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Abstract

We study on weakly-supervised object detection (WSOD)

which plays a vital role in relieving human involvement from

object-level annotations. Predominant works integrate re-

gion proposal mechanisms with convolutional neural net-

works (CNN). Although CNN is proficient in extracting dis-

criminative local features, grand challenges still exist to

measure the likelihood of a bounding box containing a com-

plete object (i.e., “objectness”). In this paper, we pro-

pose a novel WSOD framework with Objectness Distillation

(i.e., WSOD
2) by designing a tailored training mechanism

for weakly-supervised object detection. Multiple regression

targets are specifically determined by jointly considering

bottom-up (BU) and top-down (TD) objectness from low-

level measurement and CNN confidences with an adaptive

linear combination. As bounding box regression can fa-

cilitate a region proposal learning to approach its regres-

sion target with high objectness during training, deep ob-

jectness representation learned from bottom-up evidences

can be gradually distilled into CNN by optimization. We

explore different adaptive training curves for BU/TD ob-

jectness, and show that the proposed WSOD2 can achieve

state-of-the-art results.

1. Introduction

The capability of recognizing and localizing objects in

an image reveals a deep understanding of visual informa-

tion, and has attracted many attentions in recent years.

Significant progresses have been achieved with the devel-

opment of convolutional neural network (CNN) [5, 14,

19, 27]. However, current state-of-the-art object detectors

mostly rely on a large scale of training data which requires

manually annotated bounding boxes (e.g., PASCAL VOC

2007/2012 [7], MS COCO [22], Open Images [20]). To

∗This work was performed when Zhaoyang Zeng was visiting Mi-

crosoft Research as a research intern.

Figure 1: Typical weakly-supervised object detection results produced by

OICR [30]. We can observe the partial, correct, and oversized detection

results for an object instance in the first, second, and third row, respectively.

relieve the heavy labeling effort and reduce cost, weakly-

supervised object detection paradigm has been proposed by

leveraging only image-level annotations [2, 30, 37, 38].

To address weakly-supervised object detection (WSOD)

task, most previous works adopt multiple instance learning

method to transform WSOD into multi-label classification

problems [2, 18]. Later on, online instance classifier refine-

ment (OICR) [29] and proposal cluster learning (PCL) [28]

are proposed to learn more discriminative instance classi-

fiers by explicitly assigning instance labels. Both OICR and

PCL adopt the idea of utilizing the outputs of initial object

detector as pseudo ground truths, which has been shown

benefits in improving the classification ability of WSOD.

However, a classification model often targets at detecting

the existence of objects for a category, while it is not able

to predict the location, size and the number of objects in

images. This weakness usually results in the detection of

partial or oversized bounding boxes, as shown in the first

and third rows in Figure 1. The performances of OICR and

PCL heavily rely on the accuracy of the initial object de-

tection results, which limit further improvement with large

margins. Also, they neglect learning bounding box regres-

sion, which plays an important role in the design of mod-
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ern object detectors [3, 4, 13, 21, 24]. C-WSL integrates

bounding box regressors into OICR framework to reduce

localization errors, however, it relies on a greedy ground

truths selection strategy which requires additional counting

annotations [9].

Existing works that rely on the initial weakly-supervised

object detection results try to learn the object boundary from

feature maps by convolutional neural network (CNN). Al-

though CNN is an expert to learn discriminative local fea-

tures of an object with image-level labels in a top-down

fashion (we call it top-down classifiers in this work), it per-

forms poorly in detecting whether a bounding box contains

a complete object without the ground truth for supervision.

Some low-level feature based object evidences (e.g.

color contrast [23] and superpixels straddling [1]) have been

proposed to measure a generic objectness that quantifies

how likely a bounding box contains an object of any class

in a bottom-up way. Inspired by these bottom-up object ev-

idences, in this work, we explore to use their advantage for

improving the capability of a CNN model in capturing ob-

jectness in images. We propose to integrate these bottom-up

evidences that are good at discovering boundary and CNN

with powerful representation ability in a single network.

We propose a WSOD framework with Objectness

Distillation (WSOD2) to leverage bottom-up object evi-

dences and top-down classification output with a novel

training mechanism. First, given an input image with

thousands of region proposals (e.g., generated by Selec-

tive Search [33]), we learn several instance classifiers to

predict classification probabilities of each region proposal.

