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Abstract

Existing weakly supervised semantic segmentation

(WSSS) methods usually utilize the results of pre-trained

saliency detection (SD) models without explicitly modelling

the connections between the two tasks, which is not the most

efficient configuration. Here we propose a unified multi-task

learning framework to jointly solve WSSS and SD using a

single network, i.e. saliency and segmentation network (SS-

Net). SSNet consists of a segmentation network (SN) and

a saliency aggregation module (SAM). For an input image,

SN generates the segmentation result and, SAM predicts the

saliency of each category and aggregating the segmentation

masks of all categories into a saliency map. The proposed

network is trained end-to-end with image-level category la-

bels and class-agnostic pixel-level saliency labels. Exper-

iments on PASCAL VOC 2012 segmentation dataset and

four saliency benchmark datasets show the performance

of our method compares favorably against state-of-the-art

weakly supervised segmentation methods and fully super-

vised saliency detection methods.

1. Introduction

Semantic image segmentation is an important and chal-

lenging task of computer vision, of which the goal is to pre-

dict a category label for every image pixel. Recently, convo-

lutional neural networks (CNNs) have achieved remarkable

success in semantic image segmentation [33, 8, 7, 31, 2, 6].

Due to the expensive cost for annotating semantic segmen-

tation labels to train CNNs, weakly supervised learning has

attracted increasing interest, resulting in various weakly su-

pervised semantic segmentation (WSSS) methods. Saliency

detection (SD) aims at identifying the most distinct ob-

jects or regions in an image, which has helped many com-

puter vision tasks such as scene classification [41], image

retrieval [16], visual tracking [34], to name a few. With

the success of deep CNNs, it has been made a lot of at-
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tempts to use deep CNNs or deep features for saliency de-

tection [14, 57, 58, 64, 56, 24, 12, 11].

The two tasks both require to generate accurate pixel-

wise masks. Hence, they have close connections. On the

one hand, given the saliency map of an image, the computa-

tion load of a segmentation model can be reduced because

of avoiding processing background. On the other hand,

given the segmentation result of an image, the saliency

map can be readily derived by selecting the salient cat-

egory. Therefore, many existing WSSS [23, 49, 50, 36,

18, 51, 48, 13] methods have greatly benefited from SD.

It is a widespread practice to exploit class activation maps

(CAMs) [63] for locating the objects of each category and

use SD methods for selecting background regions. For ex-

ample, Wei et al. [51] use CAMs of a classification network

with different dilated convolutional rates to find object re-

gions, and use saliency maps of [52] to find background

regions for training a segmentation model. Wang et al. [48]

use saliency maps of [19] to refine object regions produced

by classification networks.

However, those WSSS methods simply utilize the results

of pre-trained saliency detection models, which is not the

most efficient configuration. On the one hand, they use SD

methods as a pre-processing step to generate annotations for

training their segmentation models while ignoring the inter-

actions between SD and WSSS, which blocks the WSSS

models from fully exploiting the segmentation cues of the

strong saliency annotations. On the other hand, heuristic

rules are usually required for selecting background regions

according to the results of SD models, thereby complicating

the training process and leading to a not end-to-end manner.

In this paper, we propose a unified, end-to-end training

framework to solve both SD and WSSS tasks jointly. Unlike

most existing WSSS methods that used pre-trained saliency

detection models, we directly take advantage of pixel-level

saliency labels. The core motive is to utilize semantic infor-

mation of the image-level category labels and the segmen-

tation cues of the category-agnostic saliency labels. The

image-level category labels can make a CNN recognize the
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Figure 1. (a) input image. (b) segmentation results predicted by

the model trained with only image-level labels. (c) segmentation

results predicted by our method. (d) saliency map predicted by our

method.

semantic categories, but they do not contain any spatial in-

formation, which is essential for segmentation. Although it

has been suggested that CNNs trained with image-level la-

bels are also informative of object locations, only a coarse

spatial distribution can be inferred, as shown in the first row

of Figure 1. We solve this problem with the pixel-level

saliency labels. Through explicitly modelling the connec-

tion between SD and WSSS, we derive the saliency maps

from the segmentation results and minimize the loss be-

tween them and the saliency ground-truth. So that the CNN

has to precisely cut the recognized objects so as to make the

derived saliency maps match the ground-truth.

