as an in-

put to multiple decoding modules M1, ...,Mn. The final

output of D is then a weighted sum of decoded outputs

xd :=
∑

i wi · Mi(z) where wi ∈ [0, 1]H×W act as spa-

tial masking operations. While such a formulation allows

for flexibility, the decoders must follow a set of predefined

constraints to create meaningful outputs and leverage an in-

herent image structure instead of finding trivial mappings

to decrease the task performance (e.g., by decoding always

to 0). Note that our proposed framework is general and,

thus, requires instantiations of the deception network for

specific datasets. Similar to architecture search, discov-

ering the ”best” instantiation is infeasible, but good ones

can be found by analyzing the data source. After a reason-

able experimentation we settled on certain configurations

for MNIST (RGB) and LineMOD (RGB-D), depicted in

Fig. 2. We continue by providing more detail on the used

decoder modules and their constraint ranges.

3.1.1 Background Module (BG)

Since our source images have black backgrounds, they

hardly transfer over to the real world with infinite back-

ground variety, resulting in a significant accuracy drop.

[21, 29] tackle this problem by rendering objects on top of

images from large-scale datasets (e.g., MS COCO [25]).

Instead, our background module produces its output by

chaining multiple upsampling and convolution operations.

While the output is rather simple at start, the module re-

gresses very complex and visually confusing structures in

the advanced stages of training.

For MNIST, we used a simpler variant that outputs a sin-

gle RGB background color ∈ [0, 1] and an RGB foreground

bias ∈ [0.1, 0.9] (restricted not to intersect with the back-

ground color). To form the output, we first apply the back-

ground color and then add the foreground bias using the

mask. We ensure that the final values are in the range [0, 1].

3.1.2 Distortion Module (DS)

The module is based on the idea of the elastic distortions

first presented in [42]. Essentially, a 2D deformation field is

randomly initialized from [−1, 1] and then convolved with

534



(a) Deception Modules for MNIST

Input Deception Net

Distort

Decoder
Encoder

RGB

BG/FG 

Decoder

Noise

Decoder

(b) Deception Modules for LineMOD

Input Deception Net

Noise

Decoder
Encoder

BG

Decoder

RGB-D

Normals

Distort 

Decoder

Light

Decoder

Figure 2: Architecture of the deception networks used for the presented experiments. For the case of MNIST classifica-

tion, three deception modules are used: the distortion module applying elastic deformations on the image, the BG/FG module

responsible for generating background and foreground colors, and the noise module additionally distorting the image by

applying slight noise. The LineMOD dataset requires a more sophisticated treatment and features four deception modules:

noise and distortion (applied on depth channel only), modules similar to the previous case, pixel-wise BG module and light

module generating different illumination conditions based on the Phong model.

a Gaussian filter of standard deviation σ. For large values of

σ, the resulting field approaches 0, whereas smaller values

of σ keep the field mostly random. However, the moderate

values of σ make the resulting field perform elastic defor-

mations, where σ defines the elasticity coefficient. The re-

sulting field is then multiplied by a scaling factor α, which

controls the deformation intensity.

Our implementation closely follows the described ap-

proach but we use the decoder output as the distortion field

and apply resampling, similar to spatial transformer net-

works [20]. We fix σ = 4, but learn both α ∈ (0, 5] and the

general decoder parameters. This means that the network

itself controls where and how much to deform the object.

3.1.3 Noise Module (NS)

Applying slight random noise augmentation to the network

input during training is common practice. In a similar fash-

ion, we use the noise decoder to add generated values to the

input. The noise decoder regresses a tensor of the input size

with values in the range [−0.01, 0.01], which are then added

to the input of the module.

3.1.4 Light Module (L)

Another feature not well covered by synthetic data is proper

illumination. Recent methods [21, 29, 16, 53] prerender a

number of synthetic images featuring different light condi-

tions. Here, we instead implement differentiable lighting

based on the simple Phong model [33], which is fully oper-

ated by the network. While more complex parametric and

differentiable illumination models do exist, we found this

basic approach to already work quite well.

