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Figure 1: 3D face reconstruction results of the proposed method. Reconstructed geometries are shown next to the corre-

sponding input images.

Abstract

Reconstructing detailed geometric structure from a sin-

gle face image is a challenging problem due to its ill-posed

nature and the fine 3D structures to be recovered. This pa-

per proposes a deep Dense-Fine-Finer Network (DF2Net)

to address this challenging problem. DF2Net decomposes

the reconstruction process into three stages, each of which

is processed by an elaborately-designed network, namely

D-Net, F-Net, and Fr-Net. D-Net exploits a U-net archi-

tecture to map the input image to a dense depth image. F-

Net refines the output of D-Net by integrating features from

both depth and RGB domains, whose output is further en-

hanced by Fr-Net with a novel multi-resolution hypercolum-

n architecture. In addition, we introduce three types of data

to train these networks, including 3D model synthetic data,

2D image reconstructed data, and fine facial images. Qual-

itative evaluation indicates that our DF2Net can effectively

reconstruct subtle facial details such as small crow’s feet

and wrinkles. Our DF2Net achieves performance superior

or comparable to state-of-the-art algorithms in qualitative

and quantitative analyses on real-world images and the BU-

3DFE dataset. Codes and the collected 70K image-depth

∗Equally-contributed first authors ({xx.zeng,xj.peng}@siat.ac.cn)
†Corresponding author (yu.qiao@siat.ac.cn)

dataset are publicly available1.

1. Introduction

This paper considers the problem of high-fidelity 3D

face reconstruction from a single image. Image-based 3D

face reconstruction is a fundamental yet important prob-

lem in computer vision, with wide applications in face

animation[16, 34] ,human-machine interaction[1], medical

applications [2, 29], etc. The challenge of this problem

comes from its ill-posed nature and the fine facial details

to be recovered. The projection from a 3D face to a 2D im-

age depends on its material properties, lighting conditions,

viewing directions and other factors. Given an input im-

age, there usually exist multiple choices of 3D structures to

generate this image. Moreover, faces always include subtle

structures like wrinkles, eye grains, which are difficult to

recover accurately.

Early approaches toward this problem can be roughly

divided in two categories, namely 3D Morphable Model

(3DMM) [4] based methods and Shape-from-Shading (SF-

S) [41] based ones. 3DMM-based methods represent a tex-

tured 3D face as a low-dimensional representation in terms

1https://github.com/xiaoxingzeng/DF2Net/
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of latent variables and corresponding basis vectors. These

SFS-based methods utilize rendering principle to recover

the underlying shape from shading observations. Though

3DMM-based methods are efficient and simple, they always

lead to over-smooth results and can not capture the rich

details of input images, partly due to its low-dimensional

nature. Compared with 3DMM-based methods, SFS-based

methods allow to recover more fine geometric details, but it

always needs accurate prior shape information and the iter-

ative optimization process of SFS can be sensitive to noise.

Recently, deep convolutional neural network (CNN)

based methods achieve impressive progresses on the re-

covery of 3D facial geometry [11, 35, 19, 44, 10]. Roth

et.al [27] exploit landmark driven 3D warping to produce

prior 3D faces and then adjust their geometry with photo-

metric methods. Sela et al. [28] predict depth image and

correspondence map, by using non-rigid transformation to

obtain 3D facial mesh, and further refine it with an iterative

process. Compared to previous hand-crafted feature works,

deep networks can learn effective features to estimate the

mapping from 2D images to their 3D shapes. The recent

state-of-the-art methods [25, 22, 11] exploited a coarse-to-

fine CNN framework in an end-to-end fashion, where the

coarse CNN model mainly regresses the low-dimensional

and smooth representation of a 3DMM and the fine CNN

model applies a shape-from-shading like refinement to cap-

ture the fine facial details. The reconstruction performance

mainly depends on both coarse model and the refinement

model. However, capturing subtle 3D structure from a sin-

gle image is still a challenging task.