Specifically, we propose a saliency and segmentation

network (SSNet), which includes a segmentation network

(SN) and a saliency aggregation module (SAM). For an in-

put image, SN generates the segmentation results, as shown

in The second column of Figure 1. SAM predicts the

saliency score of each category and then aggregates the seg-

mentation masks of all categories into a saliency map ac-

cording to their saliency scores, which bridges the gap be-

tween semantic segmentation and saliency detection. As

shown in the third column of Figure 1, given the segmenta-

tion map and saliency score of each category, saliency de-

tection result can be generated by highlighting the masks

of salient objects (e.g., the mask of persons in the third

column) and suppressing the masks of the objects of low

salience (e.g., the mask of bottles in the third column).

When training, the loss is computed between the segmen-

tation results and the image-level category labels as well as

the saliency maps and the saliency ground-truth.

Our approach has several advantages. First, compared

with existing WSSS methods that exploit pre-trained SD

models for pre-processing, our method explicitly mod-

els the relationships between saliency and segmentation,

which can transfer the learned segmentation knowledge

from class-agnostic image-specific saliency categories with

pixel-level annotations to unseen semantic categories with

only image-level annotations. Second, as a low-level vision

task, annotating pixel-level ground truth for saliency detec-

tion is less expensive than semantic segmentation. There-

fore, compared with fully supervised segmentation meth-

ods, our method is trained with image-level category la-

bels and saliency annotations, requiring less labeling cost.

Third, compared with existing segmentation or saliency

methods, our method can simultaneously predict the seg-

mentation results and saliency results using a single model,

with most parameters shared between the two tasks.

In summary, our main contributions are three folds:

• We propose a unified end-to-end framework for both

SD and WSSS tasks, in which segmentation is split

into two learning tasks respectively based on image-

level category labels and pixel-level saliency annota-

tions.

• We design a saliency aggregation module to explicitly

bridge the two tasks, through which WSSS can directly

benefit from saliency inference and vice versa.

• The experiments on the PASCAL VOC 2012 seg-

mentation benchmark and four saliency benchmarks

demonstrate the effectiveness of the proposed method.

It achieves favorable performance against weakly su-

pervised semantic segmentation methods and fully su-

pervised saliency detection methods. We make our

code and models available for further researches12.

2. Related work

2.1. Saliency detection

Earlier saliency detection methods used low-level fea-

tures and heuristic priors [55, 20] to detect salient objects,

which were not robust to complex scenes. Recently, deep

learning based methods have achieved remarkable perfor-

mance improvements. Incipient deep learning based meth-

ods usually used regions as computation units, such as su-

perpixels, image patches, and region proposals. Wang et

al. [45] trained two neural networks that estimate saliency

of image patches and regional proposals respectively. Li

and Yu [27] used CNNs to extract multi-scale features and

predict the saliency of each superpixel. Inspired by the suc-

cess of fully convolutional network (FCN) [33] on semantic

segmentation, some methods have been proposed to exploit

fully convolutional structure for pixel-wise saliency predic-

tion. Liu and Han [32] proposed a deep hierarchical net-

work to learn a coarse global saliency map and then pro-

gressively refine it. Wang et al. [47] proposed a recurrent

FCN incorporates saliency priors. Zhang et al. [60] propose

to make CNNs learn deep uncertain convolutional features

(UCF) to encourage the robustness and accuracy of saliency

detection. Zhang et al. [61] proposed an attention guided

network which selectively integrates multi-level contextual

information in a progressive manner. Chen et al. [4] pro-

posed reverse attention to guide residual feature learning in

a top-down manner for saliency detection. All of the above

saliency detection methods trained fully supervised models

1https://github.com/zengxianyu/jsws
2http://ice.dlut.edu.cn/lu/
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for a single task. Although our method slightly increases la-

beling cost, it achieves state-of-the-art performance in both

saliency detection and semantic segmentation.

2.2. Segmentation with weak supervision

In recent years, a lot of weakly supervised semantic seg-

mentation methods have been proposed to alleviate the cost

of labeling. Various supervision has been exploited, such

as the image-level labels, bounding boxes, scribbles, etc.

Among all kinds of weak supervision, the weakest one,

i.e., image-level supervision, has attracted the most atten-

tion. In image-level weakly supervised segmentation, some

methods exploited results of the pre-trained saliency detec-

tion models. A simple-to-complex method was presented

in [50], in which an initial segmentation model is trained

with simple images using saliency maps for supervision.

Then the ability of the segmentation model is enhanced by

progressively including samples of increasing complexity.

