
Deep Floor Plan Recognition Using a Multi-Task Network

with Room-Boundary-Guided Attention

Zhiliang Zeng Xianzhi Li Ying Kin Yu Chi-Wing Fu

The Chinese University of Hong Kong

{zlzeng,xzli,cwfu}@cse.cuhk.edu.hk ykyu.hk@gmail.com

Abstract

This paper presents a new approach to recognize ele-

ments in floor plan layouts. Besides walls and rooms, we

aim to recognize diverse floor plan elements, such as doors,

windows and different types of rooms, in the floor layouts.

To this end, we model a hierarchy of floor plan elements and

design a deep multi-task neural network with two tasks: one

to learn to predict room-boundary elements, and the other

to predict rooms with types. More importantly, we formu-

late the room-boundary-guided attention mechanism in our

spatial contextual module to carefully take room-boundary

features into account to enhance the room-type predictions.

Furthermore, we design a cross-and-within-task weighted

loss to balance the multi-label tasks and prepare two new

datasets for floor plan recognition. Experimental results

demonstrate the superiority and effectiveness of our net-

work over the state-of-the-art methods.

1. Introduction

To recognize floor plan elements in a layout requires the

learning of semantic information in the floor plans. It is

not merely a general segmentation problem since floor plans

present not only the individual floor plan elements, such as

walls, doors, windows, and closets, etc., but also how the

elements relate to one another, and how they are arranged

to make up different types of rooms. While recognizing

semantic information in floor plans is generally straightfor-

ward for humans, automatically processing floor plans and

recognizing layout semantics is a very challenging problem

in image understanding and document analysis.

Traditionally, the problem is solved based on low-level

image processing methods [14, 2, 7] that exploit heuristics

to locate the graphical notations in the floor plans. Clearly,

simply relying on hand-crafted features is insufficient, since

it lacks generality to handle diverse conditions.

Recent methods [11, 5, 20] for the problem has begun to

explore deep learning approaches. Liu et al. [11] designed a

Figure 1. Our network is able to recognize walls of nonuniform

thickness (see boxes 2, 4, 5), walls that meet at irregular junctions

(see boxes 1, 2), curved walls (see box 3), and various room types

in the layout; see Figure 2 for the legend of the color labels.

convolutional neural network (CNN) to recognize junction

points in a floor plan image and connected the junctions to

locate walls. The method, however, can only locate walls

of uniform thickness along XY-principal directions in the

image. Later, Yamasaki et al. [20] adopted a fully convo-

lutional network to label pixels in a floor plan; however,

the method simply uses a general segmentation network to

recognize pixels of different classes and ignores the spatial

relations between floor plan elements and room boundary.

This paper presents a new method for floor plan recog-

nition, with a focus on recognizing diverse floor plan ele-

ments, e.g., walls, doors, rooms, closets, etc.; see Figure 1

for two example results and Figure 2 for the legend. These

elements are inter-related graphical elements with structural

semantics in the floor plans. To approach the problem, we

model a hierarchy of labels for the floor plan elements and

design a deep multi-task neural network based on the hi-

erarchy. Our network learns shared features from the in-

put floor plan and refines the features to learn to recog-

nize individual elements. Specifically, we design the spatial

contextual module to explore the spatial relations between

19096



elements via the room-boundary-guided attention mecha-

nism to avoid feature blurring, and formulate the cross-and-

within-task weighted loss to balance the labels across and

within tasks. Hence, we can effectively explore the spatial

relations between the floor plan elements to maximize the

network learning; see again the example results shown in

Figure 1, which exhibit the capability of our network.

Our contributions are threefold. First, we design a deep

multi-task neural network to learn the spatial relations be-

tween floor plan elements to maximize network learning.

Second, we present the spatial contextual module with the

room-boundary-guided attention mechanism to learn the

spatial semantic information, and formulate the cross-and-

within-task weighted loss to balance the losses for our tasks.

Lastly, we take the datasets from [11] and [10], collect addi-

tional floor plans, and prepare two new datasets with labels

on various floor plan elements and room types.

2. Related Work

Traditional approaches recognize elements in floor plan

based on low-level image processing. Ryall et al. [16]

applied a semi-automatic method for room segmentation.