Each of these classifiers can help to select multiple high-

confident bounding boxes as possible object instances (i.e.,

pseudo classification and bounding box regression ground

truths). Second, we incorporate a bounding box regressor

to fine-tune the location and size of each proposal. Third,

as each bounding box cannot capture precise object bound-

aries by CNN features alone, we combine bottom-up ob-

ject evidences and top-down CNN confidence scores in an

adaptive linear combination way to measure the objectness

of each candidate bounding box, and assign labels for each

region proposal to train the classifiers and regressor.

For some discriminative small bounding boxes that CNN

prefers, the bottom-up object evidence (e.g., superpixels

straddling) tends to be very low. WSOD2 can regulate

pseudo ground truths to satisfy both higher CNN confidence

and low-level object completeness. In addition, a bounding

box regressor is integrated to reduce the localization error,

and augment the effect of bottom-up object evidences dur-

ing training at the same time. We design an adaptive train-

ing strategy to make the guidance gradually distilled, which

enables that a CNN model can be trained strong enough to

represent both discriminative local and boundary informa-

tion of objects when the model converges.

To the best of our knowledge, this work is the first to

explore bottom-up object evidences in weakly-supervised

object detection task. The contribution can be summarized

as follows:

1. We propose to combine bottom-up object evidences

with top-down class confidence scores in weakly-

supervised object detection task.

2. We propose WSOD2 (WSOD with objectness distil-

lation) to distill object boundary knowledge in CNN

by a bounding box regressor and an adaptive training

mechanism.

3. Our experiments on PASCAL VOC 2007/2012 and

MS COCO datasets demonstrate the effectiveness of

the proposed WSOD2.

2. Related Work

2.1. Weakly-supervised Object Detection

Weakly-supervised object detection has attracted many

attentions in recent years. Most existing works adopt the

idea of multiple-instance learning [2, 6, 17, 28, 29, 31, 34]

to transform weakly-supervised object detection into multi-

label classification problems. Bilen et al. [2] proposes WS-

DDN which performs multiplication on the score of classi-

fication and detection branches, so that high-confident pos-

itive samples can be selected. Tang et al. [28] and Tang

et al. [29] find that online transforming image-level la-

bel into instance-level supervision is an effective way to

boost the accuracy, and thus propose to online refine sev-

eral branches of instance classifiers based on the outputs of

previous branches. As class activation map produced by

a classifier can roughly localize the object [39, 40], Wei et

al. [36] tries to utilize it to generate course detection results,

and use them as reference for the later refinement. Most pre-

vious works rely heavily on pseudo ground truths mining,

either online (inside training loop) or offline (after training).

Such pseudo ground truths are determined by classification

confidence [28, 29] or hand-crafted rules [9, 38], which are

not accurate to measure the objectness of regions.

2.2. Bounding Box Regression

Bounding box regression is proposed in [12], and is

adopted by almost all recent CNN-based fully-supervised

object detectors [3, 4, 13, 21, 24] since it can reduce the lo-

calization errors of predicted boxes. However, only a few

works introduce bounding box into weakly-supervised ob-

ject detection due to the lack of supervision. Some works

consider bounding box regression as a post-processing

module. Among which, OICR [29] directly uses the detec-

tion results of training set to train Fast R-CNN. W2F [38]

designs some strategies to offline select pseudo ground truth

with high precision, based on the output of OICR. Differ-

ently, Gao et al. [9] integrate bounding box regressors into

OICR inside training loop which leverage addition counting
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Figure 2: The framework of WSOD2. Image with label and pre-computed proposals will be fed into a CNN to obtain region features. The region features

will then be passed through several classifiers and a bounding box regressor. Non-maximum suppression (NMS) is applied to mine positive samples from the

predictions. Top-down (TD) confidence and bottom-up (BU) evidence are computed by the classification branch and low-level image feature, respectively.

They are combined to assign class labels and regression targets for each proposal. “Cls” indicates classifier, and “Bbox” indicates bounding box regressor.

The white arrows indicate the optimization directions for two exemplar region proposals. [Best viewed in color]

information to help selecting pseudo ground truths.

In this paper, we integrate bounding box regressor into

weakly-supervised detector, and assign regression targets

by novelly leveraging bottom-up object evidence.

