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Abstract

Crowd counting has recently generated huge popularity

in computer vision, and is extremely challenging due to the

huge scale variations of objects. In this paper, we propose

the Attentional Neural Field (ANF) for crowd counting via

density estimation. Within the encoder-decoder network,

we introduce conditional random fields (CRFs) to aggregate

multi-scale features, which can build more informative rep-

resentations. To better model pair-wise potentials in CRFs,

we incorperate non-local attention mechanism implemented

as inter- and intra-layer attentions to expand the receptive

field to the entire image respectively within the same layer

and across different layers, which captures long-range de-

pendencies to conquer huge scale variations. The CRFs

coupled with the attention mechanism are seamlessly inte-

grated into the encoder-decoder network, establishing an

ANF that can be optimized end-to-end by back propagation.

We conduct extensive experiments on four public datasets,

including ShanghaiTech, WorldEXPO 10, UCF-CC-50 and

UCF-QNRF. The results show that our ANF achieves high

counting performance, surpassing most previous methods.

1. Introduction

Crowd counting, which aims to predict an accurate num-

ber of individuals in a scene, has recently generated great

popularity in computer vision due to its extensive real-world

applications, such video surveillance and urban planning.

However, crowd counting for real-life applications faces

many challenges. Some of the most common include occlu-

sion, low image quality/resolution, severe perspective dis-

∗These authors contribute equally.
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Figure 1. Density estimation results. Top Left: Input image. Top

right: Ground truth. Bottom Left: The best previous method

(SANet [3]). Bottom Right: ANF. We can easily observe the

huge scale variations in the input image, where the spatial scales

of pedestrians with large vertical pair-wise distances are diverse.

tortion, huge scale variation and the model inefficiency at

the inference stage [24, 25]. Prior works [28, 41] have made

great attempts to address these issues, and deep learning

models have been ubiquitously employed in existing crowd

counting methods. For instance, [21] iteratively incorpo-

rates the convolutional features and the predicted multi-

resolution density maps in various stages, and [28] com-

bines global and local contextual information from multiple

estimators.

In most crowd counting tasks, the input data comes from

surveillance cameras that are mounted above the crowd as

illustrated in Fig. 1. This means that the scale variation nor-

mally takes place in regions with large vertical distances

on input surveillance images. Thus, how to handle scale

variations while utilizing multi-scale features becomes the
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crux of crowd counting, which is the major focus in this

work. Previous research attempts [3, 41] have been made

to address the scale variation issue. For instance, the scale

aggregation network (SANet) was developed in [3] to ad-

dress the scale variance problem; however, it largely relies

on different scales of convolutional kernels. Despite multi-

scale convolutional kernels being used, the obtained feature

maps still suffer from significant information loss as the net-

work goes deeper. Feature aggregation across different lay-

ers using skip connections is popular in image segmenta-

tion tasks, such as UNet [23] and DeepLab [6]. This has

shown the great effectiveness of fusing multiple features

across convolutional layers in CNNs [20, 42, 38], which,

however, remains unexplored for the crowd counting task.

To deal with scale variation, long-range dependency has

recently been explored in the form of a non-local operation

embedded in convolutional neural networks (CNNs) [32].

It computes the response at a specific position by attend-

ing to all positions on the feature graph and taking their

weighted average in an embedding space. The effectiveness

of the non-local operation stems from the fact that it essen-

tially expands the receptive fields in CNNs. Meanwhile,

conditional random fields (CRF) [15, 16] as a representa-

tive discriminative graphical model have been investigated

in conjunction with CNNs for multiple inference tasks, e.g.,

image segmentation [9] and depth estimation [34].

In this paper, we propose attentional neural fields (ANF)

for crowd counting by density estimation. Within the con-

volutional encoder-decoder network, the ANF integrates

conditional random fields and an attention mechanism,

which can jointly aggregate multi-scale features and cap-

ture long-range dependencies. Different from the previous

work [34] in which CRFs are usually appended to the pre-

diction results as a post-processing, our ANF directly ap-

plies the random fields to the feature level to aggregate and

refine of multi-scale features derived from the CNN inner

layers. Furthermore, we introduce an attention mechanism

to construct pair-wise potentials in the CRF. The attention

is implemented as the inter- and the intra-layers, and can

exploit the spatial correlations between feature vectors not

only within the same scale but also across different scales.