Wei et al. [49] iteratively used CAM [63] to discover object

regions and used saliency detection results of [19] to find

background regions to train the segmentation model. Oh et

al. [36] used an image classifier to find the high confidence

points over the objects classes, i.e. object seeds, and exploit

a CNN-based saliency detection model to find the masks

corresponding to some of the detected object seeds. Then

these class-specific masks were used to train a segmenta-

tion model. Wei et al. [51] used a classification network

with convolutional blocks of different dilated rates to find

object regions and used saliency detection results of [52]

to find background regions to train a segmentation model.

Wang et al. [48] started from the object regions produced

by classification networks. The object regions were ex-

panded using the mined features and refined using saliency

maps produced by [19]. Then the refined object regions

were used as supervision to train a segmentation network.

The above weakly supervised segmentation methods all ex-

ploited results of pre-trained saliency detection models, ei-

ther using the existing models or separately training their

saliency models and segmentation models. The proposed

method has two main differences from these methods. First,

these methods used pre-trained saliency detection models,

while we directly exploit strong saliency annotations and

work in an end-to-end manner. Second, in these methods,

saliency detection was used as a pre-processing step to gen-

erate training data for segmentation. In contrast, we simul-

taneously solve saliency detection and semantic segmenta-

tion using a single model, of which most parameters are

shared between the two tasks.

2.3. Multi-task learning

Multi-task learning has been used in a wide range of

computer vision problems. Teichman et al. [43] proposed

an approach to joint classification, detection, and segmenta-

tion using a unified architecture where the encoder is shared

among the three tasks. Kokkinos [22] proposed an UberNet

that jointly handles low-, mid-, high-level tasks including

boundary detection, normal estimation, saliency estimation,

semantic segmentation, human part segmentation, semantic

boundary detection, region proposal generation, and object

detection. Eigen and Fergus [9] used a multiscale CNN to

address three different computer vision tasks: depth pre-

diction, surface normal estimation, and semantic labeling.

Xu et al. [53] proposed a PAD-Net that first solves several

auxiliary tasks ranging from low level to high level, and

then used the predictions as multi-modal input for the final

task. The models above all worked in full supervision set-

ting. In contrast, we jointly learn to solve a task in weak

supervision setting and another task in full supervision set-

ting.

3. The proposed approach

In this section, we detail the joint learning framework

for simultaneous saliency detection and semantic segmenta-

tion. We first give an overview of the proposed saliency and

segmentation network (SSNet). Then we describe the de-

tails of the segmentation network (SN) and the saliency ag-

gregation module (SAM) in Section 3.2 and 3.3. Finally, we

present the joint learning strategy in Section 3.4. Figure 2

illustrates the overall architecture of the proposed method.

3.1. Network overview

We design two variants of SSNet, i.e. SSNet-1, and

SSNet-2, for two training stages, respectively. In the

first training stage, the SSNet-1 is trained with pixel-level

saliency annotations and image-level semantic category la-

bels. In the second stage, the SSNet-2 is trained with

saliency annotations and image-level semantic category la-

bels as well as semantic segmentation results predicted by

SSNet-1. Both the SSNet-1 and SSNet-2 consist of a seg-

mentation network (SN) and a saliency aggregation mod-

ule (SAM). Given an input image, SN predicts a segmen-

tation result. SAM predicts a saliency score for each se-

mantic class and aggregates the segmentation map into a

single channel saliency map according to the saliency score

of each class. Both the SSNet-1 and SSNet-2 are trained

end-to-end.

3.2. Segmentation networks

The segmentation network consists of a feature extractor

to extract features from the input image and several convo-

lution layers to predict segmentation results given the fea-

tures. Feature extractors of our networks are designed based

on state-of-the-art CNN architectures for image recogni-

tion, e.g., VGG [42] and DenseNet [17], which typically

contain five convolutional blocks for feature extraction and

a fully connected classifier. We remove the fully connected
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Figure 2. An overview of the proposed method. Our model is trained with (a) images annotated with category labels and (b) images with

saliency ground-truth. For an input image, the segmentation network generates a (c) segmentation results, of which the average over spatial

locations indicates (d) the probability of each category. The saliency aggregation module predicts (e) saliency score of each category to

aggregate segmentation masks of all categories into a (g) saliency map. In the first training stage, the network is trained with the (h)

category labels and (i) saliency ground truth. In the second training stage, the network is trained with (f) predicted segmentation results by

the model trained in the first stage and the saliency ground truth.

classifier and use the convolutional blocks as our feature ex-

tractor. To obtain larger feature maps, we remove the down-

sampling operator from the last two convolution blocks and

use dilated convolution to retain the original receptive field.