3. Approach

The overview of our proposed weakly-supervised object

detector with objectness distillation (WSOD2) is illustrated

in Figure 2. We first adopt a based multiple instance detec-

tor (i.e. Cls 0) to obtain the initial detected object bounding

boxes. Based on the localization of each proposed bound-

ing box, we compute the bottom-up object evidence. Such

evidence serves as guidance to transform image-level labels

into instance-level supervision. We optimize the whole net-

work in an end-to-end and adaptive fashion. In this section,

we will introduce WSOD2 in detail.

3.1. Based Multiple Instance Detector

In weakly-supervised object detection, only image-level

annotations are available. To better understand semantic in-

formation inside an image, we need to go deep into region-

level, and analyze the characteristic of each box. We first

build a base detector to obtain initial detection result. We

follow WSDDN [2] to adopt the idea of multiple instance

learning [32] to optimize the base detector by transform-

ing WSOD into multi-label classification problem. Specifi-

cally, given an input image, we first generate region propos-

als R by Selective Search [33] and extract region features

x by a CNN backbone, an RoI Pooling layer and two fully-

connected layers.

Region features x are then fed into two streams by two

individual fully-connected layers, and the two produced

feature matrices are denoted as xc, xd ∈ R
C×|R|, where

C indicates the class number and |R| denotes the proposal

number. Two softmax functions are applied on xc and xd

towards two distinct directions as follows:

[σc]ij =
e[x

c]ij

∑C
k=1 e

[xc]kj

,
[

σd
]

ij
=

e
[xd]

ij

∑|R|
k=1 e

[xd]ik

, (1)

where [σc]ij denotes the prediction of ith class label for jth

region proposal, and
[

σd
]

ij
is the weight learned of jth re-

gion proposal for ith class. We compute the proposal scores

by element-wise product s = σc ⊙ σd, and aggregate over

the region dimensions to obtain image-level score vector

φ = [φ1, φ2, · · · , φC ] by φc =
∑|R|

r=1 [s]cr. In such way,

we can utilize the image-level class label as supervision and

apply binary cross-entropy loss to optimize the base detec-

tor. The base loss function is denoted as:

Lbase = −
C
∑

c=1

(φ̂clog(φc) + (1− φ̂c)log(1− φc)), (2)

where φ̂c = 1 indicates that the input image contains cth

class, and φ̂c = 0 otherwise. The prediction score s is con-

sidered as initial detection result. However, it is not precise

enough and can be further refined as discussed in [29].
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3.2. Bottom-up and Top-Down Objectness

The essence of an object detector is a bounding box rank-

ing function, in which objectness measurement is an impor-

tant factor. It is common to consider classification confi-

dence as objectness score in recent CNN-based detectors

[13, 24, 25]. However, such strategy has a flaw in weakly-

supervised scenario that it is difficult for trained detectors to

distinguish complete objects from discriminate object parts

or irrelevant background. To relieve this issue, we explore

bottom-up object evidences (e.g., superpixels straddling)

which play important roles in traditional object detection.

As stated in [1], objects are standalone things with well-

defined boundaries and centers. Thus, we expect a box with

a complete object to have a higher objectness score than a

partial, oversized or background box. Bottom-up object ev-

idence summarizes the boundary characteristic of common

objects, which can help make up for the boundary discover-

ing weakness of CNN.

We propose to integrate bottom-up object evidence to

train weakly-supervised object detectors. Specifically, in-

spired by OICR [29], we build K instance classifiers on top

of x, consider the output of kth classifier as the supervision

of (k + 1)th one, and exploit bottom-up object evidence to

guide the network training. Each classifier is implemented

by a fully-connected layer and a softmax layer along C + 1
categories (we consider background as 0th class). Formally,

for kth classifier, we define the refinement loss function of

kth classifier as:

Lk
ref = −

1

|R|

∑

r∈R

(wk
r · CE(pkr , p̂

k
r )), (3)

where pkr denotes the {C + 1}-dim output class probability

of proposal r, and p̂kr indicates its ground truth one-hot la-

bel. CE(pkr , p̂
k
r ) = −

∑C
c=0 p̂

k
rclog(p

k
rc) is a standard cross

entropy function. Since the real instance-level ground truth

labels are unavailable, we use an online strategy to dynam-

ically select pseudo ground truth labels of each proposal in

training loop, which will be further explained in Sec 3.4.