In this paper, we focus on the coarse-to-fine frame-

work and aim to advance the state-of-the-art with respect

to coarse 3D face model and refinement model. Specifical-

ly, we propose a novel coarse-to-fine framework, termed as

Dense-Fine-Finer Network (DF2Net), to reconstruct a high-

fidelity 3D face surface from a single image. DF2Net con-

sists of three modules, namely a Dense depth Network (D-

Net), a Fine network (F-Net), and a Finer network (Fr-Net),

which perform 3D reconstruction in a cascaded way. For

the coarse 3D face model, instead of regressing the low-

dimensional 3D representation as in previous works, our

D-Net estimates a coarse but dense depth map from input

image with a U-net [26] like architecture. We train D-Net

with both artificial images generated by 3DMM with dif-

ferent poses/illumination conditions, and real images with

3D surfaces obtained by existing reconstruction algorithm-

s [8, 37, 35]. Our coarse model is superior to previous work-

s in that our coarse estimation leverages both 3DMM and

other state-of-the-art models, which allows D-Net to cap-

ture richer and denser details than previous coarse modules.

Surprisingly, with this simple change on training data, the

D-Net already obtains performance on par with most of the

state-of-the-art methods.

For the refinement model, we propose a fine-to-finer ar-

chitecture which consists of F-Net and Fr-Net. F-Net takes

as input the dense map obtained by D-Net and the original

face image. F-Net efficiently fuses the features from depth

maps and images for reconstruction. Although being more

accurate than D-Net, the output of F-Net still lack the a-

bility to capture the subtle structures and fine details like

forehead wrinkles, crows feet. To further enhance the de-

tails, we introduce the Fr-Net to estimate a depth displance-

ment (or residual) map with features from different layers

and different domains (i.e. depths and RGB images). Fr-

Net integrates the original color image into its input layer

and multi-resolution features from middle layers. We de-

sign multi-resolution hypercolumn blocks to gradually cor-

rect some local depth errors in different resolutions inspired

by the recent depth denoising work [38].

The main contributions of this paper are summarized as

follows,

• We propose a novel Dense-Fine-Finer architecture for

high-fidelity 3D face reconstruction. DF2Net decom-

poses the reconstruction into three cascaded stages,

and we introduce different training strategies together

with different datasets for each stage.

• We elaborately design a novel Fr-Net which effectively

integrates features from different levels and domains

with multi-resolution hypercolumn blocks. With the

Fr-Net, our DF2Net obtains state-of-the-art qualitative

performance in real-world images.

• We collect about 70k high quality image-depth pairs

for training 3D face reconstruction networks. We will

make this dataset with codes and models public after

the publication of this paper.

2. Related Works

Face reconstruction from a single image has been stud-

ied extensively in computer vision and computer graphics

communities. There are many methods try to handle the

intrinsic ambiguities in this problem. This paper mainly re-

views the relate methods in this section.

3DMM methods. The 3D morphable model (3DMM)

[4] is one of the most popular methods for the task of face

reconstruction from a single image [33, 36]. Though this

method achieves very impressive 3D face reconstruction

performance, 3DMM suffers from high computational cost-

s and requires manual manipulation to align the mean 3D

facial shape to the 2D facial image during initialization. To

solve this problem, Blanz et al [3] use a sparse set of facial

feature landmarks to initialize the 3D face shape. Similar-

ly, the Basel Face Model (BFM) [23] reconstructs 3D face

by regressing 2D facial landmarks via a principal compo-

nent regression (PCR) model. Though 3DMM can provide
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Figure 2: The architecture of our proposed network

whole 3D face from a single image, the facial details like

folds and wrinkles may not be well captured since they are

not spanned by the principal components. Our proposed

method uses image-depth pairs synthesized by 3DMM and

several state-of-the-art reconstruction methods to train a

coarse dense reconstruction network. Perhaps the most re-

lated work is the Image-to-Image Translation method [28]

which estimates the depth map with image-depth pairs syn-

thesized by 3DMM. Our method differs from [28] in that i)

our synthetic image-depth pairs are richer which lead to bet-

ter coarse 3D face model, ii) we elaborately design a fine-

to-finer refinement architecture for detailed reconstruction.