The feature extractor generates feature maps of 1/8 the in-

put image size. We resize the input images to 256× 256, so

the resulted feature maps are 32× 32 in spatial scale.

In the first training stage, the only available semantic su-

pervision cue is the image-level labels. Trained with image-

level labels, a coarse spatial distribution of each class can

be inferred but it is difficult to train a sophisticated model.

Therefore, we use a relatively simple structure in SSNet-1

for generating segmentation results, i.e. a 1× 1 convolution

layer. The predicted C-channel segmentation map and one-

channel background map are of 1/8 the input image size, in

which C is the number of semantic classes. Each element

of the segmentation map and background map is a value in

[0, 1]. The values of all classes sum to 1 for each pixel. Then

the segmentation results are upsampled by a deconvolution

layer to the input image size. In the second training stage,

the segmentation results of SSNet-1 can be used for train-

ing, which is a stronger supervision cue. Therefore, we can

use a more complex segmentation network to generate finer

segmentation results. Inspired by Deeplab [3], we use four

3 × 3 convolution layers with dilation rate 6, 12, 18, 24 in

SSNet-2 and take the summation of their outputs as the seg-

mentation results. Similar to SSNet-1, these segmentation

results are of 1/8 the input image size, and are upsampled

by a deconvolution layer to the input size.

3.3. Saliency aggregation

We design a saliency aggregation module (SAM) as a

bridge between the two tasks so that the segmentation net-

work can make use of the class-agnostic pixel-level saliency

labels and generate more accurate segmentation results.

This module takes the 32 × 32 outputs F of the feature

extractor, and generates a C-dimensional vector v with a

32× 32 convolution layer and a sigmoid function, of which

each element vi is the saliency score of the i-th category.

Then the saliency map S is given by a weighted sum of the

segmentation masks of all classes:

S =

C
∑

i=1

vi ·Hi, (1)

where Hi denotes the i-th channel of the segmentation re-

sults encoding the spatial distribution of the i-th category,

which are the output of the segmentation network.

3.4. Jointly learning of saliency and segmentation

We use two training sets to train the proposed SSNet:

the saliency dataset with pixel-level saliency annotations,

and the classification dataset with image-level semantic cat-

egory labels. Let Ds = {(Xn, Y n)}Ns

n=1 denote the saliency

dataset, in which Xn is the image, and Y n is the ground

truth. Each element of Y n is either 1 or 0, representing

the corresponding pixel belongs to salient objects or back-

ground, respectively. The classification dataset is denoted

as Dc = {(Xn, tn)}Nc

n=1, in which Xn is the image, and t
n

is the one-hot encoding of the categories of the image.

For an input image, the segmentation network generates

its segmentation result, from which the probability of each
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category can be derived by averaging the segmentation re-

sults over spatial locations. We compute the loss between

these values and the ground-truth category labels and back-

ward propagate it to make the segmentation results seman-

tically correct, i.e., the semantic categories appearing in the

input image are correctly recognized. This loss, denoted as

Lc, is defined as follow,

Lc = −
1

Nc

Nc
∑

n=1

[

C
∑

i=1

tni log t̂
n

i + (1− tni ) log(1− t̂ni )

]

,

(2)

in which tn
i

is the i-th element of tn. tn
i
= 1 represents the

image Xn contains objects of the i-th category, and tn
i
= 0

otherwise. t̂
n is the average over spatial positions of the

segmentation maps Hn of image Xn, of which each ele-

ment t̂n
i
∈ [0, 1] represents the predicted probability of the

i-th class objects presenting in the image.

The image-level category labels can make the segmenta-

tion network recognize the semantic categories, but they do

not contain any spatial information, which is essential for

segmentation. We solve this problem with the pixel-level

saliency labels. As stated in Section 3.3, the SAM gen-

erates the saliency score of each category and aggregates

the segmentation result into a saliency map. We minimize a

loss Ls1 between the derived saliency maps and the ground-

truth so that the segmentation network has to precisely cut

the recognized objects to make the derived saliency maps

match the ground-truth. The loss Ls1 between the saliency

maps and the saliency ground-truth is defined as follow,

Ls1 = −
1

Ns

Ns
∑

n=1

[

∑

m

ynm log snm + (1− ynm) log(1− snm)

]

,

(3)

where ynm ∈ {0, 1} is the value of the m-th pixel of the

saliency ground truth Y n. snm ∈ [0, 1] is the value of the

m-th pixel in the saliency map of the image Xn, encoding

the predicted probability of the m-th pixel being salient.