Both intra and inter attentions calculate the weighted sum

across the holistic feature map as the response at each pixel,

which is beneficial to enlarging receptive fields and building

the communication channel across different scales of fea-

ture maps. More importantly, attention variables and multi-

scale feature variables are jointly estimated through mean-

fields updates and the full architecture can be trained in an

end-to-end manner.

The proposed ANF seamlessly assembles conditional

random fields, the attention mechanism and neural net-

works, establishing a new compact deep learning model.

Its effectiveness is demonstrated by extensive experi-

ments on four public benchmarks, i.e., ShanghaiTech,

WorldEXPO’10, UCF-CC-50, and UCF-QNRF. Moreover,

the results have shown that the proposed ANF can handle

both sparse and dense crowds, which indicates its huge gen-

erality for diverse crowd counting tasks.

To summarize, the major contributions of this work are

as follows.
- We propose the attentional neural field (ANF) for

crowd counting, which leverages the strengths of both

convolutional neural networks for feature learning and

conditional random fields (CRFs) for fusing multi-

scale features.

- We introduce the attention mechanism to model the

pair-wise potentials in CRFs. We implement it with

inter- and intra-layer attentions to capture long-range

dependencies both within the same scale and across

different scales, which can, to a large extent, handle

huge scale variations.

- The proposed ANF achieves the new state-of-the-art

performance on four public benchmark datasets. In

particular, on the challenging UCF-QNRF dataset with

dense crowds, our method surpasses the best previous

method by up to 16.6% in terms of MAE.

2. Related work

Our attentional neural field (ANF) implants the condi-

tional random field (CRF) and the attention mechanism into

a convolutional network, establishng a new and compact

deep model for crowd counting. We briefly review recent

work on crowd counting as well as the relevant work using

CRFs and attention.

Crowd Counting. In general, there are three types of

crowd counting approaches, including person detection,

holistic person quantity regression and density map esti-

mation. While object detection (person is one of the com-

monly studied categories in object detection) has achieved

tremendous success, predicting the quantity of people by

aggregating all located persons in the crowd is the most

straightforward approach for crowd counting. In this as-

pect, a significant number of previous work have been

proposed, from the distant handcrafted low-level features

[30, 8, 17] to recent CNN-based approaches. Unfortunately,

due to occlusion, undersize and low-quality issues, even

the best-performing person detection methods are incapable

of achieving satisfactory performance for the crowd count-

ing task. Regression-based methods [4, 5, 14] learn from

a holistic crowd image and directly regress on the person

quantity from the input crowd image without explicitly lo-

calizing each person’s individual position.

In recent years, density map estimation-based methods

have started to play an increasingly important role in crowd
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Figure 2. Architecture overview of the proposed attentionl neural network (ANF) for crowd counting. The network incorporates conditional

random fields in conjunction with attention mechanism into the encoder-decoder network. Blocks A and M represent the intra and inter

attentions. The input arrows indicate the dependencies among the estimated variables in the message passing. The output arrows denote

the updates involving the attentional neural fields.

counting [28, 19, 21, 13, 33]. Compared with person de-

tection and holistic person quantity regression, density map

estimation is capable of capturing richer spatial information

in the crowd image. A significant number of density map

estimation approaches target to at capturing the multi-scale

spatial information in order to improve the performance.

For example, Sindag et al. [28] proposed a contextual pyra-

mid CNN that utilizes various estimators to capture both

global and local contextual information, which is integrated

with high-dimensional feature maps extracted from a multi-

column CNN by a Fusion-CNN. Li et al. [19] replaced the

pooling operation with dilated kernels to fuse multi-scale

contextual information. Ranjan et al. [21] proposed a multi-

stage method for generating high-resolution density map by

combining low-resolution density map of the previous stage

along with extracted features. Particularly, scale variation

is one of the most critical issues for density map estima-

tion. To address this issue, Boominathan et al. [1] employed

a multi-column architecture to capture the scale variations

with multiple receptive fields in each column, where multi-

column features were fused by the convolutional layer for

crowd density regression. The proposed ANF is also in the

family of crowd counting by density estimation. However,

our ANF differs from the above work in two major aspects:

1) it jointly learns the CNN with CRFs, which offers a pow-

erful tool to fuse multi-scale features in the CNN; 2) it ef-

fectively incorporates the attention mechanism to model the

pair-wise potentials in the fields, which is implemented as

both an inter-layer model and intra-layer attentions to fully

capture the long-range dependencies.