Shape-from-Shading (SFS) based methods. SFS [41]

is a computer vision technique that recovers the underly-

ing shape from shading variation in 2D images by image

rendering principle. Given the lighting coefficient and re-

flectance parameters, SFS method can revover subtle ge-

ometry details with a optimization process. However, SF-

S is a typical ill-posed problem with well-known ambigu-

ities such as the convex/concave ambiguity [24]. Solving

such ambiguities for face reconstruction requires handling

priors on the facial surface, i.e. SFS needs a reliable ini-

tial 3D shape. For example, Kemelmacher-Shlizerman and

Basri [21] use a single 3D reference to align input facial

image manually. With this prior information, a shape from

shading method was then exploited to recover the geome-

try. The characteristic of facial symmetry has been used by

various researchers to constrain the problem [43, 42, 31].

As an efficient and simple low-dimensional representation

method, 3DMM is also widely used as an initial facial shape

[27, 10, 20, 22, 32]. In this paper, we use the dense recon-

struction of D-Net as an initial shape rather than the low-

dimensional parametric 3DMM-based shape.

Deep learning based methods. With the help of convo-

lution neural networks, many deep learning based 3D face

reconstruction methods get admirable results. Deep learn-

ing based methods can be classified as coarse face recon-

struction and dense face reconstruction. For coarse face

reconstruction, face landmarks or 3DMM parameters are

treated as supervision signal for traning. Patrik et al. [14]

apply a L2 cost function between 2D facial landmarks and

plane projection of estimated 3D landmarks for shape fit-

ting. Yang et al [39] proposed weighted landmark regres-

sion method for 3DMM shape fitting. Yao et al. [8] en-

code 3D coordinates of vertexs into a position map, and

process 2D position map with convlutional nueral network

learning. Dense reconstruction methods predict dense shape

variation rather than low-dimensional parameters. Tran et

al. [35] estimate a coarse 3D face shape which acts as a

foundatioin, and then separately layer this foundation shape

with details represented by a bump map. Huynh et al [15]

produce plausible facial detail at medium and fine scales

from texture maps with learning-based approach. Feng et

al [8] train their proposed FaceLFnet with light field im-

ages to reconstruct 3D faces. Richardson et al [25] use

a coarse-to-fine network to learn detailed face reconstruc-

tion, where a CoarseNet is applied to estimate coarse shape

with 3DMM model and a FineNet is trained to refine de-
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tails of a 3D face with shape-from-shading based unsuper-

vised constraints. There are many other algorithms which

use coarse-to-fine architecture to learn detailed face recon-

struction [28, 22, 20, 11, 27]. Our method differs from these

coarse-to-fine works by the elaborately-designed fine-to-

finer refinement model which allows high-fidelity 3D face

reconstruction.

3. Methods

In this section, we first overview our Dense-Fine-Finer

(DF2Net) framework for high-fidelity 3D face reconstruc-

tion, and then introduce our training data, and finally we

respectively present its architecture, components and train-

ing details.

3.1. Overview of Our DF2Net

As illustrated in Figure 2, our proposed DF2Net frame-

work consists of three sub-networks, namely a Dense depth

Network (D-Net), a Fine network (F-Net) and a Finer net-

work (Fr-Net). A face image is first input to the D-Net for

dense but rough 3D reconstruction. Then the output depth

map of D-Net along with the orignal image are fed into the

F-Net (a hypercolumn network) for refinement. The refined

depth map of F-Net and the multi-scale face images are

jointly processed with into our elaborately-designed Fr-Net

to estimate a residual depth map for finer detail reconstruc-

tion. We detail our training data and each components of

DF2Net in the following sections.