Other early methods [1, 6] locate walls, doors, and rooms

by detecting graphical shapes in the layout, e.g., line, arc,

and small loop. Or et al. [15] converted bitmapped floor

plans to vector graphics and generated 3D room models.

Ahmed et al. [2] separated text from graphics and extracted

lines of various thickness, where walls are extracted from

the thicker lines and symbols are assumed to have thin lines;

then, they applied such information to further locate doors

and windows. Gimenez et al. [7] recognized walls and

openings using heuristics, and generated 3D building mod-

els based on the detected walls and doors.

Using heuristics to recognize low-level elements in floor

plans is error-prone. This motivates the development of ma-

chine learning methods [4], and very recently, deep learning

methods [5, 11, 20] to address the problem. Dodge et al. [5]

used a fully convolutional network (FCN) to first detect the

wall pixels, and then adopted a faster R-CNN framework

to detect doors, sliding doors, and symbols such as kitchen

stoves and bathtubs. Also, they employed a library tool to

recognize text to estimate the room size.

Liu et al. [11] trained a deep neural network to first iden-

tify junction points in a given floor plan image, and then

used integer programming to join the junctions to locate the

walls in the floor plan. Due to the Manhattan assumption,

the method can only handle walls that align with the two

principal axes in the floor plan image. Hence, it can recog-

nize layouts with only rectangular rooms and walls of uni-

form thickness. Later, Yamasaki et al. [20] trained a FCN

to label the pixels in a floor plan with several classes. The

classified pixels formed a graph model and were taken to re-

trieve houses of similar structures. However, their method

Figure 2. Floor plan elements organized in a hierarchy.

adopts a general segmentation network, where it simply rec-

ognizes pixels of different classes independently, thus ig-

noring the spatial relations among classes in the inference.

Compared with the recent works, our method has sev-

eral distinctive improvements. Technical-wise, our method

simultaneously considers multiple floor plan elements in the

network; particularly, we take their spatial relationships into

account and design a multi-task approach to maximize the

learning of the floor plan elements in the network. Result-

wise, our method is more general and capable of recogniz-

ing nonrectangular room layouts and walls of nonuniform

thickness, as well as various room types; see Figure 2.

Recently, there are several other works [22, 9, 24, 21,

18] related to room layouts, but they focus on a different

problem, i.e., to reconstruct 3D room layouts from photos.

3. Our Method

3.1. Goals and Problem Formulation

The objectives of this work are as follows. First, we aim

to recognize various kinds of floor plan elements, which are

not only limited to walls but also include doors, windows,

room regions, etc. Second, we target to handle rooms of

nonrectangular shapes and walls of nonuniform thickness.

Last, we aim also to recognize the rooms types in floor

plans, e.g., dining room, bedroom, bathroom, etc.

Achieving these goals requires the ability to process the

floor plans and find multiple nonoverlapping but spatially-

correlated elements in the plans. In our method, we first

organize the floor plan elements in a hierarchy (see Fig-

ure 2), where pixels in a floor plan can be identified as inside

or outside, while the inside pixels can be further identified

as room-boundary pixels or room-type pixels. Moreover,

the room-boundary pixels can be walls, doors, or windows,

whereas room-type pixels can be the living room, bathroom,

bedroom, etc.; see the legend in Figure 2. Based on the hi-

9097



Figure 3. (a) Schematic diagram illustrating our deep multi-task neural network. We have a VGG encoder to extract features from the input

floor plan image. These features are shared for two subsequent tasks in the network: one for predicting the room-boundary pixels (wall,

door, and windows) and the other for predicting the room-type pixels (dining room, bedroom, etc.). Most importantly, these two tasks

have separate VGG decoders. We design the room-boundary-guided attention mechanism (blue arrows) to make use of the room-boundary

features from the decoder in the upper branch to help the decoder in the lower path to learn the contextual features (red boxes) for predicting

the room-type pixels. (b) Details of the VGG encoder and decoders. The dimensions of the features in the network are shown.

erarchy, we design a deep multi-task network with one task

to predict room-boundary elements and the other to predict

room-type elements. In particular, we formulate the spa-

tial contextual module to explore the spatial relations be-

tween elements, i.e., using the features learned for the room

boundary to refine the features for learning the room types.