Conditional Random Fields. As a powerful graphical

model, conditional random fields have been successfully

applied in various pixel-level labeling tasks, including se-

mantic segmentation [43], depth estimation [34], pose esti-

mation [7], etc. Recent work [43, 34] has shown that CRFs

are jointly learnable with CNN frameworks. The most simi-

lar work to ours is [34], where a CRF is adopted to combine

multi-scale information derived from multiple intermediate

layers of a CNN. In contrast to those previous work, our

ANF does not produce any side output, and integrates the

attention module of both inter and intra layers to model the

potentials in CRFs, which can improve the performance of

the density map estimation.

Attention. Attention mechanism [29] has recently been

incorporated into deep learning for performance augmenta-

tion, which has achieved great success in a large variety of

vision tasks, e.g., image captioning [35, 37], image ques-

tion answering [36], image classification [31], face align-

ment [39, 18] and video analysis [10]. Different from the

spatial attention and its variations, our attention is more re-

lated to the non-local attention mechanism. Both our at-

tention model and the spatial attention model perform a soft

selection on variables and adaptive feature scales. However,

the spatial attention model usually computes the response of

each position across the channel without exploring the spa-

tial dependencies, while our attention model considers the

spatial dependencies not only in the same feature map but

also across different feature maps. To the best of our knowl-

edge, this is the first attempt that jointly learns a non-local

CNN with a CRF for the crowd counting.
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3. Crowd Counting by Density Estimation

Our attentional neural field (ANF) integrates conditional

random fields (CRFs) and an attention mechanism into a

convolutional encoder-decoder framework, combining their

respective strengths. We start with the problem statement

of crowd counting by density estimation and provide neces-

sary preliminaries on CRFs and attention mechanisms.

3.1. Problem Statement and Preliminaries

Consider a training set T = {(Xi,Di)}
N
i=1, where Xi

denotes the input RGB image, Di denotes its corresponding

real-valued crowd density map, andN is number of training

samples. The task of crowd counting is essentially to find a

non-linear mapping from the input image X to the density

map D based on which we can compute the crowd counts.

Our attentional neural field is built upon the encode-decoder

architecture. The encoder consists of six residual convolu-

tional blocks. Each convolutional block downsamples the

feature map by a factor of 2 and outputs the feature map

with the same number of channels. The decoder has six

convolutional layers without pooling operations.

Conditional Random Fields. We denote the feature

maps extracted by the encoder of the CNN as F =
{Fs}

S
s=1, where Fs denotes the feature at scale s. Fs is

composed of a set of feature vectors, Fs = {f is}
P
i=1, f

i
s ∈

R
Cs , P is the number of pixels, and Cs is the number of

channels at scale s. The feature maps in the decoder are de-

fined as H = {Hs}
S
s=1, where similarly Hs = {hi

s}
P
i=1

and h
i
s ∈ R

Cs . To generate high quality density maps

for crowd counting, we introduce conditional random fields

(CRFs) to fuse multi-scale features, which improves the ro-

bustness of feature representation against huge scale vari-

ations. Specifically, CRFs learn a set of latent features as

hidden variables that form random fields conditioned upon

the observation of feature maps F from the encoder. Those

hidden variables are feature maps H = {Hs}
S
s=1 in the de-

coder.