The module requires surface information which is pro-

vided in form of normal maps. From this, we generate three

different types of illumination, namely ambient, diffusive,

and specular. The light decoder outputs a block of 9 param-

eters that are used to define the final light properties, i.e.,

a 3D light direction, an RGB light color (restricted to the

range of [0.8, 1]), and a weight for each of the three illumi-

nation types (wa ∈ [0.6, 1],wd ∈ [0, 1],ws ∈ [0, 1]).

3.2. Optimization Objective

The optimization objective of the deception network is

essentially the loss of the recognition network; however,

instead of minimizing it, we maximize it by updating the

parameters in the direction of the positive gradient. This

is achieved by adding a gradient reversal layer [12] be-

tween the deception and recognition nets as shown in Fig. 1.

The layer only negates the gradient when back-propagating,

thereby resulting in the reversed optimization objective for

a given loss. Therefore, the general optimization objective

can be written as follows:

min
θT

max
θD

Lt(T (D(x; θD)),y; θT ) (1)

subject to CMn
for n = 1, . . . , Nm (2)

where x is the input image, y is the ground truth label, T

is the task network, Lt is the task loss, D is the deception

network, and Cm denotes the hard constraints defined by the

deception modules enforced by projection after a gradient

step. In this framework, the deception network’s objective

535



(a) MNIST (b) MNIST-M (c) MNIST-COCO (d) PixelDA [4] (e) Ours

Figure 3: Example samples of the MNIST modalities: MNIST (Source), MNIST-M (Target), and MNIST-COCO (Gener-

alization) on the left; and example augmentation images generated by PixelDA and our method respectively.

only depends on the objective of the recognition task and

can, therefore, be easily applied to any other task.

3.3. Training Procedure

We use two different SGD solvers, where the actual task

network has a learning rate of 0.001 with a decaying factor

of 0.95 every 20000th iteration. The learning rate of the

deception network was found to work well with a constant

value of 0.01. We train with a batch size of 64 for all the

experiments and we stop training after 500 epochs. During

the experimentation, we also discovered that concatenating

real and perturbed images led to a consistent improvement

in numbers.

4. Evaluation

In this section, we conduct a series of experiments to

compare the capabilities of our pipeline with the state-of-

the-art domain adaptation methods. We first compare our-

selves against these baselines for the problem of adaptation

and will then compare in terms of generalization. We will

conclude with an ablative analysis to measure the impact of

each module and modality on the final performance.

As the first dataset, we used the popular handwritten dig-

its dataset MNIST as well as MNIST-M, introduced in [13]

for unsupervised domain adaptation (depicted in Figs. 3a

3b). MNIST-M blends digits from the original monochrome

set with random color patches from BSDS500 [2] by sim-

ply inverting the color values for the pixels belonging to the

digit. The training split containing 59001 target images is

then used for domain adaptation. The remaining 9001 tar-

get images are used for evaluation. That means that around

86% of the target data is used for training. Note that while

MNIST is not technically synthetic, its clean and homoge-

neous appearance is typical for synthetic data.

The second dataset is the Cropped LineMOD dataset

[51] consisting of small centered, cropped 64×64 patches

of 11 different objects in cluttered indoor settings displayed

in various of poses. It is based on the LineMOD dataset

[15] featuring a collection of annotated RGB-D sequences

recorded using the Primesense Carmine sensor and asso-

ciated 3D object reconstructions. The dataset also fea-

tures a synthetic set of crops of the same objects in var-

ious poses on a black background. We will treat this Syn-

thetic Cropped LineMOD as the source dataset and the Real

Cropped LineMOD as the target dataset. Domain adapta-

tion methods use a split of 109208 rendered source images

and 9673 real-world target images, 1000 real images for val-

idation, and a target domain test set of 2655 images for test-

ing. We show examples in Figs. 4a and 4b.

The last dataset pair we used for the experiments is SYN-

THIA [37] and Cityscapes [10]. SYNTHIA is a collec-

tion of pixel-annotated road scene frames rendered from

a virtual city. Cityscapes is its real counterpart acquired

in the street scenes of 50 different actual cities. Follow-

ing a common evaluation protocol, we used a subset of

9400 SYNTHIA images, also known as SYNTHIA-RAND-

CITYSCAPES, as the source data and 500 Cityscapes vali-

dation images as the target data.