We online assign loss weight wk
r based on the objectness

of proposal r. Specifically, we first extract bottom-up evi-

dence of r and denote it as Obu(r), then integrate Obu(r)
with Ok

td(r), which is the class confidence produced by kth

classifier. wk
r is a linear combination of bottom-up evidence

and top-down confidence as follows:

wk
r = αObu(r) + (1− α)Ok

td(r), (4)

where α denotes the impact factor of bottom-up object evi-

dence. Three terms in Eqn 4 are defined as follows:

Bottom-up object evidence Obu. We mainly adopt

Superpixels Straddling(SS) as bottom-up evidence in

this work, and we also explore other three evidences:

textbfMulti-scale Saliency(MS), Color Constrast(CC) and

Edge Density(ED). Experiment details of these evidences

can be found in Sec. 4.2.

Top-down Class Confidence Otd. We compute top-down

confidence of current branch based on the output of previ-

ous branch. Specifically, once we obtain class probability

pk−1
r of (k− 1)th branch, top-down class confidence of kth

branch is computed as:

Ok
td(r) =

C
∑

c=0

(pk−1
rc · p̂krc). (5)

Since p̂k is a one-hot vector, only one value of pk−1 will be

picked to computed Ok
td(r).

Impact Factor α. α is the impact factor to balance the ef-

fect of bottom-up object evidence and top-down class confi-

dence, which is computed by some weight decay functions.

Such design enables boundary knowledge to be distilled

into CNN, which will be detailed discussed in Sec. 3.4.

As bottom-up object evidence and top-down class confi-

dence can measure how likely a box contain a object from

the perspective of boundary and semantic information, we

consider these two representations as bottom-up and top-

down objectness, respectively.

3.3. Bounding Box Regression

Bottom-up object evidence is capable to discovery ob-

ject boundary, so we explore how to make it guide the pre-

computed bounding boxes updated during training. An in-

tuitive idea is to integrate bounding box regression to refine

the positions and sizes of proposals.

Bounding box regression is a necessary component in

typical fully-supervised object detector, as it is able to re-

duce localization errors. Although bounding box annota-

tions are unavailable in weakly-supervised object detection,

some existing works [9, 28, 30, 38] shows that online or of-

fline mining pseudo ground truths and regressing them can

boost the performance a lot. Inspired by this idea, we inte-

grate a bounding box regressor on the top of x, and make it

can be online updated. The bounding box regressor has the

same formulation as in Fast R-CNN [11]. For region pro-

posal r, the regressor predicts offsets of locations and sizes

tr = (txr , t
y
r , t

w
r , t

h
r ), and is further optimized as follows:

Lbox =
1

|Rpos|

|Rpos|
∑

r=1

(wK
r · smoothL1(tr, t̂r)), (6)

where t̂r is computed by the coordinates and sizes differ-

ence between r and r̂ as described in [12], where r̂ indi-

cates the regression reference. Rpos indicates positive (non-

background) regions, which will be explained in Sec. 3.4.

smoothL1 function is the same function as defined in [25].

wK
r denotes the regression loss weights computed by the

last classification branch. We compute pseudo regression
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reference r̂ based on the influence of wK
r which evaluates

the objectness of a proposal as we stated in Sec. 3.2:

r̂ = argmax
{m∈M(K,R)|IoU(m,r)>Tiou}

(wK
m), (7)

where M is positive sample mining function which will be

explained in Sec 3.4, and Tiou is a specific IoU threshold.

Eqn 7 enables each positive region sample to approach a

nearby box which has the high objectness.

We adopt bounding box regression to augment the box

prediction during training. We update Eqn 4 as:

wk
r = αObu(r

′) + (1− α)Ok
td(r), (8)

where r′ is r offset by tr. We keep Ok
td(r) unchanged be-

cause Ok
td contains a RoI feature warping operation, which

will be affected by bounding box prediction. In this new

formulation, the localization of proposals is online updated.

The updated boxes may achieve higher objectness, which

means more precise and complete regression targets have

higher probability to be selected.

3.4. Objectness Distillation

Eqn 3 has the similar formulation as knowledge distil-

lation [15, 16], where the external knowledge comes from

bottom-up and top-down objectness. Inside which, α is a

weight to balance each knowledge. At the beginning of

training, top-down classifiers are not reliable enough, so we

expect bottom-up evidences to take the dominant place in

the combination (i.e. Eqn 4). With the guidance of bottom-

up evidences, the network will try to regulate the confidence

distribution of top-down classifiers to comply with bottom-

up evidences. We call this process objectness distillation.