3.2. Training Data

Training data plays an essential role in deep learning

based methods. For 3D facial reconstruction, it is very d-

ifficult and time-costly to collect real face images together

their ground truth 3D shapes (usually capture with depth

devices). Current public 3D face datasets only include a

few hundreds of subjects, which are insufficient for training

deep networks with millions of parameters.

To address this problem, we construct three types of da-

ta which are elaborately designed for training in differen-

t stages of DF2Net. 1) 3D model synthetic dataset. We

generate different 3D facial shapes using 3DMM and ren-

der 2D image with these shapes, similar to existing methods

[28, 25]. Specifically, we generate identity, expression [6]

and texture basis elements randomly for constructing 3D

textured shapes. To make our method robust to illumina-

tion, we render 2D images under different light conditions.

We generate 20K 3D models with morphable model, and

project each 3D model to image plane with 3 different pos-

es which leads to 60K image-depth pairs. One problem of

using 3DMM is that it always lacks fine structures like wrin-

kles, in real images. To alleviate this problem, we introduce

another synthetic data: 2) 2D image synthetic dataset. We

collect 10K 2D face images from the Internet where 5K of

them include smooth faces (e.g faces of youth or makeup

woman) and the rest of them contain rich facial structures

(e.g. man or the old) . We obtain the 3D shapes of these

real face images by using previous reconstructing method-

s [8] and [35] (each method processes 5k images). Then

these reconstructed shapes are projected into frontal view.

Totally, we obtain 70K image-depth training pairs, which

are mainly used to train D-Net and F-Net. Several exam-

ples of image-depth pairs are shown in Figure 3. We exper-

imentally find the deep networks trained with the above two

datasets still meet difficulties in reconstructing facial shapes

with fine structures (e.g faces of old man). To address this

problem, we further construct the third dataset, 3) 2D im-

age dataset with rich details. Specifically, we select 5K face

images with rich facial details from the CACD dataset [5].

The details of these facial images are hard to reconstruct by

existing methods. We use them for the unsupervised train-

ing of Fr-Net. A summarization of training data for each

component of our DF2Net is presented in Table 1.

3.3. Dense Network

D-Net is a pixel-level mapping network, which gener-

ates target depth maps from input images. We choose U-

Net [26] as its architecture due to its impressive perfor-

mance in many related pixel-wise tasks [18, 17, 28, 11].

Compared to previous coarse models [25, 22, 11] which

regress the low-dimensional representation of 3DMM, our

D-Net learns to recover dense depth information directly.

Training. We use two loss functions to train D-Net with

the image-depth pairs from both the 3D model synthetic

dataset and the 2D image synthetic dataset constructed in

Section 3.1. The first loss is a pixel-wise L1 loss between

ground-truth and predicted depth maps,

Lrec = ‖Dgt −Dpre‖1 , (1)

where Dgt is the ground-truth depth, and Dpre is the pre-

dicted depth. As shown in [28], L1 loss often lead to over-

sharpen predictions in local areas. Hence, we also use an-

other L1 constraint on the normals of depth maps with the

formulation as follows,

Lnor = ‖Ngt −Npre‖1 , (2)

where Ngt and Npre are normals of gound-truth depth and

prediction depth, respectively. For the computation of nor-

mal vectors, we take surrounding 4 pixels into account.

During training, the loss weight of Lrec is set to 10 by de-

fault, and to 0.1 for Lnor.

3.4. Fine Network

With the large amout of training data and powerful C-

NN, our D-Net already provides 3D surface with coarse

shapes such as large wrinkles and facial parts. However,
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Figure 3: Examples of training images and their target depth maps.The first row is generated by 3DMM, the second row by

state-of-the-art (SOA) methods [8, 35], and the third row selected from CACD

Table 1: The summarization of training data for different stages in DF2Net.

