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Abstract

Texture recognition is a challenging visual task as mul-
tiple perceptual attributes may be perceived from the same
texture image when combined with different spatial contex-
t. Some recent works building upon Convolutional Neu-
ral Network (CNN) incorporate feature encoding with or-
derless aggregating to provide invariance to spatial lay-
outs. However, these existing methods ignore visual tex-
ture attributes, which are important cues for describing the
real-world texture images, resulting in incomplete descrip-
tion and inaccurate recognition. To address this problem,
we propose a novel deep Multiple-Attribute-Perceived Net-
work (MAP-Net) by progressively learning visual texture
attributes in a mutually reinforced manner. Specifically, a
multi-branch network architecture is devised, in which cas-
caded global contexts are learned by introducing similar-
ity constraint at each branch, and leveraged as guidance
of spatial feature encoding at next branch through an at-
tribute transfer scheme. To enhance the modeling capabili-
ty of spatial transformation, a deformable pooling strategy
is introduced to augment the spatial sampling with adap-
tive offsets to the global context, leading to perceive new
visual attributes. An attribute fusion module is then intro-
duced to jointly utilize the perceived visual attributes and
the abstracted semantic concepts at each branch. Experi-
mental results on the five most challenging texture recogni-
tion datasets have demonstrated the superiority of the pro-
posed model against the state-of-the-arts.

1. Introduction
Texture refers to the fundamental microstructure of nat-

ural images and a preattentive visual cue of human percep-
tion [34, 10]. Since textural properties summarize not only
the fine-scale details (e.g. leaf veins) but also describe the
rough semantic concepts (e.g. leaf), they forms an impor-
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Figure 1. The part shows that textures usually have multiple
visual texture attributes. The part shows that the images with
different concepts may have the same visual texture attribute. The
word above the image represents the concept to which the image
belongs, and the words below the image represent the visual tex-
ture attributes contained in the image. All of the above images are
from DTD datasets [2]

tant mid-level image representation for natural scene under-
standing. The remarkable robustness of texture representa-
tion to local image deformations, variable illumination and
occlusions, as well as its describable attributes for charac-
terizing object, make it beneficial for many applications,
such as image retrieval, terrain classification and industri-
al visual inspection [19, 35, 27].

Texture recognition has been widely studied in the past
years [19]. The classic approaches, such as texton his-
tograms [6, 16, 22, 33], or bag-of-words [4, 15] usually
apply a set of handcrafted filter banks to transform texture
image into local features, and then aggregate them into a
global representation. Recently, significant progresses on
texture recognition have been achieved by deep convolu-
tional neural networks (DCNNs). M. Cimpoi et al. [3]
firstly introduce pre-trained CNNs into texture feature en-
coding for robust representation. Lin et al. [18] use a bilin-
ear module instead of fully connected layers to capture the
second-order variation of texture feature. To achieve spa-
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tial invariant representation, Zhang et al. [37] present Deep
Texture Encoding Network (DeepTEN) that integrates dic-
tionary learning and residual encoding into CNN to form
an end-to-end texture recognition network. By leveraging
DeepTEN as a texture encoding layer, J. Xue et al. [35]
further present a Deep Encoding Pooling Network (DEP)
to capture the orderless texture details together with local
spatial information for ground terrain recognition.

Although the existing texture recognition methods work
well on providing invariance to spatial context, there remain
gaps when dealing with textures in the wild. The major
reason is that the underlying visual attributes of texture im-
ages are not well exploited in recognition. Visual textures
attributes play an important role in object descriptions, par-
ticularly for those objects that are best characterized by a
pattern with semantic concept, such as a banded shirt or a
striped zebra. Seeking for the best texture representation
with describable texture attributes, M. Cimpoi et al. [2] de-
sign a public benchmark, DTD dataset, in which texture
terms are identified from the cognitive aspects of texture
perception and used to describe a large dataset of patterns
collected in the wild.