As the training proceeds, the reliability of Otd increases,

and Otd inherits the boundary decision ability from Obu,

while it still keeps the semantic understanding ability be-

cause of the classification supervision. Therefore, α can

gradually move the attention from bottom-up object evi-

dences to top-down CNN confidences. Specifically, α is

computed by some weight decay functions. We survey sev-

eral weight decay functions including polynomial, cosine

and constant functions, and we will compare the effective-

ness of different functions in Sec 4.2.

Except α, to enable objectness distillation, we also need

to determine p̂kr . We want to leverage bottom-up evidences

to enhance boundary representation while keep the seman-

tic recognition ability, thus we utilize output from previous

branch of classifier to mine positive proposals.

Given the output from (k − 1)th classifier, we mine

pseudo ground truths by following steps:

1. We apply Non-Maximum Suppression (NMS) on R
based on class probability pk−1

r of each proposal r us-

ing a pre-defined threshold Tnms. We denote the kept

boxes as Rkeep.

2. For each category c(c > 0), if φ̂c = 1, we seek all

boxes from Rkeep whose class confidences on category

c are greater than another pre-defined threshold Tconf ,

and assign these boxes category label c. Specially, if

no box is selected, we seek the one with highest score.

The set of all seek boxes is denoted as Rseek.

3. For each seed box in Rseek, we seek all its neighbor

boxes in R. Here we consider a box is the neighbor

of another box if their Intersection over Union (IoU) is

greater than a threshold Tiou. We denote the set of all

neighbor boxes as Rneighbor. All neighbor boxes will

be assigned the same class label as their seed boxes.

Other non-seed and non-neighbor boxes will be con-

sidered as background. We transform the assigned la-

bels to one-hot vector to obtain all p̂kr .

4. Finally, we consider the union set of Rseek and

Rneighbor as the positive proposals: Rpos = Rseek ∪
Rneighbor.

We group the above operations into function M(k,R)
which will return the set of positive proposals, as we men-

tioned in Sec 3.2 and Sec 3.3. By such way, close positive

samples will be assigned same category label, while sam-

ple with high objectness will receive high weight. Such in-

formation will be distilled into CNN by optimization, thus

CNN will gradually increase the ability of discovering ob-

ject boundary.

3.5. Training and Inference Details

Training. The overall learning target is formulated as:

L = Lbase + λ1

K
∑

k=1

Lk
ref + λ2Lbox, (9)

where λ1 and λ2 are hyper-parameters to balance loss

weights.. We adopt λ1 = 1 and λ2 = 0.3, and follow [29]

to set K = 3. Since the supervision of all K classifiers

comes from previous branches, we set α = 0 in the first

2, 000 iterations for warm-up. When mining pseudo ground

truths, typically we follow [38] to set Tnms = 0.3, Tconf =
0.7, Tiou = 0.5.

Inference. Our model have K refinement classifiers and

one bounding box regressor. For each predicted box, we

follow [29] to average the outputs from all K classifiers to

produce the class confidence, and adjust its position and size

using the bounding box regressor. Finally, we apply NMS

with threshold 0.3 to remove redundant detected boxes.

4. Experiments

4.1. Experimental Setup

Datasets and evaluation metrics. We evaluate our ap-

proach on three object detection benchmarks: PASCAL

8296



Evidence aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

N/A 58.5 63.5 46.3 25.0 18.7 66.4 63.6 55.7 26.4 45.7 42.2 43.8 48.5 63.5 15.0 24.5 44.3 49.8 62.3 54.3 45.9

CC 62.0 64.5 44.9 24.5 19.6 70.3 62.9 52.6 20.6 54.5 44.2 49.0 55.7 64.9 15.1 22.0 49.2 56.2 52.7 58.6 47.2

ED 52.7 60.2 44.2 32.2 20.6 65.8 60.8 67.0 21.8 57.7 38.1 51.0 57.5 66.2 15.0 25.0 52.2 54.1 61.0 37.8 47.0

MS 62.0 66.2 41.2 25.1 19.2 68.1 61.5 60.7 12.2 52.9 47.9 61.6 58.8 65.6 18.1 17.6 47.2 59.0 54.3 51.4 47.5

SS 61.3 63.6 44.6 26.6 21.0 65.5 61.2 49.0 25.1 52.6 44.2 58.3 64.1 65.8 16.7 21.9 49.6 53.7 59.4 57.8 48.1

CC+ED+MS+SS 59.5 57.6 43.1 29.7 19.7 65.4 59.7 68.1 21.5 57.6 45.7 50.5 58.4 64.0 14.6 17.2 50.4 61.2 64.9 50.0 47.9

Table 1: Ablation experiments on bottom-up object evidences. We integrate each evidence into WSOD2, and report the mean average precision (mAP) of