In the first training stage, we train SSNet-1 with the loss

Lc + Ls1. After having trained SSNet-1, we run it on the

classification dataset Dc and obtain the C + 1-channel seg-

mentation results, of which the first C channels correspond

to the C semantic categories and the last channel corre-

sponds to the background. Then the first C channels of the

segmentation result are cross-channel multiplied with the

one-hot class label tn to suppress wrong predictions and

refined with CRF [25] to enhance spatial smoothness. Fi-

nally, we obtain some pseudo labels by assigning each pixel

m of each training image Xn ∈ Dc a class label including

the background label corresponding to the maximum value

in the refined segmentation result. We define a loss Ls2

between the segmentation results and the pseudo labels as

follow,

Ls2 = −
1

Nc

Nc
∑

n=1

[

C+1
∑

i=1

∑

m∈Ci

log hn

im

]

, (4)

in which hn
im

∈ [0, 1], i = 1, ..., C is the value of Hn at

pixel m and channel i, representing the probability of pixel

m belonging to the i-th class. SSNet-2 is trained with the

loss Ls1 + Ls2.

4. Experiments

4.1. Dataset and settings

Segmentation For semantic segmentation task, we evalu-

ate the proposed method on the PASCAL VOC 2012 seg-

mentation benchmark [10]. This dataset has 20 object cate-

gories and one background category. It is split into a train-

ing set of 1,464 images, a validation set of 1,449 images

and a test set of 1,456 images. Following the common prac-

tice [1, 15, 49], we increase the number of training images

to 10,582 by augmentation. We only use image-level la-

bels for training. The performance of our method and other

state-of-the-art methods are evaluated on the validation set

and test set. The performance for semantic segmentation

is evaluated in terms of inter-section-over-union averaged

over 21 classes (mIOU) according to the PASCAL VOC

evaluation criterion. We obtain the mIOU on the test set

by submitting our results to the PASCAL VOC evaluation

server.

Saliency For saliency detection task, we use the DUT-

S training set [46] for training, which has 10,553 images

with pixel-level saliency annotations. The proposed method

and other state-of-the-art methods are evaluated on four

benchmark datasets: ECSSD [54], PASCAL-S [30], HKU-

IS [27], SOD [35]. ECSSD contains 1000 natural images

with multiple objects of different sizes. PASCAL-S stems

from the validation set of PASCAL VOC 2010 segmenta-

tion dataset and contains 850 natural images. HKU-IS has

4447 images chosen to include multiple disconnected ob-

jects or objects touching the image boundary. SOD has 300

challenging images, of which many images contain multi-

ple objects either with low contrast or touching the image

boundary. The performance for saliency detection is eval-

uated in terms of maximum F-measure and mean absolute

error (MAE).

Training/Testing Settings We adopt DenseNet-169 [17]

pre-trained on ImageNet [5] as the feature extractor of our

segmentation network due to its ability to achieve compara-

ble performance with a smaller number of parameters than

other architectures. Our network is implemented based on

Pytorch framework and trained on two NVIDIA GeForce

GTX 1080 Ti GPU. We use Adam optimizer [21] to train

our network. We randomly crop a patch of 9/10 of the orig-

inal image size and rescaled to 256 × 256 when training.
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Figure 3. Visual comparison of the proposed method with state-of-

the-art fully supervised saliency detection methods.

The batch size is set to 16. We train both the SSNet-1 and

SSNet-2 for 10,000 iterations with initial learning rate 1e-4,

and decrease the learning rate by 0.5 every 1000 iterations.

When testing, the input image is resized to 256×256. Then,

the predicted segmentation results and saliency maps are re-

sized to the input size by nearest interpolation. We do not

use any post-processing on the segmentation results. We

apply CRF [25] to refine the saliency maps.

4.2. Comparison with saliency methods

We compare our method with the following state-of-the-

art deep learning based fully supervised saliency detection

methods: PAGR (CVPR’18) [61], RAS (ECCV’18) [4],

UCF (ICCV’17) [60], Amulet (ICCV’17) [59], RFCN

(ECCV’16) [47], DS (TIP’16) [29], ELD (CVPR’16) [26],

DCL (CVPR’16) [28], DHS (CVPR’16) [32], MCDL

(CVPR’15) [62], MDF (CVPR’15) [27]. Figure 3 shows

a visual comparison of our method against state-of-the-art

fully supervised saliency detection methods. The compari-

son in terms of MAE and maximum F-measure is shown in

Table 1 and Table 2 respectively. As shown in Table 1, the

proposed method achieves the smallest MAE among across

all datasets. Maximum F-measure in Table 2 also shows

that our method achieves the second largest F-measure in

one dataset, and achieves the third largest F-measure in the

other three datasets. Together the two metrics, it can be

seen that our method achieves state-of-the-art performance

in saliency detection task.