3.2. Network Architecture

Overall network architecture. Figure 3(a) presents the

overall network architecture. First, we adopt a shared VGG

encoder [17] to extract features from the input floor plan im-

age. Then, we have two main tasks in the network: one for

predicting the room-boundary pixels with three labels, i.e.,

wall, door, and window, and the other for predicting the

room-type pixels with eight labels, i.e., dining room, wash-

room, etc.; see Figure 2 for details. Here, room boundary

refers to the floor-plan elements that separate room regions

in floor plans; it is not simply low-level edges nor the outer-

most border that separates the foreground and background.

Specifically, our network first learns the shared feature,

common for both tasks, then makes use of two separate

VGG decoders (see Figure 3(b) for the connections and fea-

ture dimensions) to perform the two tasks. Hence, the net-

work can learn additional features for each task. To max-

imize the network learning, we further make use of the

room-boundary context features to bound and guide the dis-

covery of room regions, as well as their types; here, we

design the spatial contextual module to process and pass

the room-boundary features from the top decoder (see Fig-

ure 3(a)) to the bottom decoder to maximize the feature in-

tegration for room-type predictions.

Spatial contextual module. Figure 4 shows the network

architecture of the spatial contextual module. It has two

branches. The input to the top branch is the room-boundary

features from the top VGG decoder (see the blue boxes in

Figures 3(a) & 4), while the input to the bottom branch is

the room-type features from the bottom VGG decoder (see

the green boxes in Figures 3(a) & 4). See again Figure 3(a):

there are four levels in the VGG decoders, and the spatial

contextual module (see the dashed arrows in Figure 3(a))

is applied four times, once per level, to integrate the room-

boundary and room-type features from the same level (i.e.,

in the same resolution) and generate the spatial contextual

features; see the red boxes in Figures 3(a) & 4.

• In the top branch, we apply a series of convolutions to

the room-boundary feature and reduce it to a 2D fea-

ture map as the attention weights, denoted as am,n at

pixel location m,n. The attention weights are learned

through the convolutions rather than being fixed.

• Furthermore, we apply the attention weights to the

bottom branch twice; see the “X” operators in Fig-

ure 4. The first attention is applied to compress the

noisy features before the four convolutional layers with

direction-aware kernels, while the second attention is

applied to further suppress the blurring features. We

call it the room-boundary-guided attention mechanism

since the attention weights are learned from the room-

boundary features. Let fm,n as the input feature for

the first attention weight am,n and f ′

m,n as the output,

the X operation can be expressed as

f ′

m,n = am,n · fm,n . (1)

• In the bottom branch as shown in Figure 4, we first ap-

ply a 3 × 3 convolution to the room-type features and

then reduce it into a 2D feature map. After that, we ap-

ply the first attention to the 2D feature map followed by

four separate direction-aware kernels (horizontal, ver-

tical, diagonal, and flipped diagonal) of k unit size to

9098



Figure 4. Our spatial contextual module with the room-boundary-guided attention mechanism, which leverages the room-boundary features

to learn the attention weights for room-type prediction. In the lower branch, we use convolutional layers with four different direction-aware

kernels to generate features for integration with the attention weights and produce the spatial contextual features (in red; see also Figure 3).

Here “C” denotes concatenation, while “X” and “+” denote element-wise multiplication and addition, respectively.

further process the feature. Taking the horizontal ker-

nel as an example, our equation is as follows:

hm,n =
∑

k

(αm−k,n · f ′

m−k,n + αm,n · f ′

m,n

+ αm+k,n · f ′

m+k,n),

(2)

where hm,n is the contextual features along the hori-

zontal direction; f ′

m,n is the input feature (see Eq. (1));

and α is the weight. In our experiments, we set α to 1.

• In the second attention, we further apply the attention

weights (am,n) to integrate the aggregated features:

f ′′

m,n = am,n · (hm,n + vm,n + dm,n + d′m,n), (3)

where vm,n, dm,n, and d′m,n denotes the contextual

features along the vertical, diagonal, and flipped di-

agonal directions, respectively, after the convolutions

with the direction-aware kernels.

3.3. Network Training

Datasets. As there are no public datasets with pixel-wise

labels for floor plan recognition, we prepared two datasets,

namely R2V and R3D. Specifically, R2V has 815 images,

all from Raster-to-Vector [11], where the floor plans are

mostly in rectangular shapes with uniform wall thickness.