Non-local Attention Mechanism. We introduce the at-

tention mechanism to model the pair-wise potential between

hidden variables. To be more specific, we implement inter-

layer and intra-layer attention models to formulate the pair-

wise potential between feature vectors in the same scale

and across different scales respectively. The intra-layer at-

tention map at s scale is defined as As = {ai,js }
Ns×Ns

i=1,j=1,

which describes the similarity between the latent feature

vector at the pixel i and pixel j. The inter-layer atten-

tion map M = {Ms−1,s}
S
s=2 encodes the relationship be-

tween the latent feature vector at neighboring scales, where

Ms−1,s ∈ R
Ps−1×Ps , and mi,j

s−1,s = Ms−1,s(i, j) in the

range of [0, 1] is the correlation score between the pixel j
at the scale s to the pixel i at the scale s − 1. Through the

inter-layer attention the updating of hidden variables h
i
s

at

scale s takes into account the information from the scale

s − 1. To summarize, our implementation of the non-local

attention mechanism computes the response at a position by

attending interactions between any two positions, and mod-

els pair-wise potential within all pixels. It is worth noting

that our non-local attention mechanism considers pair-wise

potential for both inter-layer interactions and intra-layer in-

teractions. The utilization of attention models in pair-wise

potential helps to expand the receptive fields to the whole

image which improves the robustness of the framework

against scale variation. Moreover, the long-range depen-

dencies among the spatial locations are fully captured by

encoding their correlations.

3.2. Attentional Neural Fields

Given the observed multi-scale feature maps F of image

X, the objective is to estimate the latent multi-scale repre-

sentation H = {Hs}
S
s=1, the inter-layer attention variables

M = {Ms−1,s}
S
s=2 and the intra-layer attention variables

A = {As}
S
s=1. We formalize the problem within a condi-

tional random field framework and write the Gibbs distribu-

tion as:

P (H,M,A|X,Θ) = exp(−E(H,M,A,X,Θ))/Z(X,Θ),
(1)

where Θ is the set of parameters and E is the energy func-

tion. The energy function is defined as:

E(H,M,A) = Φ(H,F) + Ψ(H,M) + Ξ(H,A). (2)

The first term in (2) is the classical unary potential relating

the latent feature representation h
i
s to the observed multi-

scale feature vector f is, that is:

Φ(H,F) =

S
∑

s=1

∑

i

φ(hi
s, f

i
s) = −

S
∑

s=1

∑

i

1

2
‖ hi

s − f
i
s ‖

2 .

(3)

The second term in (2) models the relationship between

the latent feature vectors at neighboring scales upon inter-

layer attention variable mij
s−1,s, which is defined as:

Ψ(H,M) =

S
∑

s=2

∑

i,j

ψ(mij
s−1,s,h

i
s,h

j
s−1)

= mi,j
s−1,sψh(h

i
s,h

j
s−1)

(4)

As in previous work [2, 32], we consider a dot-product

similarity to enforce the estimated latent features to be close

to their corresponding observations. Following the non-

local mean operation [2] and the generic non-local opera-

tion in deep neural networks [32], we use a normalized dot-

product similarity to define ψh(h
i
s,h

j
s−1) as:

ψh(h
i
s,h

j
s−1) = h

j
s−1(h

i
s)

⊤. (5)
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The third term in (2) enocdes the pair-wise relationships

between hidden feature vectors at the same scale upon the

intra-layer attention variable aijs , which is defined as:

Ξ(H,A) =
S
∑

s=1

∑

i,j

ξh(a
ij
s ,h

i
s,h

j
s) (6)

Specifically, we define:

ξh(a
ij
s ,h

i
s,h

j
s) = aijs ξh(h

i
s,h

j
s) = aijs h

j
s(h

i
s)

⊤. (7)

3.3. Inference

Following the previous works [43, 22], we employ the

mean-field approximation in order to derive a tractable in-

ference procedure. Under the mean field theory, the best

approximation of these variables is the distribution Q that

minimizes the Kullback-Leibler (KL) divergence between

these variables and Q. The solution for Q is formed in [22].

By considering the potentials defined in (2), (4) and (6) and

denoting Eq as the expectation with distribution q, we have:

q(hi
s) ∝ exp(φ(hi

s, f
i
s)

+
∑

j

E
q(aij

s ){a
ij
s }Eq(hj

s)
{ξh(a

ij
s ,h

i
s,h

j
s)}

+
∑

j

E
q(mij

s−1,s
){m

ij
s−1,s}Eq(hj

s−1
){ψh(h

i
s,h

j
s−1)})

(8)

q(mij
s−1,s) ∝ exp(mij

s−1,sEq(hi
s)
{E

q(hj

s−1
){ψh(h

i
s,h

j
s−1)}})