4.1. Adaptation Tests

All domain adaptation methods use a significant portion

of the target data for training, making the resulting mapped

source images very similar to the target images (e.g., Fig. 3b

vs 3d and Fig. 4b vs 4d). A common benchmark for domain

adaptation is then to compare the performance of a classifier

trained on the mapped data against a classifier trained on

the source data only (lower baseline) and against a classifier

trained directly on the target data (upper baseline).

Our approach is generally disadvantaged since we can

structure our domain mapping only through the source data

and the deception architecture. To show that our learned

randomization is indeed guided, we additionally implement

an unguided randomization variant that applies train time

augmentation similar to the related work. It employs the

same modules and constraints as our deception network, but

its perturbations are conditioned on random values in each

forward pass instead of latent codes from the input.

536



(a) Synthetic (b) Real (c) Extended (d) PixelDA [4] (e) Ours

Figure 4: Example samples of the LineMOD modalities: Synthetic (Source), Real (Target), and Extended (Generalization)

on the left; and example augmentation images generated by PixelDA and our method respectively.

4.1.1 Classification on MNIST

In Table 1 we collect the results of the most relevant meth-

ods tested on the MNIST → MNIST-M scenario and split

them according to the type of data used. Since domain adap-

tation methods use both source and target data for training,

they are allocated to a separate group (S + T). Both our

method and the unguided randomization variant only have

access to the source data and are therefore grouped in S.

The task network follows the architecture presented in [12],

which is also used by the other methods. The task’s objec-

tive Lt is a simple cross entropy loss between the predicted

and the ground truth label distributions.

We can identify three key observations: (1) our method

shows very competitive results (90.4% classification) and is

on par with the latest domain adaptation pipelines: DSN –

83.2%, DRIT – 91.5% and PixelDA – 95.9%. Moreover,

we outperform most of the methods by a significant margin

despite the fact that they had access to a large portion of the

target data to minimize the domain shift. (2) Guiding the

randomization leads to 7% higher accuracy which supports

our claim convincingly. (3) Surprisingly, unguided random-

ization (with appropriate modules) alone is in fact enough

to outperform most methods on MNIST.

4.1.2 Classification and Pose Estimation on LineMOD

As before, the domain adaptation methods are trained on

a mix of source (Synthetic Cropped LineMOD) and target

(Real Cropped LineMOD) data and we compare to the pre-

defined baselines. We use the common task network for this

benchmark from [12] and the associated task loss:

Lt(G) = Exs,ys

[

− y
s⊤ log ŷd + ξ log(1− q

s⊤
q̂
d)
]

(3)

where the first term is the classification loss and the sec-

ond term is the log of a quaternion rotation metric [19]. ξ

weighs both terms whereas qs and q̂d are the ground truth

and predicted quaternions, respectively.

The results in Table 1 present a more nuanced case. On

this visually complex dataset, unguided randomization per-

forms only above the lower baseline and is far behind any

other method. Our guided randomization, on the other hand,

with – 95.8% classification and 51.9◦ angle error is com-

petitive with those of the latest domain adaptation methods

using target data: DSN – 100% & 53.3◦, DRIT – 98.1%

& 34.4◦, and PixelDA – 99.9% & 23.5◦. Nonetheless, we

believe that both DRIT and PixelDA are not fully reachable

by target-agnostic methods like ours since the space of all

needed adaptations (e.g., aberrations or JPEG artifacts) has

to be spanned by our deception modules. The augmentation

differences between PixelDA and our method (Figs. 4d and

4e) suggest the existance of some visual phenomena we are

still not accounting for with our deception network.

4.2. Generalization Tests

For the second set of experiments, we test the general-

ization capabilities of our method as well as the competing

approaches. The major advantage of our pipeline is its in-

dependence from any target domain by design. To support

our case we designed two new datasets:

MNIST →

MNIST-M

Synthetic Cropped LineMOD →

Real Cropped LineMOD

Model
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (◦)

Source (S) 56.6 42.9 73.7

S

Unguided 83.1 53.1 52.6

Ours 90.4 95.8 51.9

S
+

T

CycleGAN [56] 74.5 68.2 47.5

MMD [50, 27] 76.9 72.4 70.6

DANN [13] 77.4 99.9 56.6

DSN [5] 83.2 100 53.3

DRIT [23] 91.5 98.1 34.4

PixelDA [4] 95.9 99.9 23.5

Target (T) 96.5 100 12.3

Table 1: Baseline tests: While performing slightly worse

than the leading state-of-the-art domain adaptation methods

using target data, we still manage to achieve very competi-

tive performance without access to target data.