For R3D, besides the original 214 images from [10], we

further added 18 floor plan images of round-shaped layouts

to the data. Compared with R2V, most room shapes in R3D

are irregular with nonuniform wall thickness. Here, we used

Photoshop to manually label the image regions in R2V and

R3D for walls, doors, bedrooms, etc. Note that we used

the same label for some room regions, e.g., living room and

dining room (see Figure 2), since they usually locate just

next to one another without walls separating them. Such

a situation can be observed in both datasets. Second, we

followed the GitHub code in Raster-to-Vector [11] to group

room regions, so that we can compare with their results.

For the train-test split ratio, we followed the original pa-

per [11] to split R2V into 715 images for training and 100

images for testing. For R3D, we randomly split it into 179

images for training and 53 images for testing.

Cross-and-within-task weighted loss. Each of the two

tasks in our network involves multiple labels for various

room-boundary and room-type elements. Since the num-

ber of pixels varies for different elements, we have to bal-

ance their contributions within each task. Also, there are

generally more room-type pixels than room-boundary pix-

els, so we have to further balance the contributions of the

two tasks. Therefore, we design a cross-and-within-task

weighted loss to balance between the two tasks as well as

among the floor plan elements within each task.

• Within-task weighted loss. Here, we define the within-

task weighted loss in an entropy style as

Ltask = wi

C∑

i=1

−yi log pi, (4)

where yi is the label of the i-th floor plan element in the

floor plan and C is the number of floor plan elements in

the task; pi is the prediction label of the pixels for the

i-th element (pi ∈ [0, 1]); and wi is defined as follows:

wi =
N̂ − N̂i∑C

j=1
(N̂ − N̂j)

, (5)

where N̂i is the total number of ground-truth pixels for

the i-th floor plan element in the floor plan, and N̂ =∑C

i=1
N̂i, which means the total number of ground-

truth pixels over all the C floor plan elements.

• Cross-and-within-task weighted loss: Lrb and Lrt de-

notes the within-task weighted losses for the room-

boundary and room-type prediction tasks computed

from Eq. (4), respectively. Nrb and Nrt are the total

number of network output pixels for room boundary

9099



Figure 5. Visual comparison of floor plan recognition results produced by our method (c&d) and by others (e-g) on the R2V dataset; note

that we have to use rectangular floor plans for comparison with Raster-to-Vector [11]. Symbol † indicates the postprocessing step.

Table 1. Comparison with Raster-to-Vector [11] on the R2V dataset. Symbol † indicates our method with postprocessing (see Section 4.1).

overall accu
class accu

Wall Door & Window Closet Bathroom & etc. Living room & etc. Bedroom Hall Balcony

Raster-to-Vector [11] 0.84 0.53 0.58 0.78 0.83 0.72 0.89 0.64 0.71

Ours 0.88 0.88 0.86 0.80 0.86 0.86 0.75 0.73 0.86

Ours† 0.89 0.88 0.86 0.82 0.90 0.87 0.77 0.82 0.93

and room type, respectively. Then, the overall cross-

and-within-task weighted loss L is defined as:

L = wrbLrb + wrtLrt, (6)

where wrb and wrb are weights given by

wrb =
Nrt

Nrb +Nrt

and wrt =
Nrb

Nrb +Nrt

. (7)

4. Experiments

4.1. Implementation Details

Network training. We trained our network on an

NVIDIA TITAN Xp GPU and ran 40k iterations in total.

We employed Adam optimizer to update the parameters and

used a fixed learning rate of 1e-4 to train the network. The

resolution of the input floor plan is 512 × 512, for keeping

the thin and short lines (such as the walls) in the floor plans.

Moreover, we used a batch size of one without using batch

normalization, since it requires at least 32 batch size [19].

Also, we did not use any other normalization method. For

other existing methods in our comparison, we used the orig-

inal hyper-parameters reported in their original papers to

train their networks. To obtain the best recognition results,

we further evaluated the result every five training epochs

and reported only the best one.