(9)

q(aijs ) ∝ exp(aijs Eq(hi
s)
{E

q(hj
s)
{ξh(h

i
s,h

j
s)}}). (10)

By considering the potentials defined in (3), (4) and (6)

and denoting

āijs = E
q(aij

s ){a
ij
s } (11)

m̄ij
s−1,s = E

q(mij

s−1,s
){m

ij
s,s−1} (12)

h̄
i
s = Eq(hi

s)
{hi

s}, (13)

we can derive mean-field update for the latent feature rep-

resentation:

h̄
i
s = f

i
s +

∑

j

m̄ij
s,s−1h̄

j
s−1 +

∑

j

āijs h̄
j
s. (14)

Since mij
s−1,s and h̄

j
s−1(h̄

i
s)

⊤ are in the range of [0,1],

their expectation can be derived considering (9), (10) as the

approximate form:

m̄ij
s,s−1 =

exp(h̄j
s−1(h̄

i
s)

⊤)− 1

h̄
j
s−1(h̄

i
s)

⊤
. (15)

We use the softmax computation to normalize m̄ij
s−1,s

following previous work [32]. This can be seen from the

fact that, for a given i, m̄ij
s−1,s indicates the correlation be-

tween the feature in position i and position j across the scale

s and s− 1. And āijs can be computed as:

āijs =
exp(h̄j

s(h̄
i
s)

⊤)− 1

h̄
j
s(h̄i

s)
⊤

. (16)

We can simultaneously learn the parameters of the CRFs

and those of the encoder-decoder network. To infer the la-

tent multi-scale representations H, the inter-layer attention

variables M and the intra-layer attention variables A, we

implement the mean-field updates with a neural network by

multiple iterations.

3.4. Message Passing

We perform the mean-field updates jointly for both the

attention variables and the latent feature maps, according to

the derivation described in Sec. 3.3. By message passing

from all positions in same layer or different layers to atten-

tion variables, the long-range dependencies can be captured

and passed to the final representations.

To perform mean-field updates for the inter-layer atten-

tion M, we use (14) to update each of inter-layer atten-

tion variable mij
s,s−1 over several steps, as follows: (i) We

perform the message passing from the associated feature

maps h̄s, where h̄s is initialized with corresponding fea-

ture observations fs. (ii) Message passing from the asso-

ciated feature h̄s and neighboring feature h̄s−1 to inter-

attention feature m̄s,s−1 is performed via (15) as m̄s,s−1 ←
exp(h̄s−1h̄

⊤

s )−1

h̄s−1h̄
⊤
s

, where h̄s−1h̄
⊤
s is calculated via a matrix

multiplication operation and the normlization. Similarly,

we perform the mean-field update of intra-attention vari-

ables ās using (16).

Once the inter-attention and intra-attention maps are up-

dated, we use them as guidance to update the latent feature

maps hs. The mean-field updates of h̄s can be carried out

using (14) as follows: (i) Message passing from the inter-

attention feature m̄s,s−1 and the feature at s − 1 scale to

the feature s scale is performed by the matrix multiplica-

tion operation in ĥs ← m̄s,s−1h̄s−1. (ii) Message passing

within the same scale is applied with intra-attention feature

h̃s ← āsh̄s by matrix multiplication operation. (iii) The

message is passed to the final hs by adding the unary term

h̄s ← ĥs⊕ h̃s⊕ fs, where⊕ denotes the element-wise sum

operation.

3.5. Optimization

Our attentional neural fields integrate CRFs and non-

local attentions in the convolutional encoder-decoder net-

work, which can be learned by jointly optimizing the pa-

rameter Θc of the network and the parameters Θf of the

attentional fields.

Given the training set T = {(Xi,Di)}
N
i=1, we minimize

the difference between predicted density map and that of the
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ground truth by ℓ2-norm in the objective function, which

takes the following form:

LF (X,D; Θc,Θf ) =

N
∑

i=1

||F (Xi; Θc,Θf )−Di||
2
2. (17)

The optimization is conducted in a end-to-end manner by

the back propagation algorithm using mini-batch based

stochastic gradient descent. The inference of latent vari-

ables is performed along with each iteration of parameter

updates of the network.