Different from the problem of object recognition, visu-
al attributes and sematic descriptions of textures are highly
inter-correlated but do not imply each other. As shown in
Fig. 1, one texture description may include a combination
of multiple visual attributes (e.g. marble can be marbled,
veined and cracked at the same time). Meanwhile, one at-
tribute may imply multiple texture description (e.g. Che-
quered may equally apply to grid or marble). This textural
property makes the network tend to focus on the statistical-
ly dominant attributes while ignoring other visual attributes
that are equally discriminative, if we just port from general
object recognition CNN framework to texture recognition.

To address this problem, this paper proposes a novel
deep Multiple-Attribute-Perceived Network (MAP-net) by
progressively learning visual texture attributes in a mutu-
ally reinforced manner. We find that there are inheren-
t correlations between the spatial contexts corresponding
to multiple visual attributes of texture images. Therefore,
we devise a multi-branch network architecture to take ad-
vantage of the correlation between attributes for texture
recognition. Specifically, the cascaded global contexts are
learned by introducing similarity constraint at each branch,
and leveraged as guidance for spatial feature encoding at
next branch through an attribute transfer scheme. More-
over, a deformable pooling strategy is introduced to achieve
adaptive spatial sampling based on global context, leading
to perceive new visual attributes without additional supervi-
sion. An attribute fusion module is then introduced to joint-
ly utilize the perceived visual attributes and the abstracted
semantic concepts at each branch. The resultant network
shows excellent performance not only for describing tex-

ture dataset DTD, but also for general material databases
(FMD [30, 29], GTOS [36] and GTOS-mobile [35]).

Our contributions are summarized as follows:
(1) This paper presents a novel Deep Multiple-Attribute-

Perceived Network (MAP-Net) by progressively learning
visual texture attributes in a mutually reinforced manner,
providing a complete description for real-world texture im-
age.

(2) This paper proposes a multi-branch network archi-
tecture with an attribute transfer scheme, in which cascaded
global contexts are learned by introducing similarity con-
straint at each branch, and leveraged as guidance for spatial
feature encoding at next branch, leading to perception of
multiple visual attributes.

(3) Experimental results on the five most challenging
texture recognition datasets have demonstrated the superi-
ority of the proposed model against the state-of-the-arts.

2. Related Work
Texture recognition has been a topic of intensive research

in the fields of computer vision due to its important role in
a wide variety of applications. Here we only present the
research most relevant to the work of this paper. Please refer
to [19] for a comprehensive review of texture recognition.

The research of texture representation traditionally em-
braces three problems including feature extraction, feature
encoding and feature aggregation. Typical local features
used in texture representation include various filter banks
[17, 32], gray level co-occurrence matrix [12], LBP [24],
SIFT [20] and HOG [9]. Given the extracted texture fea-
tures from an image, some studies such as Bag-of-Words
model (BoWs) [5], Vector of Locally Aggregated Descrip-
tors (VLAD) [13] and Fisher Vector [25] are presented to
map local features to texton dictionaries, resulting in feature
coding vectors. Then a global feature representation is pro-
duced by aggregating the coded feature vectors, and used as
the basis for recognition. Many approaches such as Near-
est Neighbor Classifier (NNC), Support Vector Machines
(SVM), neural networks, and random forests are candidates
for texture recognition.

Recently, some deep leaning based texture representa-
tion methods have been proposed by employing pretrained
CNN models or performing finetuning for specific tasks.
The previous CNN based method usually combines the C-
NN feature extraction with the BoWs method. For exam-
ple, FVCNN [3] and LFV [31] directly use the FV method
to encode features extracted by the deep network. The ad-
vance of these existing methods is the powerful basic fea-
ture representation (e.g. CNN and SIFT) and the ability
of features coding (e.g. FV-based method). Furthermore,
some methods [18, 11, 8] introduce orderless bilinear pool-
ing module to polarize strong response and weak response
features. DeepTEN [37] uses the classic idea of residual
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Figure 2. The part shows that a texture image has multiple visual texture attributes, and there are correlations among these attributes.
The part shows the multiple visual attributes learning process which is summarized by our motivation.

dictionary learning to encode feature, embedding the cod-
ing layer into the network for end-to-end training. DEP [35]
uses DeepTEN as a texture encoding layer to capture order-
less texture details and local spatial feature.