3D model synthetic da-

ta:60K from 3DMM

2D image reconstructed

data:10K from the inter-

net reconstructed by [8] and

[35]

Fine facial images:5K from

CACD [5]

D-Net X X

F-Net X

Fr-Net X

some fine details of realistic faces are not able to recon-

structed due to the lack of fine and accurate details in the

synthesized training data. To reconstruct the fine details,

we introduce fine reconstruction network (F-net) and resort

to a SFS-based refinement approach which is demonstrated

as an effective way to recover high-frequency information

of geometry [25, 11].

The fundamental of SFS-based refinement method is an

image formation term, which illustrates the connection be-

tween the reconstructed depth map and the input intensity

image. The image formation term is usually defined as fol-

lows,

Î(l, N,R) = R

9
∑

i=1

liHi(N), (3)

where Î is reflected irradiance, R is the albedo map esti-

mated by the SfSNet [30] in our work, Hi(N) is the basis

function of spherical harmonics (SH) obtained by unit depth

normal N . l is the second-order SH coefficients, which can

be obtained by solving the following least squared problem,

l∗ = argmin
l

∥

∥

∥

∥

∥

R

9
∑

i=1

liHi(Ngt)− I

∥

∥

∥

∥

∥

2

2

, (4)

where I is the input intensity image. Ngt is the normal of

ground-truth depth.

Training. F-Net takes both RGB and depth as input and

has a hypercolumn architecture, which allows to efficiently

fuse the output responses from different convolution layers

along the forward path. Similar architecture is also adopted

in [12, 25]. The detailed architecture is illustrated in Figure

2. Different from [12, 25], the input layer and the mid-

dle layer of F-Net integrate both depth and RGB features,

which is inspired by the recent depth denoising work [38].

In this way, F-Net can capture fine structures from both col-

or image domain and depth domain.

We use SFS refinement criterion to train F-Net with the

2D image synthetic dataset (Table 1). Given R and l∗, we

train the fine reconstruction network to predict a fine depth

map conditioned by for normal vectors. Denote the nor-

mal of a predicted depth map as Npre, we use the following

pixel-wise shading loss,

Lsh =
∥

∥

∥
Î(l∗, Npre, R)− I

∥

∥

∥

2

. (5)

Lsh penalizes the intensity difference between the ren-

dered image and the original input image, and drives the

2319



network to recover fine details. For training F-Net, we use

both Lrec and Lsh with the weight 10 and 0.1, respectively.

Experimental results demonstrate that our F-net can learn

fine facial details beyond the 3DMM and other reconstruc-

tion method used for data generation.

3.5. Finer Network

Since the synthesized depths are used for training both

D-Net and F-Net, the reconstruction is more or less impact-

ed by the 3DMM and other data generation methods. To

get rid of the impact of these synthesized training image-

depth pairs, we further introduce a novel finer reconstruc-

tion network, i.e. Fr-Net, and train it with another 5K 2D

face images from CACD dataset [5] which contain compli-

cated geometries and are hard to be reconstructed by D-Net

and F-Net. We aim to reconstruct subtler details of 3D face

surface by Fr-Net.

As depicted in Figure 2, Fr-Net has two novel aspect-

s compared to previous reconstruction networks. As the

first aspect, it integrates the original color image of differ-

ent sizes at the input layer and several middle layers, which

is called multi-resolution hypercolumn blocks. In addition

to RBG images, F-Net aslo takes as input the depth map

estimated by F-Net. As the CNN feature map resolution de-

creases to 1/4 and 1/2, we integrate similar blocks with the

input layer where the RBG images are resized according the

sizes of feature maps. By integrating the multi-resolution

images step-by-step, we can gradually correct local depth

errors with contexts of different resolutions. Similar block

proves efficient in depth denoising [38]. As the second as-

pect, we add a residual connection from the input depth map

to the output depth map, which ensures our Fr-Net retains

the similar geometry as the input depth. In this way, Fr-Net

learns to regress a displacement/residual depth map which

makes training easier and improves generalization [13].