4.3. Comparison with segmentation methods

In this section, we compare our method with previous

state-of-the-art weakly supervised semantic segmen-

tation methods, i.e. MIL (CVPR’15) [38], WSSL [37],

RAWK [44], BFBP (ECCV’16) [40], SEC (ECCV’16) [23],

AE (CVPR’17) [49], STC (PAMI’17) [50], CBTS

(CVPR’17) [39], ESOS (CVPR’17) [36], MCOF

(CVPR’18) [48], MDC (CVPR’18) [51]. WSSL uses

bounding boxes as supervision, RAWK uses scribbles as

supervision, and other methods use image-level categories

as supervision. Among the methods using image-level

supervision, ESOS exploits the saliency detection results

of a deep CNN trained with bounding box annotations.

AE, STC, MCOF, MDC use the results of fully supervised

Images Results Ground-truth Images Results Ground-truth

(a) (b) (c)

Figure 4. Qualitative results of the proposed method on PASCAL

VOC 2012 validation set.

saliency detection models and thus implicitly use pixel

level saliency annotations. As some previous methods used

VGG16 as its backbone network, we also report the perfor-

mance of our method using VGG16. It can be seen from

Table 3 and Table 4 that our method compares favourably

against all the above methods, including methods using

stronger supervision such as bounding boxes (WSSL)

and scribbles (RAWK). Our method also outperforms

the methods i.e., ESOS, AE, STC, MCOF, MDC, that

implicitly use saliency annotations by using pre-trained

saliency detection models. Compared with these methods,

our method simultaneously solves semantic segmentation

and saliency detection and can be trained in an end-to-end

manner, which is more efficient and easier to train.

4.4. Ablation study

In this section, we analyze the effect of the proposed

jointly learning framework. To validate the impact of mul-

titasking, we show the performance of the networks trained

in different single-task and multi-task settings.

Semantic segmentation The quantitative and the qualita-

tive comparison of the models trained in the different set-

tings for segmentation task is shown in Table 5 and Fig-

ure 5 respectively. For the first training stage, we firstly train

SSNet-1 in the single-task setting, where only the image-

level category labels and Lc are used. The resulted model

is denoted as SSNet-S, of which the mIOU is shown in

the first column of Table 5. Then we add the saliency task

to train SSNet-1 in the multi-task setting. In this setting

Lc+Ls1 is used as loss function, with both the image-level

category labels and the saliency dataset are used as train-

ing data. The resulted model is denoted as SSNet-M, of

which mIOU is shown in the second column of Table 5. It

can be seen that SSNet-M has a much larger mIOU than

SSNet-S, demonstrating that jointly learning saliency de-

tection is of great benefit to WSSS. In the second training
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Table 1. Comparison of fully supervised saliency detection methods in terms of MAE (the smaller the better). The best three results are in

red, green and blue, respectively.

Methods/Datasets RAS’18 PAGR’18 UCF ’17 Amule’17 RFCN’16 DS’16 ELD’16 DCL ’16 DHS’16 MCDL ’15 MDF ’15 Ours

ECSSD 0.056 0.061 0.078 0.059 0.107 0.122 0.079 0.088 0.059 0.101 0.105 0.045

PASCAL-S 0.104 0.093 0.126 0.098 0.118 0.176 0.123 0.125 0.094 0.145 0.146 0.067

HKU-IS 0.045 0.048 0.074 0.052 0.079 0.080 0.074 0.072 0.053 0.092 0.129 0.040

DUTS-test 0.060 0.056 0.117 0.085 0.091 0.090 0.093 0.088 0.067 0.106 0.094 0.052

Table 2. Comparison of fully supervised saliency detection methods in terms of maximum F-measure (the larger the better). The best three

results are in red, green and blue, respectively.