537



• MNIST-COCO The data collection follows the exact

same generation procedure of MNIST-M and has the

same exact number of images for both training and test-

ing. The only difference here is that instead of the

BSDS500 dataset, we use crops from MS COCO. Fig. 3e

demonstrates some of the newly generated images.

• Extended Real Cropped LineMOD Thanks to the help

of the authors of the original LineMOD dataset [15],

we were able to get some of the original LineMOD ob-

jects, namely ”phone”, ”benchvise”, and ”driller”. We

repeated the physical acquisition setup and generated an

annotated scene for each object. Each scene depicts a

specific object placed on a white markerboard atop a

turntable and coarsely surrounded by a small number of

cluttered objects, slightly occluding the object at times.

Each sequence contains 130 RGB-D images covering the

full 360◦ rotation at an elevation angle of approximately

60◦. Given the acquired and refined poses, we again

crop the images in the same fashion as in the Cropped

LineMOD dataset [51]. All 390 images are used for eval-

uation, with some examples shown in Fig. 4c.

For a comparison with the strongest related methods, i.e.,

DSN, DRIT, and PixelDA, we used open source implemen-

tations and diligently ensured that we are able to properly

train and reproduce the reported numbers from Table 1.

While the DRIT implementation worked well for the adap-

tation experiments, we failed to produce reasonably high

numbers for the generalization experiment and chose to ex-

clude it from the comparison.

Similar to before, we train them using the target data

from MNIST-M and Real Cropped LineMOD. After the

training is finished and the corresponding accuracies on the

target test splits are achieved, we test them on the newly

acquired dataset. While different, these extended datasets

still bear a certain resemblance to the target dataset and we

could expect to see a certain amount of generalization. For

our randomization methods, we can immediately test on the

MNIST →

MNIST-COCO

Synthetic Cropped LineMOD →

Extended Real Cropped LineMOD

Model
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (◦)

Source (S) 57.2 63.1 78.3

S

Unguided 85.8 77.2 48.5

Ours 89.4 99.0 46.5

S
+

T DSN [5] 73.2 45.7 76.3

PixelDA [4] 72.5 76.0 84.2

Target (T) 96.1 100 14.7

Table 2: Generalization tests: Our method generalizes

well to the extended datasets, while the adaptation methods

underperform due to overfitting.

new data, since retraining is not necessary.

As is evident from Table 2, the accuracy of our method

on MNIST-COCO is very close to the MNIST-M number

(90.4% and 89.4% respectively). For the case of Extended

Real Cropped LineMOD, we get even better results than

for the Real Cropped LineMOD for both accuracy and an-

gle error: We only need to classify 3 objects instead of 11

with a much smaller pose space, and the scenes are in gen-

eral cleaner and less occluded. These results underline our

claim with respect to generalization. This is, however, not

the case for the domain adaptation methods showing dras-

tically worse results. Interestingly, we observe an inverse

trend where better results on the original target data lead

to a more significant drop. Despite of having a very high

accuracy on the target data and the ability to generate addi-

tional samples that do not exist in the dataset, these methods

present typical signs of overfit mappings that cannot gener-

alize well to the extensions of the same data acquired in a

similar manner. The simple reason for this might be the na-

ture of these methods: they do not generalize to the features

that matter the most for the recognition task, but to simply

replicate the target distribution as close as possible. As a

result, it is not clear what the classifier exactly focuses on

during inference; however, it could very likely be the par-

ticular type of images (e.g., in case of MNIST-COCO) or a

specific type of backgrounds and illumination (e.g., in case

of Extended Real Cropped LineMOD). In contrast to do-

main adaptation methods, our pipeline is designed not to

replicate the target distribution, but to make the classifier

invariant to the changes that should not affect classification,

which is the reason why our results remain stable.