Training. Using the collected 5K images, we train our

Fr-Net with both reconstruction and SFS losses, similar as

F-Net. Specifically, we use both Lrec and Lsh with the loss

weight 1 and 100, respectively. Here, the “ground-truth”

depth used in Lrec and Lsh is approximated by the output

depth map of F-Net.

3.6. Implementation Details

DF2Net, which is naturally implemented in a cascaded

way, can be trained end-to-end stochastic gradient descent

(SGD). Since the SFS process is time-consuming, we im-

plement and run it on GPU devices. As D-Net does not

include the SFS process, we train our DF2Net in a 3-step

scheme.

In the first step, we train the D-Net with all the above-

mentioned 70K image-depth pairs with a batchsize of 64.

In the second step, we fix D-Net, and train the F-Net with a

batchsize of 8. Similarly, we fix D-Net and F-Net, and train

Image PRNet [8] ExtremeNet[35] Ours

Figure 4: Qualitative comparison for our DF2Net, PR-

Net [8], and ExtremeNet [35]. Note that PRNet [8] and

ExtremeNet [35] are used to generate a part of our training

data. Best viewed in PDF

the Fr-Net with a batchsize of 8 in the last step. It is worth

noting that the small batchsize in the last two steps is owing

to the SFS implementation on GPUs. The sizes of input

image and output depth map are fixed to 512×512. For all

the steps, we initialize the learning rate to 0.001, and divide

it by 10 at epoch 8 and 9, and we stop training after the

10 epoch. We implement the deep networks with Pytorch

toolbox, and run training in 4 NVIDIA Tesla K40c GPUs.

4. Experiments

In this section, we first conduct an experimental explo-

ration for each module of DF2Net, and then compare to sev-

eral state-of-the-art singe image based 3D face reconstruc-

tion methods in both qualitative and quantaitative aspects.

4.1. Exploration of DF2Net

Since PRNet [8] and ExtremeNet [35] are used to gen-

erate the ground-truth depth maps of real-world images for

our training, we conduct a comparison between our DF2Net

and these two methods to check our improvement upon

them. Figure 4 shows a qualitative comparison. PRNet us-

es a simple encoder-decoder network to directly regress the

3D facial structure and dense alignment with training data

generated by 3DMM. As can be seen in Figure 4, it is only

good at reconstructing the smooth 3D facial surfaces. As a

method which can capture some local structure with relative
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(a) (b) (c) (d)

Figure 5: Qualitative evaluation of alternative dense-fine-

finer architectures. From left to right: (a) original images,

(b) results of stacking two F-Net, (c) results of Fr-Net with-

out multi-resolution hypercolumn blocks, and (d) results of

our default DF2Net. Best viewed in PDF.

Image Coarse [28] D-Net F-Net Fr-Net

Figure 6: Our qualitative reconstruction results in different

stages. Best viewed in PDF.

high speed, ExtremeNet is chosen as another data genera-

tion method since it can provide facial details and is robust

to extreme conditions such as occlustions and large poses.

Still, our DF2Net is obviously superior to ExtremeNet [35]

in reconstructing facial details such as cheek wrinkles.

Alternative dense-fine-finer architectures. We also

consider two another dense-fine-finer architectures in our

work, namely i) stacking two F-Net and ii) Fr-Net without

multi-resolution hypercolumn blocks. The first one means

that the default Fr-Net of our DF2Net is replaced by an-

other F-Net without skip connection. The second one uses

the same Fr-Net architecture without multi-resolution mod-

ule. The training data of these alternative architectures is

the same as the one of default DF2Net. Figure 5 shows

a qualitative comparison between our default DF2Net and

the alternative architectures. Several observations can be

concluded as follows. First, although these alternative ones

provide sufficient facial details, our default DF2Net recon-

structs more accurate subtle details such as forehead wrin-

kles and crow’s feet. Second, the second alternative one

performs better than the naive stacking one which demon-

strates the effectiveness of the skip connection. Last but not

the least, the superiority of default DF2Net upon the second

alternative one indicates that the multi-resolution hypercol-

umn blocks are helpful for reconstructing subtle facial de-

tails.