4. Experiments

We conduct extensive experiments on four benchmark

datasets, including ShanghaiTech [41], WorldExpo 10 [40],

UCF-CC-50 [11] and UCF-QNRF [12]. The results demon-

strate that the proposed attentional neural field (ANF) con-

sistently delivers high performance on all datasets, and ex-

ceeds most previous methods. The ablation studies further

verify the great effectiveness of the ANF.

4.1. Implementation Details

We provide our implementation details, including data

augmentation, ground truth generation, evaluation metrics

and architecture design, to facilitate comparison with other

methods.

Data augmentation. In this work, we use a patch-based

training and image-based testing scheme. To fully make use

of the dataset with limited number of training samples, we

train our network by random scaling and cropping of im-

ages. Firstly, we select a random value to change the origi-

nal image to different scales, which increases the network’s

robustness against size variations in human objects. Then,

we randomly crop patches from the images at different lo-

cations. During testing, we feed the whole images into the

network instead of the cropped patches.

Ground-Truth Generation. Since annotations for crowd

images are labeled at the center of the pedestrian head, we

use the Gaussian kernel to convert these points to generate

crowd density maps. The normalized Gaussian kernel is

defined as :

D(x) =
∑

xi∈S

δ(x− xi) ∗Gσ, (18)

where D denotes the crowd density map and S is the set of

all annotated points. A point at pixel xi can be represented

with a delta function δ(x − xi). The density map can be

obtained by convolving δ(x − xi) with a Gaussian kernel

and parameter Gσ . We fix the Gaussian kernel size to be

15× 15.

Evaluation Metrics. Counting error is commonly mea-

sured by two metrics, i.e., Mean Absolute Error (MAE) and

Mean Squared Error (MSE):

MAE =
1

N

N
∑

i=1

|yi − y
′

i| (19)

MSE =

√

√

√

√

1

N

N
∑

i=1

|yi − y
′

i|
2, (20)

where N is number of test samples, yi is the ground truth

count and y
′

i is the estimated count corresponding to the ith

sample. MAE indicates the accuracy of the predicted result

and MSE measures the robustness.

Network Architecture. We employ a simple architecture,

which is made of one convolutional block for reducing in-

puts resolution and 6 residual convolutional blocks. Each

residual convolutional block downsamples the feature map

by a factor of 2 and outputs the feature map with the same

number of channels. The decoder has 6 residual convolu-

tional layers without a pooling operation. Our ANF uses

both inter-attention and intra-attention with CRF, which ex-

perimentally produces the best overall performance.

4.2. Performance and Comparison

We show the performance on the four benchmark

datasets and compare the proposed ANF with previous

methods. Overall, our ANF produces the new state-of-the-

art performance on all datasets and outperforms most of the

compared methods.

ShanghaiTech. The ShanghaiTech dataset [41] contains

still images with arbitrary camera perspectives and crowd

densities. The ShanghaiTech dataset is composed of 1198

annotated images, including both internet and street view

images. Images in Part A are randomly crawled from the

Internet, and most of them have a large number of people.

Images in Part B are taken from busy streets of metropoli-

tan areas in Shanghai. There are tremendous occlusions for

most people in each image, and the scale of the people is

varies. Compared with other datasets, most images from

ShanghaiTech have low resolution, and thus we maintain

their resolution for training and testing.

We compare our ANF with recent methods evaluated on

this dataset and the results are reported in Table 1. We

achieve the best performance in terms of MAE and MSE

on Part A, and gain competitive results on Part B. We show

the samples from the ShanghaiTech dataset in Fig. 3. This

demonstrates that the population density is unevenly dis-

tributed and heads in the crowds are highly diverse in scale.

Our model can accurately determine each person’s location.
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Figure 3. Predictions in all datasets: (a) ShanghaiTech A, (b) ShanghaiTech B, (c) UCF-CC-50, (d) UCF-QNRF and (e) WorldExpo 10.

Table 1. Estimation errors on the ShanghaiTech, UCF-CC-50 and UCF-QNRF datasets.