Network testing. Given a test floor plan image, we feed

it to our network and obtain its output. However, due

to the per-pixel prediction, the output may contain cer-

tain noise, so we further find connected regions bounded

by the predicted room-boundary pixels to locate room re-

gions, count the number of pixels of each predicted room

type in each bounded region, and set the overall predicted

type as the type of the largest frequency (see Figure 5(c)

& (d)). Our code and datasets are available at: https:

//github.com/zlzeng/DeepFloorplan.

4.2. Qualitative and Quantitative Comparisons

Comparing with Raster-to-Vector. First, we compared

our method with Raster-to-Vector [11], the state-of-the-art

method for floor plan recognition. Specifically, we used im-

ages from the R2V dataset to train its network and also our

network. To run Raster-to-Vector, we used its original la-

bels (which are 2D corner coordinates of rectangular bound-

9100



Figure 6. Visual comparison of floor plan recognition results produced by our method (c&d) and others (e-f) on the R3D dataset. Symbol

† indicates our method with postprocessing (see Section 4.1).

ing boxes), while for our network, we used per-pixel labels.

Considering that the Raster-to-Vector network can only out-

put 2D corner coordinates of bounding boxes, we followed

the procedure presented in [11] to convert its bounding box

outputs to per-pixel labels to facilitate comparison with our

method; please refer to [11] for the procedural details.

Figure 5 (c-e) shows visual comparisons between our

method and Raster-to-Vector. For our method, we provide

both results with (denoted with †) and w/o postprocessing.

For Raster-to-Vector, it has already contained a simple post-

processing step to connect room regions. Comparing the re-

sults with the ground truths in (b), we can see that Raster-to-

Vector tends to have poorer performance on room-boundary

predictions, e.g., missing even some room regions. Our

results are more similar to the ground truths, even with-

out postprocessing. For the R3D dataset, it contains many

nonrectangular room shapes, so Raster-to-Vector performed

badly with many missing regions, due to its Manhattan as-

sumption; thus, we did not report the comparisons on R3D.

For quantitative evaluation, we adopted two widely-used

metrics [13], i.e., the overall pixel accuracy and the per-

class pixel accuracy:

overall accu =

∑
i Ni∑
i N̂i

and class accu(i) =
Ni

N̂i

, (8)

where N̂i and Ni are the total number of the ground-truth

pixels and the correctly-predicted pixels for the i-th floor

plan element, respectively. Table 1 shows the quantitative

comparison results on the R2V dataset. From the results, we

can see that our method achieves higher accuracies for most

floor plan elements, and the postprocessing could further

improve our performance.

Comparing with segmentation networks. To evaluate

how general segmentation networks perform for floor plan

recognition, we further compare our method with two recent

segmentation networks, DeepLabV3+ [3] and PSPNet [23].

For a fair comparison, we trained their networks, as well

as our network, on the R2V dataset and also on the R3D

dataset, and adjusted their hyper-parameters to obtain the

best recognition results. Figures 5 & 6 present visual com-

parisons with PSPNet and DeepLabV3+ on testing floor

plans from R2V and R3D, respectively. Due to space limi-

tation, please see our supplementary material for results of

PSPNet and DeepLabV3+ with postprocessing. From the

figures, we can see that their results tend to contain noise,

especially for complex room layouts and small elements

like doors and windows. Since these elements are usually

the room boundary between room regions, so the results fur-

ther affect the room-type predictions. Please see the supple-

mentary material for more visual comparison results.

Table 2 reports the quantitative comparison results for

various methods with and without postprocessing, in terms

of the overall and per-class accuracy, on both R2V and

R3D datasets. Comparing with DeepLabV3+ and PSPNet,

our method performs better for most floor plan elements,

even without postprocessing, showing its superiority over

these general-purpose segmentation networks. Note that,

our postprocessing step assumes plausible room-boundary

predictions, so it typically fails to enhance results with poor

room-boundary predictions; see the results in Figure 6.

9101



Table 2. Comparison with DeepLabV3+ and PSPNet. Besides the class accuracy, we further followed the GitHub code of [13] to compute

the mean IoU metric; see the last row. The values inside () indicate the performance after postprocessing. Note that the R2V dataset

contains floor plans that are mostly in rectangular shapes, while the R3D dataset contains a much richer variety shape of floor plans.