4.3. Ablation Studies

In this section, we perform a set of ablation studies

to gain more insight into the impact of each module in-

side the deception network. Obviously, our modules model

only a fraction of possible perturbations and it is important

to understand the individual contributions. Moreover, we

demonstrate how well we perform provided different types

of input modalities for the LineMOD datasets.

MNIST →

MNIST-M

Synthetic Cropped LineMOD →

Real Cropped LineMOD

Modules
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (◦)

None 56.6 42.9 73.7

BG 82.4 74.8 50.4

BG + NS 86.5 77.6 52.8

BG + NS + DS 90.4 78.7 48.2

BG + NS + DS + L - 95.8 51.9

Table 3: Module ablation: Evaluation of the importance of

the deception network’s modules. BG – background, NS –

noise, DS – distortion, L – light.

538



Road SW BLDG Wall Fence Pole TL TS VEG Sky PRSN Rider Car Bus Mbike Bike mIoU mIoU*

Source (S) 3.8 10.2 46.3 1.8 0.3 19.1 4.0 7.5 71.8 72.2 44.6 3.4 24.9 5.2 0.0 2.5 19.8 22.8

S

Unguided 17.9 8.8 59.2 0.8 0.4 22.1 3.5 6.1 71.4 70.4 40.3 7.3 37.9 3.3 0.2 7.3 22.3 25.7

Ours 51.4 17.8 62.5 1.6 0.4 22.6 6.0 11.9 70.9 73.5 42.1 8.2 40.9 8.1 3.9 18.4 27.5 32.0

S
+

T

FCNs Wld [18] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1 22.9

CDA [55] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

Cross-City [9] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 - 35.7

Tsai et al. [48] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

ROAD-Net [8] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.1 41.7

LSD-seg [40] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 42.1

Chen et al. [7] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0

Target (T) 96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 90.4 60.1 31.7 88.4 52.3 33.6 59.1 59.5 65.5

Table 4: Real-world application: Segmentation performance on SYNTHIA → Cityscapes benchmark based on Intersection

over Union (IoU) tested on 16 (mIoU) and 13 (mIoU*) classes of the Cityscapes dataset. Our method outperforms source

and unguided by a significant margin and remains competitive to the methods relying on the target data.

4.3.1 Deception Modules

We tested 4 different variations of the deception net that

use varying combinations of the deception modules: back-

ground (BG), noise (NS), distortion (DS), and light (L).

The exact combinations and the results on both datasets are

listed in Table 3.

It can be clearly seen that each additional module in the

deception network adds to the discriminative power of the

final task network. The most important modules can also be

easily distinguished based on the results. Apparently, the

background module always makes a significant difference:

the purely black backgrounds of the source data are dras-

tically different from the real imagery. Another interesting

observation is the strong impact the lighting perturbation

has in the case of the Cropped LineMOD dataset. This en-

forces the notion that real sequences undergo many kinds of

lighting changes that are not well-represented by synthetic

renderings without any additional relighting. Note that the

MNIST deception network does not employ lighting.

4.3.2 Input Modalities

For the task of simultaneous instance classification and pose

estimation, we (as well as the other methods) always use the

full RGB-D information. This ablation aims to show how

well we fare provided only a certain type of data and the im-

pact on the final results. Table 5 shows that RGB allows for

better classification, whereas depth provides better pose es-

timates. We can further boost the classification enormously

and reduce the pose error by combining both modalities.

Synthetic Cropped LineMOD →

Real Cropped LineMOD

Synthetic Cropped LineMOD →

Extended Real Cropped LineMOD

Input
Classification
Accuracy (%)

Mean
Angle Error (◦)

Classification
Accuracy (%)

Mean
Angle Error (◦)

D 73.3 36.6 78.7 34.9

RGB 84.8 57.4 85.9 49.4

RGB-D 95.8 51.9 99.0 46.5

Table 5: Input modality ablation: Performance evaluation

based on the input data type used: depth, RGB, or RGB-D.