PASCAL VOC 2007 test split. We also combine all evidences by simply average, the result is listed in the last row.
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Figure 3: Ablation study of weight decay functions for α. (a) Weight

decay curves of different function. (b)mAP of different decay setting on

PASCAL VOC 2007 test split. n and N indicate current step and total step

number, respectively. [Best viewed in color]

VOC 2007 & 2012 [7] and MS COCO [22]. After removing

the bounding box annotations provided by these datasets,

we only use images and their label information for train-

ing. PASCAL VOC 2007 and 2012 consists of 9, 962 and

22, 531 images of 20 categories, respectively. For PASCAL

VOC, we train on trainval split (5, 011 images for 2007 and

11, 540 for 2012), report mean average precision (mAP) on

test split, and also adopt correct localization (CorLoc) on

trainval split to measure the localization accuracy. Both two

metrics are performed under the condition of IoU > 0.5 as

a standard setting. MS COCO contains 80 categories. We

train on train2014 split and evaluate on val2014 split, which

consists of 82, 783 and 40, 504 images, respectively. We re-

port AP@.50 and AP@ [.50 : .05 : .95] on val2014.

Implementation details. We adopt VGG16 [26] as the

CNN backbone, and use parameters pre-trained on Ima-

geNet [19] for initialization. We randomly initialize the

weights of all new layers using Gaussian distributions with

0-mean and standard deviations 0.01 (except 0.001 for

bounding box regressor), and initialize all new biases to 0.

We follow a widely-used setting [2, 29, 30, 37] to use Se-

lective Search [33] to generate about 2, 000 proposals for

each image. The whole network is end-to-end optimized

using SGD with an initial learning rate of 10−3, weight de-

cay of 0.0005 and momentum of 0.9. The overall iteration

step number is set to 80, 000 on VOC 2007, and the learn-

ing rate will be divided by 10 at 40, 000th step. For VOC

2012 we double the iteration step number and learning rate

decay step is also doubled to 80, 000th step. For MS COCO

we set iteration step number to 360, 000, and make learning

rate decay at 180, 000th step. We follow [28, 29] to adopt

bbox NMS BU α decay mAP

43.3

� 45.1

� � 45.9

� � � 48.1

� � � � 50.3

Table 2: Ablation study of different components of WSOD2. � indicates

that the component is used. “NMS” is unchecked when proposal with

highest confidence for each category is used as seed box.

multi-scale settings in training. Specifically, the short edge

of the input image will be randomly re-scaled to a scale in

{480, 576, 588, 864, 1280}, and we restrict the length of the

long edge not greater than 2000. Besides, horizontal flip of

all training images will be also used for training. We re-

port single-scale testing results for ablation study, and re-

port multi-scale testing results when comparing with previ-

ous works. All our experiments are implemented based on

PyTorch on 4 NVIDIA P100 GPUs.

4.2. Ablation Study

We conduct ablation studies to demonstrate the effective-

ness of WSOD2 on PASCAL VOC 2007.

Bottom-up evidences. For bottom-up object evidence,

we test the effect of four evidences in both individual and

combined ways. The four evidences are list as follows:

1) Multi-scale Saliency(MS) which summarizes the

saliency over several scales;

2) Color Constrast(CC) which computes the color dis-

tribution difference with immediate surrounding area;

3) Edge Density(ED) which computes the density of

edges in the inner rings;

4) Superpixels Straddling(SS) which analyzes the strad-

dling of all superpixels.

Since the value ranges of different evidences are incon-

sist, we normalize the computed value to [0− 1]. For CC,

ED and MS, we fix their parameters by setting θMS =
0.2, θCC = 2, θED = 2 empirically due to the lack of su-

pervision. For SS, we follow [8] to set θSS
σ = 0.8, θSS

k =
300. We refer the readers to [1] for more details of these

four evidences and the meaning of θMS , θCC , θED, θSS .