Different from the existing texture recognition method-
s, this paper aims to perceive multiple visual attributes to
achieve optimal real-world texture representation by learn-
ing cascaded global context as guidance. Technically,
a Deep Multiple-Attribute-Perceived Network (MAP-Net)
with cascaded multi-branch architecture is proposed to pro-
gressively learn visual texture attributes in a mutually rein-
forced manner. In particular, our work seems to be simi-
lar to that of multi-label learning [38], which is to specify
multiple labels (visual attributes) for an input texture im-
age. However, different from the multi-label learning that
each training sample is associated with several labels, each
texture image has only one attribute label as supervision,
which means that our work is more challenging. To address
this problem, we utilize the inherent correlations between
the attributes of the same texture for perception of multiple
visual attributes.

3. Multiple-Attribute-Perceived Network
3.1. Motivation

The human visual system represents image patches as
textures, which not only summarizes the fundamental mi-
crostructure of natural image but also the perceptual at-
tributes from pre-attentive aspects [34, 10]. This gives us
an inspiration: a good texture representation should sum-
marize the granularity and repetitive patterns of object sur-
faces, as well as the describable attributes for characterizing
object. However, it is a challenging task to take visual at-
tributes of textures into account for recognition, since mul-
tiple perceptual attributes may be identified from the same
texture image when combined with different spatial context
for perceiving.

Our proposed method is based on the observation that:
1) there are occurrences between the visual attributes. For
example, the attribute grid tends to co-exist with waffled, 2)
there are also correlations between the image contexts cor-
responding to attributes. As illustrated in Fig. 2 (a), the
texture with description of ‘grid’ contains three attributes:
Grid, Waffled and Meshed, and the texture with description
of ‘marble’ contains three attributes: Marbled, Veined and
Cracked. There are dependencies between these attributes,
e.g. Waffled represents a grid pattern with single color, and
‘Mesh’ means a waffled pattern with holes. When we ob-
serve the typical patterns of these attributes, we can find
that the dependencies are also reflected in their correspond-
ing image context. It is mainly manifested in two aspects:
1) these patterns have similar texture primitives, i.e., tex-
tons or repetitive patterns, 2) the locations and scales of the
corresponding image contexts are correlated. For example,
the attributes of Marbled, Veined and Cracked correspond
to the image contexts at coarse-to-fine multiple scales. And
the locations of image contexts related toGrid, Waffled and
Meshed are somewhat coincidence.

Based on the above observations, we propose to utilize
the correlation of image contexts corresponding to multiple
attributes for texture recognition. As shown in Fig. 2 (b),
we combine local spatial encoded features related to texture
details with global context features corresponding to visual
attributes to generate texture representation. To take advan-
tage of dependencies between these attributes, we devise a
cascaded multi-branch architecture with an attribute trans-
fer scheme, in which cascaded global context are leaned and
leveraged as guidance to perceive multiple visual attributes.

3.2. Architecture

In this paper, we propose a novel deep Multiple-
Attribute-Perceived Network (MAPnet) for real-world tex-
ture recognition by progressively learning visual texture at-
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Figure 3. Architecture of our proposed MAP-net. MAP-net is a cascading structure, in which first branch is divided into three parts:
feature extractor, feature pool, and feature aggregation. The attribute transformation layer is used to connect between adjacent branches.
Finally, the results of each branch are merged through a multi attributes fusion module. To get a better description of attributes, a similarity
constraint is introduced. A deformable pooling strategy with adaptive offsets to global context is introduced in ATM to enhance the
modeling capability of spatial transformation.

tributes in a mutually reinforced manner. The overall ar-
chitecture of our proposed method is illustrated in Fig. 3.
Specifically, a multi-branch CNN is proposed, in which cas-
caded global contexts are learned by introducing similarity
constraint at each branch, and leveraged as guidance for s-
patial feature encoding at next branch through an attribute
transfer scheme. To perceive new visual attributes at each
branch, a deformable pooling strategy with adaptive offsets
to global context is introduced to enhance the modeling ca-
pability of spatial transformation. The perceived visual at-
tributes and the abstracted semantic concepts at each branch
are jointly utilized by an attribute fusion module, achieving
a comprehensive recognition.