Methods/Datasets RAS’18 PAGR’18 UCF ’17 Amule’17 RFCN’16 DS’16 ELD’16 DCL ’16 DHS’16 MCDL ’15 MDF ’15 Ours

ECSSD 0.921 0.927 0.911 0.915 0.890 0.882 0.867 0.890 0.907 0.837 0.832 0.919

PASCAL-S 0.837 0.856 0.828 0.837 0.837 0.765 0.773 0.805 0.829 0.743 0.768 0.851

HKU-IS 0.913 0.918 0.886 0.895 0.892 0.865 0.839 0.885 0.890 0.808 0.861 0.907

DUTS-test 0.831 0.855 0.771 0.778 0.784 0.777 0.738 0.782 0.807 0.672 0.730 0.832

Table 3. Comparison of WSSS methods on PASCAL VOC 2012 validation set. ∗ marks the methods implicitly use saliency annotations

by using pre-trained saliency detection models. † and ‡ mark the methods use box supervisions and scribble supervisions, respectively.

Ours: our method with Densenet169-based feature extractor. Ours-VGG: our method with VGG16-based feature extractor. MCOF-Res:

MCOF with ResNet101-based feature extractor. MCOF-VGG: MCOF with VGG16-based feature extractor. The best three results are in

red, green and blue.

Method bkg areo bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

MIL 15 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

WSSL†
’15 - - - - - - - - - - - - - - - - - - - - - 60.6

BFBP ’16 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6

SEC’16 82.2 61.7 26.0 60.4 25.6 45.6 70.9 63.2 72.2 20.9 52.9 30.6 62.8 56.8 63.5 57.1 32.2 60.6 32.3 44.8 42.3 50.7

RAWK‡
’17 - - - - - - - - - - - - - - - - - - - - - 61.4

STC∗
’17 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

AE∗
’17 - - - - - - - - - - - - - - - - - - - - - 55.0

CBTS’17 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8

ESOS∗
’17 - - - - - - - - - - - - - - - - - - - - - 55.7

MCOF-Res∗ ’18 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3

MCOF-VGG∗
’18 85.8 74.1 23.6 66.4 36.6 62.0 75.5 68.5 78.2 18.8 64.6 29.6 72.5 61.6 63.1 55.5 37.7 65.8 32.4 68.4 39.9 56.2

MDC∗
’18 89.5 85.6 34.6 75.8 61.9 65.8 67.1 73.3 80.2 15.1 69.9 8.1 75.0 68.4 70.9 71.5 32.6 74.9 24.8 73.2 50.8 60.4

Ours-VGG 89.1 71.5 31.0 74.2 58.6 63.6 78.1 69.2 74.4 10.7 63.6 9.8 66.4 64.4 66.6 64.8 27.5 69.2 24.3 71.0 50.9 57.1a

Ours 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3b

ahttp://host.robots.ox.ac.uk:8080/anonymous/F5E3DJ.html
bhttp://host.robots.ox.ac.uk:8080/anonymous/AOZU76.html

stage, the training data for SSNet-2 consists of two splits:

the one is the predictions of SSNet-1, and the other is the

saliency dataset. In order to verify the contribution of each

split, we train SSNet-2 in three settings: 1) train with only

the predictions of SSNet-S using the Ls2 as loss func-

tion, 2) train with only the predictions of SSNet-M using

the Ls2 as loss function, and 3) train with the predictions

of SSNet-M and the saliency dataset using Ls1 + Ls2 as

loss function. The resulted models under the three settings

is denoted as SSNet-SS, SSNet-MS and SSNet-MM, of

which the mIOU scores are shown in the third to the fifth

column of Table 5. From the comparison of SSNet-SS

and SSNet-MS, it can be seen that the model trained with

the multi-task setting in the first training stage can provide

better training data for the second training stage. The com-

parison of SSNet-MS and SSNet-MM shows that when

trained with the same pixel-level segmentation labels, the

model trained in the multi-task setting is still better than the

single-task setting.

Saliency detection To study the effect of jointly learning for

saliency detection, we compare the performance of SSNet-

2 trained in multi-task settings and single-task settings. We

firstly train SSNet-2 only for saliency detection task, result-

ing in a model denoted as SSNet-2S, of which the max-

imum F-measure and MAE are shown in the first column

of Table 6. Then we run the model SSNet-MM mentioned

above on saliency dataset, and the resulted F-measure and

MAE are shown in the second column of Table 6. As can be

seen, the models trained in multi-task setting has a compara-

ble performance to the model trained in single-task setting,
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Table 4. Comparison of WSSS methods on PASCAL VOC 2012 test set. ∗ marks the methods implicitly use saliency annotations by using

pre-trained saliency detection models. † and ‡ mark the methods use box supervisions and scribble supervisions, respectively. Ours: our

method with Densenet169-based feature extractor. Ours-VGG: our method with VGG16-based feature extractor. MCOF-Res: MCOF with

ResNet101-based feature extractor. MCOF-VGG: MCOF with VGG16-based feature extractor. The best three are in red, green, blue.