Qualitative results in each stage of DF2Net. To fur-

ther investigate the reconstruction process of DF2Net, we

present the qualitative results in each stage in Figure 6. As

shown in Figure 6, the reconstructed 3D faces include in-

creasing details from D-Net to Fr-Net. Surprisingly, D-Net

already obtains detailed 3D face reconstruction on par with

several state-of-the-art methods [7, 11, 22, 25, 28], see the

results in Figure 7. Though F-Net provides more subtle de-

tails in cheeks than D-Net, both D-Net and F-Net are lim-

ited by the generated ground truth of training data. In the

finer reconstruction stage, richer details like forehead wrin-

kles and crow’s feet are reconstructed thanks to elaborately-

designed Fr-Net and its training strategy.

Since [28] uses the same U-Net to estimate a dense depth

as its coarse model, we also illustrate the coarse results of

[28] in Figure 6. Our coarse results (outputs of D-Net) are

superior to [28], thanks to the large-scale mixed training

data from both 3DMM and state-of-the-art algorithms.

4.2. Comparison to the state of the art

Qualitative Comparison. We compare our DF2Net to

several state-of-the-art algorithms[25, 11, 7, 22, 28] in Fig-

ure 7. The results of [7] are mostly limited by 3DMM s-

ince it only reconstructs the smooth surfaces. Compared to

these coarse-to-fine methods [25, 11, 22, 28], our DF2Net

captures complete shapes including teeth, and reconstructs

finer details such as beard and crow’s feet.

Quantitative Comparison We conduct a quantitative

analysis on the popular BU-3DFE dataset [40] which con-

tains facial images aligned with ground truth 3D shape. The

BU-3DFE dataset includs 100 subjects, and we conduct the

evaluation on all subjects.

We use the Dlib toolbox to detect the landmark with

68 points, and create a binary mask according to the

outer points to represent the valid pixels in the evalua-

tion. Following [28], we apply Random Sample Concensus

(RANSAC) approach [9] to normalize the estimated depth

to ground truth. We compute the absolute depth error and

evaluate its mean, standard deviation, median, and the aver-

age 90% largest error. The quantitative comparison between

our method and other state-of-the-art algorithms is present-

ed in Table 2. As shown in Table 2, our method achieves
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Image [25] [11] [7] [22] [28] Ours

Figure 7: Qualitative comparison between our DF2Net and several state-of-the-art methods.

Mean Err. Std Err. Median Err. 90% Err.

SFS [21] 3.89 4.14 2.94 7.34

HPEN [44] 3.85 3.23 2.93 7.91

Coarse-Fine Net[25] 3.61 2.99 2.72 6.82

Pix2vertex [28] 3.51 2.69 2.65 6.59

Ours 3.37 2.59 2.53 6.41

Table 2: Quantitative comparison results on the BU-3DFE

Dataset.

lower depth error than the other algorithms. We also give

a analysis about absolute error distribution of whole face,

which depicted in Fig.8.

5. Conclusion

This paper proposes a deep Dense-Fine-Finer Net-

work (DF2Net) to address the challenging problem of

high-fidelity 3D face reconstruction from a single image.

DF2Net is composed of three modules, namely D-Net,

F-Net, and Fr-Net. It progressively refines the subtle facial

details such as small crow’s feet and wrinkles. We introduce

three types of data to train DF2Net with different training

strategies. We also evaluate several alternative choices

for the Dense-Fine-Finer framework to demonstrate the

efficiency of our DF2Net. DF2Net achieves performance

superior or comparable to state-of-the-art methods in

Image Ours Ours [25] [21] [44]

Figure 8: Comparison of error heat maps in percentile of

ground truth depth between our DF2Net and several state-

of-the-art methods.

qualitative and quantitative analyses on real-world images

and BU-3DFE.
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