Cascaded global context. Cascaded global contexts related
to visual attributes are learned by a multi-branch CNNmod-
el. The first branch of our proposed model can be divided
into three parts: feature extractor, feature pool, and feature
aggregation. Similar to [37], we also use Resnet50 as our
feature extractor. To capture the comprehensive local spa-
cial feature, we concatenate different levels of features to-
gether as a feature pool to capture more comprehensive lo-
cal features. We upsample different feature maps to obtaion
the same resolution as the original feature map via bilinear
interpolation. To decrease the computational cost, a
convolution layer is used to reduce the channel to . To
adapt to local features with different sizes, we adopt adap-
tive average pooling to achieve orderless aggregation. Fi-

nally, the predicted semantic concepts and global context
are obtained through the non-linear transformation by full
connection layer. Furthermore, to get a better descriptionof
attributes, we introduce similarity constraints into the fea-
ture space to make the intra-class tighter and the inter-class
more dispersed by using triplet loss [28]. A triplet consists
of three images, denoted as , where , is the
number of triplets, is the reference image from a specif-
ic class, an image from the same class, and an image
from a different class. The triplet loss is defined as follows:

(1)

where and
, is one

of the output of the fully connected layer for measuring dis-
tances in feature space, is the squared Euclidean dis-
tance between two -normalized vectors, is a certain
margin . Theoretically, triplet loss can effectively
constrain the intra-class relationship with the inter-class re-
lationship.

Combining the advances of softmax loss and triplet loss,
we jointly optimize two kinds of losses by a multi-task
learning strategy. Here the two kinds of losses are integrated
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Figure 4. Attribute Transfer Module. A deformable pooling strat-
egy with adaptive offsets to global context is introduced in at-
tribute transfer module to enhance the modeling capability of s-
patial transformation.

though linear weighed summation:

(2)

where , where is
the balance weight. We jointly optimizing softmax loss and
triplet loss, which not only improvs the representation ca-
pability of CNN, but also resolves the issue of slow conver-
gence when only using the triplet loss.
Attribute transfer module. Through an attribute transfer
module, the cascaded global context corresponding to vi-
sual attribute are leveraged as guidance of spatial feature
encoding at the next branch [26]. To enhance the modeling
capability of spatial transformation, a deformable pooling
strategy is introduced to augment the spatial sampling with
adaptive offsets to the global context, leading to perceive
new visual attributes. Here, we define the global contexts
that imply the correlation between multiple attributes as re-
gion of interest (RoI), spatial arrangement and texture prim-
itive, respectively. The structure of the attribute transfer
module is shown in Fig. 4. First, we transform global con-
text information into RoI vector which is four-dimensional
vector containing size w, h ( ) and a top-left corner ,
arrangement vector and texture primitives vector through
three fully connection layers. Then we use the arrange-
ment vector to guide the offset generation, which can be
expressed as follows:

(3)

Here is the offset, is the input feature map and is
arrangement vector, is stacking operation which aim
to transfer vector feature to feature block, is a weight
matrix ( ), and is a bias. Both and
are learnable. To ensure the integrity of the local feature,we
only focus on spatial location in deformable ROI pooling,
Thus the form of offset is in this paper. The

Figure 5. Multi Attributes Fusion Module. Multi attributes fu-
sion module uses the semantic concepts learned by each branch
to obtain a weight vector to re-weight the attribute descriptions
perceived.

pooling process can be expressed as follows:

(4)

where is the output of feature map, is the original sam-
pling points position. is the sampling points po-
sition after the offset is introduced, where is the collection
of original sampling points and . As the offset is
typically fractional, Eq. 4 is also implemented via bilinear
interpolation as [7]. Then, we use the same structure to in-
troduce texture primitive vector into a new spatial feature
encoding.
Multi attributes fusion. To make full use of the attribute
representations under different branches, a multi attributes
fusion module is proposed. Fig. 5 shows the structure of
the multi attributes fusion module. We consider the differ-
ence between the semantic concepts learned by each branch.
Through a nonlinear transformation (fully connection lay-
er), we obtain a weight vector to re-weight the attribute de-
scriptions perceived by each branch. Finally, a comprehen-
sive texture feature representation is obtained by summa-
tion. This process can be expressed as:

(5)

where is the weight vector, is the fully connec-
tion layer for getting weight vector, is the concatenate
operation, is the softmax function, is the
triplet output of three branches. The final result is obtained
by weighting fusion: , where is
the fusion result, is the fully connection layer for getting
final recognition result. is the semantic concept pre-
diction output of three branches. The loss of fusion result
is: , where is the
reference image from a specific class, is an image from
the same class, and is an image from a different class,

is the loss of fusion result, is the soft-
max cross entropy loss, is the true label. Combining this
fusion loss, we present the loss function of our MAP-net:

(6)
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where is the total loss of MA-net, is the loss of
each branch ( ), is the weight of fusion
loss, is the weight of each branch. In this paper, we set

.

4. Experiments
In this section, we evaluate the proposed method on five

texture/material datasets and then analyze the effectiveness
of the method.

4.1. Datasets and implementation

Experimental data. We evaluate our model on five
most challenge representative texture/material recognition
datasets. Describable Texture Database (DTD) [2] is an
attribute-based texture dataset contains texture cate-
gories with a total of images. Flickr Material Dataset
(FMD) [30, 29] consists of material categories, each of
which contains images. KTH-TISP2b (KTH) [1, 23]
dataset contains material categories with a total of
images. Ground Terrain in Outdoor Scenes (GTOS) [36] is
a dataset of ground materials in outdoor scene with cate-
gories. GTOS-mobile [37] is collected from GTOS dataset
by mobile phone, which consists of material classes. For
DTD, FMD and KTH datasets, we randomly divide each
dataset into splits and report the mean accuracy across
splits. For GTOS and GTOS-mobile datasets, the evalua-
tion is based on provided train-test splits. Similar to [37],
the result accuracy are reported. The results
on DTD, FMD, KTH and GTOS datasets are based on 5-
time statistics, and the results on GTOS-mobile datasets are
averaged over runs.
Implementation details. We implement our model with
PyTorch, two TITAN Xp GPUs are used for training and
testing. Resnet-50 is used as feature extractor, in which
res3d, res4f and res5c are used as the source of feature pool,
the feature maps channels from feature pool are reduced to

by convolutional layer. Our model is trained using s-
tochastic gradient descent with mini-batch size . We use
Nesterov momentum with a weight of without dampen-
ing, and a weight decay of . Our model is trained for 30
epochs with a learning rate of . To get the best result,
we set , , and , respec-
tively. We generate 100k, 50k, 50k, 100k and 100k triplets
as train samples in every fold on DTD, KTH-T2b, FMD,
GTOS and GTOS-mobile, respectively. We set as the
output dimension of the triplet with margin 0.2. At the train-
ing phase, we set 0.6 learning rate for the feature extractor,
set 1.0 learning rate for other networks. For all datasets,
the training images are randomly cropped to
of the image areas, keeping the aspect ratio between and
. The training images are resized to . im-

ages are chosen to horizontal flips and vertical flips. At the

Table 1. Setting an appropriate loss weight in the similarity con-
strained loss is important. ‘SC’ denotes the similarity constraint
loss. The baseline is MAP-net only use softmax loss. Empirically,

yields the best performance.

DTD GTOS

(without SC)

Table 2. Ablation study on DTD and GTOS-mobile datasets. ‘F-
P’ is Feature Pool. ‘SC’ is Similarity Constraint. ‘MAF’ Multi
Attributes Fusion. represents the number of cascades.

Model FP SC MAF DTD GTOS

Resnet50

Baseline

MAP-net

testing phase, we use the resolution of for all
datasets.