4.4. Real­world Scenario

We demonstrate a real-world application of our approach

on a more practical problem of semantic segmentation using

the common SYNTHIA → Cityscapes benchmark. Having

only synthetic SYNTHIA renderings, we try to generalize

to the real Cityscapes data by evaluating our method on 13

and 16 classes using the Intersection over Union (IoU) met-

ric. This setup is particularly difficult since the domain gap

problem here is intensified by a completely different set of

segmentation instances and camera views. For a fair com-

parison, all methods use a VGG-16 base (FCN-8s) recogni-

tion network. The deception modules used in this case are

as follows: 2D noise (NS), elastic distortion (DS), and light

(L). Normal maps for the light module are generated from

the available synthetic depth data.

Table 4 shows that even without access to target domain

data, our pipeline remains competitive with the methods re-

lying on target data, showing mIoU of 27.5% and mIoU* of

32% (16 and 13 classes) – well above source and unguided.

The results also confirm the generality of the approach with

respect to the different task architectures and datasets.

5. Conclusion

In this paper we presented a new framework to tackle

the domain gap problem when no target data is available.

Using a task network and its objective, we show how to

extend it with a simple encoder-decoder deception network

and bind both in a min-max game in order to achieve guided

domain randomization. As a result, we obtain increasingly

more robust task networks. We demonstrate a comparable

performance to domain adaptation methods on two datasets

and, most importantly, show superior generalization capa-

bilities where the domain adaptation methods tend to drop

in performance due to overfitting to the target distribution.

Our results suggest that guided randomization, because of

its simple but effective nature, should become a standard

procedure to define baselines for domain transfer and adap-

tation techniques.

539



References

[1] Antreas Antoniou, Amos Storkey, and Harrison Edwards.

Data augmentation generative adversarial networks. arXiv

preprint arXiv:1711.04340, 2017.

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-

tendra Malik. Contour detection and hierarchical image seg-

mentation. TPAMI, 2011.

[3] Artem Babenko, Anton Slesarev, Alexander Chigorin, and

Victor S. Lempitsky. Neural codes for image retrieval.

CoRR, 2014.

[4] Konstantinos Bousmalis, Nathan Silberman, David Dohan,

Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-

level domain adaptation with generative adversarial net-

works. In CVPR, 2017.

[5] Konstantinos Bousmalis, George Trigeorgis, Nathan Silber-

man, Dilip Krishnan, and Dumitru Erhan. Domain separa-

tion networks. In NIPS, 2016.

[6] Tom B. Brown, Dandelion Man, Aurko Roy, Martn Abadi,

and Justin Gilmer. Adversarial patch. In NIPS, 2017.

[7] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.

Learning semantic segmentation from synthetic data: A ge-

ometrically guided input-output adaptation approach. In

CVPR, 2019.

[8] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality ori-

ented adaptation for semantic segmentation of urban scenes.

In CVPR, 2018.

[9] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,

Yu-Chiang Frank Wang, and Min Sun. No more discrimi-

nation: Cross city adaptation of road scene segmenters. In

ICCV, 2017.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016.

[11] Terrance DeVries and Graham W Taylor. Dataset augmen-

tation in feature space. arXiv preprint arXiv:1702.05538,

2017.

[12] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In ICML, 2015.

[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. JMLR, 2016.

[14] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

CVPR, 2016.

[15] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-

fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.

Model based training, detection and pose estimation of

texture-less 3d objects in heavily cluttered scenes. In ACCV,

2012.

[16] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and

Kurt Konolige. On pre-trained image features and synthetic

images for deep learning. 2017.

[17] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri Matas,

Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-

d dataset for 6d pose estimation of texture-less objects. In

WACV, 2017.

[18] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.

Fcns in the wild: Pixel-level adversarial and constraint-based

adaptation. arXiv preprint arXiv:1612.02649, 2016.

[19] Du Q Huynh. Metrics for 3d rotations: Comparison and anal-

ysis. Journal of Mathematical Imaging and Vision, 2009.

[20] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks. In NIPS,

2015.

[21] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan

Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d detec-

tion and 6d pose estimation great again. In ICCV, 2017.

[22] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,

Andrew P. Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, and Wenzhe Shi. Photo-realistic single image super-

resolution using a generative adversarial network. CoRR,

2016.

[23] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh

Singh, and Ming-Hsuan Yang. Diverse image-to-image

translation via disentangled representations. In ECCV, 2018.