R3D R2V

Ours DeepLabV3+ [3] PSPNet [23] Ours DeepLabV3+ [3] PSPNet [23]

overall accu 0.89 (0.90) 0.85 (0.83) 0.84 (0.81) 0.89 (0.90) 0.88 (0.87) 0.88 (0.88)

class accu

wall 0.98 (0.98) 0.93 (0.93) 0.91 (0.91) 0.89 (0.89) 0.80 (0.80) 0.84 (0.84)

door-and-window 0.83 (0.83) 0.60 (0.60) 0.54 (0.54) 0.89 (0.89) 0.72 (0.72) 0.76 (0.76)

closet 0.61 (0.54) 0.24 (0.048) 0.45 (0.086) 0.81 (0.92) 0.78 (0.85) 0.80 (0.71)

bathroom & etc. 0.81 (0.78) 0.76 (0.57) 0.70 (0.50) 0.87 (0.93) 0.90 (0.90) 0.90 (0.84)

living room & etc. 0.87 (0.93) 0.76 (0.90) 0.76 (0.89) 0.88 (0.91) 0.85 (0.84) 0.83 (0.90)

bedroom 0.75 (0.79) 0.56 (0.40) 0.55 (0.40) 0.83 (0.91) 0.82 (0.65) 0.86 (0.92)

hall 0.59 (0.68) 0.72 (0.44) 0.61 (0.23) 0.68 (0.84) 0.55 (0.87) 0.78 (0.81)

balcony 0.44 (0.49) 0.08 (0.0027) 0.41 (0.11) 0.90 (0.92) 0.87 (0.45) 0.87 (0.82)

mean IoU 0.63 (0.66) 0.50 (0.44) 0.50 (0.41) 0.74 (0.76) 0.69 (0.67) 0.70 (0.69)

Comparing with an edge detection method. To show

that room boundaries (i.e., wall, door, and window) are not

merely edges in the floor plans but structural elements with

semantics, we further compare our method with a state-of-

the-art edge detection network [12] (denoted as RCF) on

detecting wall elements in floor plans. Here, we re-trained

RCF using our wall labels, separately on the R2V and R3D

datasets; since RCF outputs a per-pixel probability (∈ [0, 1])
on wall prediction, we need a threshold (denoted as tRCF)

to locate the wall pixels from its results. In our method,

we extract a binary map from our network output for walls

pixels; see Figure 2 (bottom) for an example.

To quantitatively compare the binary maps produced

by RCF and our method, we employ F-measure [8], a

commonly-used metric, which is expressed as

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
, (9)

where Precision and Recall are the ratios of the correctly-

predicted wall pixels over all the predicted wall pixels and

over all the ground-truth wall pixels, respectively. To ac-

count for the fact that we need tRCF to threshold RCF’s re-

sults, we extend Fβ into Fmax
β and Fmean

β in the evaluations:

Fmax
β =

1

M

M∑

p=1

F̃
p
β and Fmean

β =
1

MT

M∑

p=1

T−1∑

t=0

F
p
β (

t

T − 1
),

where M is the total number of testing floor plans; F̃
p
β is the

best Fβ on the p-th test input over T different tRCF ranged

in [0,1]; and F
p
β (

t
T−1

) is Fβ on the p-th test input using

tRCF = t
T−1

. In our implementation, as suggested by previ-

ous work [8], we empirically set β2=0.3 and T=256. Note

that Fmax
β and Fmean

β are the same for the binary maps pro-

duced by our method, since they do not require tRCF. Ta-

ble 3 reports the results, clearly showing that our method

outperforms RCF on detecting the walls. Having said that,

simply detecting edges in the floor plan images is inefficient

to floor plan recognition.

Table 3. Comparison with a state-of-the-art edge detection network

(RCF [12]) on detecting the walls in floor plans.

R2V R3D

Fmax
β Fmean

β Fmax
β Fmean

β

RCF [12] 0.62 0.56 0.68 0.58

Ours 0.85 0.85 0.95 0.95

Table 4. A comparison of our full network with Baseline network

#1 and Baseline network #2 using the R3D dataset.