Method bkg areo bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

MIL’15 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

WSSL†
’15 - - - - - - - - - - - - - - - - - - - - - 62.2

BFBP’16 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0

SEC’16 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

STC∗
16 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2

AE∗
’17 - - - - - - - - - - - - - - - - - - - - - 55.7

CBTS’17 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

ESOS∗
’17 - - - - - - - - - - - - - - - - - - - - - 56.7

MCOF-Res∗ ’18 88.2 80.8 31.4 70.9 34.9 65.7 83.5 75.1 79.0 22.0 70.3 31.7 77.7 72.9 77.1 56.9 41.8 74.9 36.6 71.2 42.6 61.2

MCOF-VGG∗
’18 86.8 73.4 26.6 60.6 31.8 56.3 76.0 68.9 79.4 18.8 62.0 36.9 74.5 66.9 74.9 58.1 44.6 68.3 36.2 64.2 44.0 57.6

MDC∗
’18 89.8 78.4 36.2 82.1 52.4 61.7 64.2 73.5 78.4 14.7 70.3 11.9 75.3 74.2 81.0 72.6 38.8 76.7 24.6 70.7 50.3 60.8

Ours-VGG 89.2 75.4 31.0 72.3 45.0 56.6 79.3 73.2 73.9 14.1 64.4 19.7 69.5 71.1 76.7 64.7 41.8 70.9 27.5 68.2 46.6 58.6a

Ours 90.4 85.4 37.9 77.2 48.2 64.5 83.9 74.8 83.4 15.9 72.4 34.3 80.0 77.3 78.5 69.0 41.9 76.3 38.3 72.3 48.2 64.3b

ahttp://host.robots.ox.ac.uk:8080/anonymous/YTXEXK.html
bhttp://host.robots.ox.ac.uk:8080/anonymous/PHYZSJ.html

where the former has a larger maximum F-measure and the

later is better in terms of MAE. Therefore, it is safe to con-

clude that conduct jointly learning of semantic segmenta-

tion dose not harm the performance on saliency detection.

This result validates the superiority of the proposed jointly

learning framework considering its great benefit to semantic

segmentation.

SSNet-S SSNet-M SSNet-MS SSNet-MMImages Ground truth SSNet-SS

Figure 5. Visual effect of the segmentation results of the models

trained in different settings. Images: input images. Ground truth:

segmentation ground truth. SSNet-S: results of SSNet-1 trained

in single-task setting. SSNet-M: results of SSNet-1 trained in

multi-task setting. SSNet-S: results of SSNet-2 trained in single

task setting using the predictions of SSNet-S. SSNet-MS: re-

sults of SSNet-2 trained in single-task setting usins the predictions

of SSNet-M. SSNet-MM: results of SSNet-2 traiend in multi-task

setting using the predictions of SSNet-M.

Table 5. Comparison of the models trained in different settings on

semantic segmentation task. S and M represent single-task training

and multi-task training respectively. Larger mIOU indicates better

performance. The best results are in bold.

training stage training strategy

stage 1 S M S M M

stage 2 S S M

mIOU 33.1 57.1 47.1 62.7 63.3

Table 6. Comparison of the models trained in different settings on

saliency detection task (evaluated on ECSSD dataset). S and M

represent single-task training and multi-task training respectively.

CRF represents the results after CRF post processing. Larger max

Fβ and smaller MAE indicate better performance. The best results

are in bold.

training strategy

S M M

MAE 0.046 0.047 0.045 (CRF)

max Fβ 0.899 0.912 0.919 (CRF)

5. Conclusion

This paper presents a joint learning framework for

saliency detection (SD) and weakly supervised semantic

segmentation (WSSS) using a single model, i.e. the saliency

and segmentation network (SSNet). Compared with WSSS

methods exploiting pre-trained SD models, our method

makes full use of segmentation cues from saliency an-

notations and is easier to train. Compared with existing

fully supervised SD methods, our method can provide more

informative results. Experiments shows that our method

achieves state-of-the-art performance among both fully su-

pervised SD methods and WSSS methods.
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