To easier analyze the effect of these bottom-up evi-

dences, we simply keep α = 1 in this ablation experiment

for all settings that include these evidences, and α = 0 for

the method that does not involve any bottom-up evidence as

a baseline for comparison. We also test the combination of

these four evidences by their average. As discussed in [1],
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method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN [2] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

ContextLocNet [18] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

OICR [29] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

PCL [28] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

Tang et al. [30] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

C-WSL [9] 62.9 64.8 39.8 28.1 16.4 69.5 68.2 47.0 27.9 55.8 43.7 31.2 43.8 65.0 10.9 26.1 52.7 55.3 60.2 66.6 46.8

MELM [34] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

ZLDN [37] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

WSCDN [35] 61.2 66.6 48.3 26.0 15.8 66.5 65.4 53.9 24.7 61.2 46.2 53.5 48.5 66.1 12.1 22.0 49.2 53.2 66.2 59.4 48.3

WSOD2 (ours) 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8 53.6

WSOD2∗ (ours) 68.2 70.7 61.5 42.3 28.0 73.4 69.3 52.3 32.7 71.9 42.8 57.9 73.8 71.4 25.5 29.2 61.6 60.9 56.5 70.7 56.0

Table 3: Mean average precision for different methods on PASCAL VOC 2007 test split. ∗ means training on 07+12 trainval splits.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

WSDDN [2] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

ContextLocNet [18] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

OICR [29] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

ZLDN [37] 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2

PCL [28] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

C-WSL [9] 85.8 81.2 64.9 50.5 32.1 84.3 85.9 54.7 43.4 80.1 42.2 42.6 60.5 90.4 13.7 57.5 82.5 61.8 74.1 82.4 63.5

Tang et al. [30] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

WSCDN [35] 85.8 80.4 73.0 42.6 36.6 79.7 82.8 66.0 34.1 78.1 36.9 68.6 72.4 91.6 22.2 51.3 79.4 63.7 74.5 74.6 64.7

WSOD2 (ours) 87.1 80.0 74.8 60.1 36.6 79.2 83.8 70.6 43.5 88.4 46.0 74.7 87.4 90.8 44.2 52.4 81.4 61.8 67.7 79.9 69.5

WSOD2∗ (ours) 89.6 82.4 79.9 63.3 40.1 82.7 85.0 62.8 45.8 89.7 52.1 70.9 88.8 91.6 37.0 56.4 85.6 64.3 74.1 85.3 71.4

Table 4: Correct Localization for different methods on PASCAL VOC 2007 trainval split. ∗ means training on 07+12 trainval splits.

method mAP CorLoc

OICR [29] 37.9 62.1

PCL [28] 40.6 63.2

Tang et al. [30] 40.8 64.9

ZLDN [37] 42.9 61.5

WSCDN [35] 43.3 65.2

WSOD2 (ours) 47.2 1 71.9

WSOD2∗ (ours) 52.7 2 72.2

Table 5: Comparisons with different methods on PASCAL VOC 2012

dataset. ∗ means training on 07+12 trainval splits.

linear combination is not a good way to combine them, we

conduct this experiment only for evaluating the effective-

ness of bottom-up evidences and inspiring future works.

The results are shown in Table 1. From the compari-

son with the baseline, we can find that the performance can

increase significantly with the guidance of bottom-up evi-

dences. Table 1 also includes AP on all categories, from

which we find that different evidences may favor different

categories. For example, for single evidence, ED favors to

“boat”, while not performs good on “tv’. Moreover, we can

find that this result also agrees with the performance that

measures objectness of each evidence as reported in [1],

which indicates that these bottom-up evidences are positive

correlated to object detection performance. From the result

of their combination, we can find it achieves better perfor-

mance than all single evidences except SS. We believe that

linear average is not a correct way to combine these evi-

dence, and better ways can be explored in the future. We

adopt SS as bottom-up object evidence in later experiments.

Impact factor α. We test several weight decay func-

tions, including constant (α = 0, 0.5, 1), polynomial(α =
−(n/N)γ + 1, where γ = 2, 3, 1, 1/2, 1/3) and cosine

(α = (1 + cos(nπ/N)/2) functions where n and N in-

1http://host.robots.ox.ac.uk:8080/anonymous/AVFPZC.html
2http://host.robots.ox.ac.uk:8080/anonymous/Z4VIWW.html

method AP@.50 AP@[.50:.05:.95]

Ge et al. [10] 19.3 8.9

PCL [28] 19.4 8.5

PCL + Fast R-CNN [28] 19.6 9.2

WSOD2 (ours) 22.7 10.8

Table 6: Experiment results of different methods on MS COCO dataset.

dicate current step and total step number, respectively. The

results are shown in Figure 3. From the comparison of the

first three lines, we find that bottom-up evidences will help

the model learn the boundary representation and results in

better object detection result. Among different designs, lin-

ear decay (i.e., α = −(n/N) + 1) performs best and the

later experiments are conducted based on this setting. We

remain exploration of the best parameters for future study.