Metrics
Methods

Baseline #1 Baseline #2 Our full network

overall accu 0.82 0.85 0.89

average class accu 0.72 0.72 0.80

4.3. Architecture Analysis on our Network

Next, we present an architecture analysis on our network

by comparing it with the following two baseline networks:

• Baseline #1: two separate single-task networks. The

first baseline breaks the problem into two separate

single-task networks, one for room-boundary predic-

tion and the other for room-type prediction, with two

separate sets of VGG encoders and decoders. Hence,

there are no shared features and also no spatial contex-

tual modules compared to our full network.

• Baseline #2: without the spatial contextual module.

The second baseline is our full network with the shared

features but without the spatial contextual module.

Table 4 shows the comparison results, where we trained

and tested each network using the R3D dataset [10]. From

the results, we can see that our full network outperforms the

two baselines, indicating that the multi-task scheme with

the shared features and the spatial contextual module both

help improve the floor plan recognition performance.

4.4. Analysis on the Spatial Contextual Module

An ablation analysis of the spatial contextual module

(see Figure 4 for details) is presented here.

9102



Figure 7. Reconstructed 3D models from our recognition results.

Table 5. Ablation study on the spatial contextual module.

Metrics

Methods

No attention
No direction Our complete

-aware kernels version

overall accu 0.86 0.87 0.89

average class accu 0.74 0.77 0.80

• No attention: the room-boundary-guided attention

mechanism (see the top branch in Figure 4) is removed

from the spatial contextual module.

• No direction-aware kernels: the convolution layers

with the four direction-aware kernels in the spatial con-

textual module are removed. Only the room-boundary-

guided attention mechanism is applied.

Table 5 shows the comparison results between the above

schemes and the full method (i.e., with both attention and

direction-aware kernels). Again, we trained and tested on

the R3D dataset [10]. From Table 5, we can see that the

spatial contextual module performs the best when equipped

with the attention mechanism and direction-aware kernels.

4.5. Discussion

Application: 3D model reconstruction. Here, we take

our floor plan recognition results to reconstruct 3D models.

Figure 7 shows several examples of the constructed 3D floor

plans. Our method is able to recognize walls of nonuniform

thickness and a wide variety of shapes. It thus enables us to

construct 3D room-boundary of various shapes, e.g., curved

walls in floor plan. One may notice that we only reconstruct

the walls in 3D in Figure 7. In fact, we may further recon-

struct the doors and windows, since our method has also

recognized them in the layouts. For more reconstruction

results, please refer to our supplementary material.

Limitations. Here, we discuss two challenging situations,

for which our method fails to produce plausible predictions.

First, our network may fail to differentiate inside and out-

side regions, in case there are some special room structures

in the floor plan, e.g., long and double-bended corridors.

Second, our network may wrongly recognize large icons

(e.g., compass icon) in floor plans as wall elements. To ad-

dress these issues, we believe that more data is needed for

the network to learn more variety of floor plans and the se-

mantics. Also, we may explore weakly-supervised learning

for the problem to avoid the tedious annotations; please see

the supplemental material for example failure cases.

5. Conclusion

This paper presents a new method for recognizing floor

plan elements. There are three key contributions in this

work. First, we explore the spatial relationship between

floor plan elements, model a hierarchy of floor plan ele-

ments, and design a multi-task network to learn to recognize

room-boundary and room-type elements in floor plans. Sec-

ond, we further take the room-boundary features to guide

the room-type prediction by formulating the spatial con-

textual module with the room-boundary-guided attention

mechanism. Further, we design a cross-and-within-task

weighted loss to balance the losses within each task and

across tasks. In the end, we prepared also two datasets

for floor plan recognition and extensively evaluated our net-

work in various aspects. Results show the superiority of our

network over the others in terms of the overall accuracy and

Fβ metrics. In the future, we plan to further extract the di-

mension information in the floor plan images, and learn to

recognize the text labels and symbols in floor plans.

Acknowledgments. We thank reviewers for valuable com-

ments, and Chen Liu, Chenxi Liu and Alexander Schwing

for providing their code and data. This work is supported

by the Research Grants Council of the Hong Kong Special

Administrative Region (CUHK 14203416 & 14201717).

9103



References

[1] Christian Ah-Soon and Karl Tombre. Variations on the

analysis of architectural drawings. In International Con-

ference on Document Analysis and Recognition (ICDAR).