4.2. Ablation study
To evaluate MAP-net, we conduct experiments with sev-

eral settings, including Feature Pool (FP), Similarity Con-
strained loss (SC) and Multi Attributes Fusion module
(MAF).
Similarity Constraint Loss. In this section, we explore the
effectiveness of similarity constraint loss for MAP-net. We
set the similarity constraint loss (SC) weight between 0
and 1 and show the results in Table 1. It is worth noting that
when the similarity constraint loss is not used, we choose
the output of the penultimate layer of the fully connected
layer as the global context information, and the other pa-
rameters are unchanged. For DTD and GTOS, adding the
similarity constraint loss, yields the best perfor-
mance. It outperforms the baseline with an improvement of

in terms of mean accuracy. As shown in Table
2, The performance is improved by (Baseline

Baseline+SC) and (Baseline+FP+MAF
MA-net). It indicated that taking into account the similarity
constraint is helpful for texture representation.
Number of Cascades. To study the effect of cascading
numbers, we set the number of branches N=1,2,3 (N=1
is general Resnet50), respectively. We perform the exper-
iments on DTD, KTH-T2b and FMD datasets. As shown in
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Table 3. The contribution of each branch to the final result. Where
.

DTD
KTH-T2b
FMD
GTOS

GTOS-mobile

Table 2. From the overall point of view, ‘N=1’ ‘N=2’
‘N=3’. It shows that cascade structure helps to improve the
final recognition result. Each additional branch would make
the final result better. It proves that using cascaded struc-
tures can get more potential discriminating basis. For DTD
dataset, the performance is .
For GTOS dataset, the performance is

. On the whole, the growth rate of the final result de-
creases with the number of branches increasing. It shows
that with the increasing of branches, the representation a-
bility of network is nearly saturated.
Feature Pool. We evaluate the effectiveness of feature
pool. As shown in Table 2, The performance is improved
by (Baseline Baseline+FP) and
(Baseline+SC+MAF MAP-net). The feature pool com-
bines different levels of features, which provided a good ba-
sic representation to the next feature encoding module and
feature aggregation.
Multi Attributes Fusion. In this part, we study the effect
of the multi attributes fusion module. The multi attributes
fusion module is designed to provide a fusion strategy for
the final recognition result. This strategy takes into account
the contribution of different attributes and adaptively fus-
ing. As shown in Table 2, The performance is improved by

(Baseline Baseline+MAF), and
(Baseline+SC+MAF MAP-net). It is proved

that the multi attributes fusion module had a good adaptive
weight selection effects.

4.3. Performance Analysis.
To explore the contribution of each branch to the final

fusion result, we choose all the samples predicted correct-
ly in test set ( -fold average). And the highest weight-
ed branch calculated by the multi attributes fusion mod-
ule is chosen as major recognition evidence. We compute
the distribution of the major recognition evidence of the
test set. As shown in Table 3, we find that the contribu-
tion of ‘ ’ to the five datasets is the largest, re-
spectively. And the contributions of the other two branch
are , , ,

and , respectively. It con-
firms that even if ‘ ’ plays an important role, the

Figure 6. Visualization of the extracted features of MAP-net (with-
out MC) and MAP-net after dimension reduced by t-SNE [21].
Here we use Resnet50 as the backbone and train two models on
DTD dataset.

Figure 7. Attributes learned from different branches and their fu-
sion weights. The order of results corresponds to that of branch.

contributions of the other two branches can not be ignored.
For further analyzing the influence of similarity con-

straint loss for MAP-net, we preform a experiment, in
which we extract features of baseline model MAP-net
(without MC) and the final model MAP-net and visualize
them in Fig. 6, The feature vector dimension is reduced
by t-SNE [21]. Compared with MAP-net (without MC),
MAP-net shows a better feature distribution that exhibits
smaller intra-class differences and larger inter-class varia-
tions. It demonstrates that the features of jointly optimizing
softmax loss and triplet loss are consistently much better
separated than only using softmax loss and enable MAP-
net to achieve a more discriminative feature representation.