[24] Kuan-Hui Lee, German Ros, Jie Li, and Adrien Gaidon. Spi-

gan: Privileged adversarial learning from simulation. ICLR,

2019.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: common objects in context. In

ECCV, 2014.

[26] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversar-

ial networks. CoRR, 2016.

[27] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I

Jordan. Learning transferable features with deep adaptation

networks. ICML, 2015.

[28] Jeffrey Mahler and Ken Goldberg. Learning deep policies for

robot bin picking by simulating robust grasping sequences.

In CoRL, 2017.

[29] Fabian Manhardt, Wadim Kehl, Nassir Navab, and Federico

Tombari. Deep model-based 6d pose refinement in rgb. In

ECCV, 2018.

[30] Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gi-

anfranco Doretto. Unified deep supervised domain adapta-

tion and generalization. ICCV, 2017.

[31] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek

Chociej, Rafal Józefowicz, Bob McGrew, Jakub W. Pa-

chocki, Jakub Pachocki, Arthur Petron, Matthias Plappert,

Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,

Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech

Zaremba. Learning dexterous in-hand manipulation. CoRR,

2018.

[32] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.

Learning and transferring mid-level image representations

using convolutional neural networks. In CVPR, 2014.

[33] Bui Tuong Phong. Illumination for computer generated pic-

tures. Communications of the ACM, 1975.

540



[34] Benjamin Planche, Sergey Zakharov, Ziyan Wu, Andreas

Hutter, Harald Kosch, and Slobodan Ilic. Seeing beyond

appearance-mapping real images into geometrical domains

for unsupervised cad-based recognition. IROS, 2019.

[35] Mahdi Rad, Markus Oberweger, and Vincent Lepetit. Fea-

ture mapping for learning fast and accurate 3d pose inference

from synthetic images. In CVPR, 2018.

[36] Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain,

Jared Dunnmon, and Christopher Ré. Learning to compose

domain-specific transformations for data augmentation. In

Advances in neural information processing systems, 2017.

[37] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In CVPR, 2016.

[38] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-

image flight without a single real image. arXiv preprint

arXiv:1611.04201, 2016.

[39] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real

single-image flight without a single real image. In Robotics:

Science and Systems(RSS), 2017.

[40] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser

Nam Lim, and Rama Chellappa. Learning from synthetic

data: Addressing domain shift for semantic segmentation. In

CVPR, 2018.

[41] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh

Susskind, Wenda Wang, and Russ Webb. Learning from sim-

ulated and unsupervised images through adversarial training.

In CVPR, 2017.

[42] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best

practices for convolutional neural networks applied to visual

document analysis. In ICDAR, 2003.

[43] Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan:

Generating realistic labeled data. Frontiers in Robotics and

AI, 2018.

[44] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.

One pixel attack for fooling deep neural networks. IEEE

Transactions on Evolutionary Computation, 2019.

[45] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian

Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3D

Orientation Learning for 6D Object Detection from RGB Im-

ages. In ECCV, 2018.

[46] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised

cross-domain image generation. ICLR, 2017.

[47] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-

ciech Zaremba, and Pieter Abbeel. Domain randomization

for transferring deep neural networks from simulation to the

real world. IROS, 2017.

[48] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-

hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.

Learning to adapt structured output space for semantic seg-

mentation. In CVPR, 2018.

[49] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. CVPR, 2017.

[50] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and

Trevor Darrell. Deep domain confusion: Maximizing for

domain invariance. CoRR, 2014.

[51] Paul Wohlhart and Vincent Lepetit. Learning descriptors for

object recognition and 3d pose estimation. In CVPR, 2015.

[52] Sergey Zakharov, Benjamin Planche, Ziyan Wu, Andreas

Hutter, Harald Kosch, and Slobodan Ilic. Keep it unreal:

Bridging the realism gap for 2.5d recognition with geometry

priors only. 3DV, 2018.

[53] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:

6d pose object detector and refiner. In ICCV, 2019.

[54] Matthew D. Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. CoRR, 2013.

[55] Yang Zhang, Philip David, and Boqing Gong. Curricu-

lum domain adaptation for semantic segmentation of urban

scenes. In ICCV, 2017.

[56] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017.

541