IEEE, 1997. 2

[2] Sheraz Ahmed, Marcus Liwicki, Markus Weber, and An-

dreas Dengel. Improved automatic analysis of architectural

floor plans. In International Conference on Document Anal-

ysis and Recognition (ICDAR). IEEE, 2011. 1, 2

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

European Conference on Computer Vision (ECCV), 2018. 6,

7

[4] Lluı́s-Pere de las Heras, Joan Mas, Gemma Sanchez, and

Ernest Valveny. Wall patch-based segmentation in architec-

tural floorplans. In International Conference on Document

Analysis and Recognition (ICDAR). IEEE, 2011. 2

[5] Samuel Dodge, Jiu Xu, and Björn Stenger. Parsing floor

plan images. In International Conference on Machine Vision

Applications (MVA). IEEE, 2017. 1, 2

[6] Philippe Dosch, Karl Tombre, Christian Ah-Soon, and

Gérald Masini. A complete system for the analysis of archi-

tectural drawings. International Journal on Document Anal-

ysis and Recognition, 3(2):102–116, 2000. 2

[7] Lucile Gimenez, Sylvain Robert, Frédéric Suard, and Khal-

doun Zreik. Automatic reconstruction of 3D building models

from scanned 2D floor plans. Automation in Construction,

63:48–56, 2016. 1, 2

[8] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,

Zhuowen Tu, and Philip H. S. Torr. Deeply supervised salient

object detection with short connections. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 41(4):815–

828, 2018. 7

[9] Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz,

and Andrew Rabinovich. RoomNet: End-to-end room layout

estimation. In IEEE International Conference on Computer

Vision (ICCV), 2017. 2

[10] Chenxi Liu, Alex Schwing, Kaustav Kundu, Raquel Urtasun,

and Sanja Fidler. Rent3D: Floor-plan priors for monocular

layout estimation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. 2, 4, 7, 8

[11] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Fu-

rukawa. Raster-to-Vector: Revisiting floorplan transforma-

tion. In IEEE International Conference on Computer Vision

(ICCV), 2017. 1, 2, 4, 5, 6

[12] Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and

Xiang Bai. Richer convolutional features for edge detection.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017. 7

[13] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 6, 7

[14] Sébastien Macé, Hervé Locteau, Ernest Valveny, and Salva-

tore Tabbone. A system to detect rooms in architectural floor

plan images. In Proceedings of the 9th IAPR International

Workshop on Document Analysis Systems, 2010. 1

[15] Siu-Hang Or, Kin-Hong Wong, Ying-Kin Yu, and Michael

Ming-Yuan Chang. Highly automatic approach to architec-

tural floorplan image understanding and model generation.

In Proc. of Vision, Modeling, and Visualization 2005 (VMV-

2005), pages 25–32, 2005. 2

[16] Kathy Ryall, Stuart Shieber, Joe Marks, and Murray Mazer.

Semi-automatic delineation of regions in floor plans. In In-

ternational Conference on Document Analysis and Recogni-

tion (ICDAR). IEEE, 1995. 2

[17] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations (ICLR),

2015. 3

[18] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong

Chen. HorizonNet: Learning room layout with 1D represen-

tation and pano stretch data augmentation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2019. 2

[19] Yuxin Wu and Kaiming He. Group normalization. In Euro-

pean Conference on Computer Vision (ECCV), 2018. 5

[20] Toshihiko Yamasaki, Jin Zhang, and Yuki Takada. Apart-

ment structure estimation using fully convolutional networks

and graph model. In Proceedings of the 2018 ACM Workshop

on Multimedia for Real Estate Tech, 2018. 1, 2

[21] Shang-Ta Yang, Fu-En Wang, Chi-Han Peng, Peter Wonka,

Min Sun, and Hung-Kuo Chu. DuLa-Net: A dual-projection

network for estimating room layouts from a single RGB

panorama. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2019. 2

[22] Yinda Zhang, Shuran Song, Ping Tan, and Jianxiong

Xiao. PanoContext: A whole-room 3D context model for

panoramic scene understanding. In European Conference on

Computer Vision (ECCV), 2014. 2

[23] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 6, 7

[24] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.

LayoutNet: Reconstructing the 3D room layout from a single

RGB image. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018. 2

9104