In this paper, we use a novel deep Multiple-Attribute-
Perceived Network (MAP-net) by progressively learning
multiple visual texture attributes in a mutually reinforced
manner which are contained in one image with the same
semantic concept supervision. Fig. 7 shows the attributes
learned from different branches, where the weights are ob-
tained by multi attributes fusion module. In overall, the at-
tributes mined by each branch are the same as human under-
standing, and there is a correlation between these attributes.
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Table 4. Comparison with state-of-the-art. For a fair comparison, we experiment on MAP-net using different backbone (VGG-19, Resnet-
18 and Resnet-50). When Resnet-18 is used as feature extractor, res3b, res4b and res5b are used as the source of feature pool, the feature
maps channels from feature pool are transferred to with convolutional layer. And when VGG-19 is used as feature extractor,
conv5 4, conv4 4 and conv3 4 are used as the source of feature pool, the feature maps channels from feature pool are transferred to
with convolutional layer. Here ‘VGGVD’ is VGG-19.

Texture Dataset Backbone DTD KTH-T2b FMD GTOS GTOS-mobile

Method
FV-VGGVD [3] VGGVD
FC-VGGVD [3] VGGVD
B-CNN [18] VGGVD
B-CNN [35] Resnet18
LFV [31] VGGVD
FASON [8] VGGVD

DeepTEN [37] Resnet50
DeepTEN [35] Resnet18

DEP [35] Resnet50
DEP [35] Resnet18
DEP [35] Resnet18
PN [14] Resnet50
MAP-net VGGVD
MAP-net Resnet18
MAP-net Resnet50

For image , there are three attributes (che-
quered, grid and waffled) in this texture image, and there
is a connection among the three attributes ( grid can be
regarded as the whole structure of chequered, while waffled
can be regarded as chequered with the same color).

4.4. Comparisons against state-of-the-arts.
We compare the performance of our method with sever-

al texture/material recognitionmethods on DTD, KTH-T2b,
FMD, GTOS and GTOS-mobile datasets. All the method-
s are listed as follows: Fisher Vector CNN (FV-VGGVD)
[3]. General VGG-19 (FC-VGGVD) [3]. Bilinear-CNN
(B-CNN) [18]. First And Second Order information fu-
sion Network (FASON) [8]. Deep Texture Encoding
Network (DeepTEN) [37]. Locally-Transferred Fisher
Vectors (LFV) [31]. Deep Encoding Pooling Network
(DEP) [35]. Power Normalizations Network (PN) [14].
Table 4 shows the final result. Under the same backbond,
our method achieves the best performance among all tex-
ture/material recognition methods. For DTD, KTH-T2b
and FMD datasets, our method is high-
er than the state-of-the-art method LFV (based VGGVD)
and PN (based Resnet50). Our method achieves a more
distinguishable feature representation based on end-to-end
training without additional handcrafed features. For GTOS
dataset, our method is higher than the state-of-the-
art method DeepTEN (based Resnet50) which is built by a
deep texture encoding layer. For GTOS-mobile dataset, our
method is higher than the state-of-the-art method DEP
(based Resnet18) which is benefited from the deep texture
encoding layer and its association with orderless bilinear
pooling. It proves that the global context information guides

the local spatial features to perceive multiple visual texture
attributes, resulting in a more comprehensive feature repre-
sentation. Furthermore, the overall variance of our results
are smaller than that of other methods. It demonstrates that
our method is more stable than the compared methods.

5. Conclusion

In this paper, we propose a novel deep Multiple-
Attribute-Perceived Network (MAP-Net) by progressively
learning visual texture attributes in a mutually reinforced
manner. By considering the multiple visual texture proper-
ties that texture images have, we provide a more compre-
hensive description of real-world texture image. Specifi-
cally, a multi-branch network architecture with an attribute
transfer scheme is proposed, in which cascaded global con-
texts are learned by introducing similarity constraint at each
branch, and leveraged as guidance of spatial feature encod-
ing at next branch, leading to perception of multiple visu-
al attributes. Our MAP-net outperforms the state-of-the-
art texture/material recognition methods on the five most
challenging datasets: DTD, KTH-T2b, FMD, GTOS and
GTOS-mobile. Leveraging our proposed texture recogni-
tion model to comprehensive scene understanding will be
our future work.
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