Effect of each component. Table 2 shows the effective-

ness of each component. We can find that the bounding box

regressor brings at least 2.6 mAP improvement. Settings

that do not use NMS means directly consider the highest-

confident box for each category as seed box as OICR [29].

NMS can also improve 0.8 mAP. Details of bottum-up ev-

idences (BU) and α decay function are discussed above,

where both bottom-up evidences and α decay function can

bring 2.2 mAP improvement.

4.3. Comparisons with State-of-the-Arts

We evaluate WSOD2 on PASCAL VOC 2007 & 2012 [7]

and MS COCO datasets [22], report the performances and

compare with state-of-the-art weakly-supervised detectors.

As most of our compared approaches adopt multi-scale test-

ing, we report our multi-scale testing results.

AP evaluation on PASCAL VOC. From Table 3 we

can find that WSOD2 achieves 53.6 mAP on PASCAL

VOC 2007, which significantly outperforms other end-to-

end trainable models [28, 29, 35] with at least 5.3 mAP.

WSOD2 is also robust on PASCAL VOC 2012 and achieves
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Figure 4: Visualization of conv5 feature maps. The response maps are generated by average along all feature map channels, and normalized to (0, 255).
The feature maps in middle 4 columns are extracted by WSOD2 at different iterations. The last column is feature maps we extracted by OICR [29].

Figure 5: Example results by WSOD2. Green boxes indicate corrected

predictions, and red ones indicate the failure cases. [Best viewed in color]

47.2 mAP, which is shown in Table 5.

Besides, we follow the common setting in fully-

supervised object detection to train WSOD2 on PASCAL

VOC 07+12 trainval splits, and denote it as WSOD2∗. Such

setting achieves a surprising mAP score 56.1 as shown in

the last row of Table3.

CorLoc evaluation on PASCAL VOC. CorLoc evalu-

ates the localization accuracy of detectors on training set.

We report results on PASCAL VOC 2007 and 2012 trainval

split in Table 4 and Table 5, respectively. We can find that

WSOD2 significantly surpasses outperforms other end-to-

end trainable models [28, 29, 35] on both PASCAL VOC

2007 and 2012.

AP evaluation on MS COCO. We report results on MS

COCO dataset in Table 6. Since few works report results on

MS COCO dataset, we only compare performance with [10]

and [28]. We can find that WSOD2 outperforms compared

works by at least 2 AP.

4.4. Visualization and Case Study

We make a qualitative analysis of the effectiveness of

WSOD2 compared with OICR. We extract the conv5 fea-

tures of trained models, and visualize some cases in Fig-

ure 4. The highlighted parts indicate the high response area

of the input image in CNN. Compared with OICR, WSOD2

can gradually transfer the response area from discriminate

parts to complete objects.

Figure 5 exhibits some successful and failure cases of

WSOD2. We obverse that WSOD2 can well handle multi-

ple discrete instances, while there still remains a challenge

to solve detection problem in dense scenarios. We also find

that for “person” class, most weakly-supervised object de-

tectors tend to find human faces. The reason is that in the

current datasets, human face is the most common pattern of

“person”, while other parts are often missed in the image.

This remains a challenging problem and we can consider

leveraging human structure prior in the future.

5. Conclusion

In this paper, we propose a novel weakly-supervised

object detection with bottom-up and top-down objectness

distillation (i.e., WSOD2) to improve the deep objectness

representation of CNN. Bottom-up object evidence, which

could measures the probability of a bounding box including

a complete object, is utilized to distill boundary features in

CNN in an adaptive training way. We also propose a train-

ing strategy that integrates bounding box regression and

progressive instance classifier in an end-to-end fashion. We

conduct experiments on some standard datasets and settings

for WSOD task with our approach. Results demonstrate the

effectiveness of our proposed WSOD2 in both quantitative

and qualitative way. We also make a thorough analysis on

the challenges and possible improvement (e.g., for “person”

class) of WSOD problem.
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