ShanghaiTech Part A ShanghaiTech Part B UCF-CC-50 UCF-QNRF

Method MAE MSE MAE MSE MAE MSE MAE MSE

Zhang et al. [40] 181.8 277.7 32.0 49.8 467.0 498.5 - -

MCNN [41] 110.2 173.2 26.4 41.3 3716.6 509.1 277 426

Cascaded-MTL [27] 101.3 152.4 20.0 31.1 322.8 397.9 252 514

Switching-CNN [26] 90.4 135.0 21.6 33.4 318.1 439.2 228 445

CP-CNN [28] 73.6 106.4 20.1 30.1 295.8 320.9 - -

CSRNet [19] 68.2 115.0 10.6 16.0 266.1 397.5 - -

SANet [3] 67.0 104.5 8.4 13.6 258.4 334.9 - -

Idrees et al. [12] - - - - - - 132 191

ANF (Ours) 63.9 99.4 8.3 13.2 250.2 340.0 110 174

Table 2. Performance comparison on WorldExpo 10.

Method S1 S2 S3 S4 S5 Avg

Zhang et al. [40] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [41] 3.4 20.6 12.9 13.0 8.1 11.6

CP-CNN [28] 2.9 14.7 10.5 10.4 5.8 8.9

CSRNet [19] 2.9 11.5 8.6 16.6 3.4 8.6

SANet [3] 2.6 13.2 9.0 13.3 3.0 8.2

ANF (Ours) 2.1 10.6 15.1 9.6 3.1 8.1

UCF-CC-50. The UCF-CC-50 dataset is introduced in

[11]. It is a very small dataset with only 50 annotated crowd

images. There is a large variation in crowd counts with the

number of people in an image ranging from 96 to 4633. The

limited number of images makes it a challenging dataset for

deep learning methods. We follow the same settings as [41]

and use five fold cross-validation for performance evalua-

tion.

The comparison of the proposed ANF with other exist-

ing methods is summarized in Table 1. The proposed ANF

produces the best performance in terms of MAE, and highly

competitive performance in terms of MSE.

UCF-QNRF. The UCF-QNRF dataset [12] is a large-

scale dataset that contains a wide variety of observation

viewpoints, densities and lighting conditions. The num-

ber of people in an image ranges from 49 to 12865, which

makes the crowd dense and challenging to count. We fol-

low the settings in [12], and split the training and test set

into 1201 and 334 images, respectively.

The comparison with previous methods is summarized

in Table 1 on UCF-QNRF. Our ANF delivers the best result

of all in terms of MAE, surpassing the second best approach

by an improvement of 16.6% in MAE. It is also much bet-

ter than previous methods in terms of MSE. The results on

this dataset indicate the great ability of our ANF to handle

extremely dense crowds.

WorldExpo 10. The WorldExpo 10 dataset [40] is com-

posed of 1132 annotated video sequences captured by 108

surveillance cameras from Shanghai 2010 WorldExpo. The

dataset can be classified into 5 different scenes, each con-

taining 120 frames. This dataset provides perspective maps,
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Figure 4. From left to right: RGB images, ground truth, MCNN [41] prediction, SANet [3] prediction, ANF prediction.

Table 3. Effectiveness of the proposed inter-/intra-layer attentions.

Method MAE MSE

baseline 66.2 110.8

intra & inter attentions 63.9 99.4

the value of which represents the number of pixels in the

image covering one square meter of a real location.

Compared to UCF-QNRF, the crowds in this dataset are

relatively sparse. Our ANF still yields the best performance

on Scenes 1, 2 and 4, with highly competitive results on

Scenes 3 and 5. The results demonstrate the great general-

ity and effectiveness of the proposed ANF to handle both

sparse and dense crowds.

4.3. Ablation study

To gain insight into the proposed ANF, we perform an

ablation study to demonstrate the contribution of each of its

components. We follow the previous work [19, 3, 21], us-

ing ShanghaiTech Part A as the benchmark for the ablation

study. We compare the performance of our design choices

with our baseline, and compare the density maps produced

by our ANF with those produced by several state-of-the-art

approaches. The ablation study verifies the great effective-

ness of the proposed ANF for crowd counting.

Counting Accuracy. The ablation study results are

shown in Table 3. The table is partitioned row-wisely into

two groups, with three configurations. Each group con-

tains the indexed configurations corresponding to one main

contribution of ANF. These include the ANF with both

inter-layer attention and intra-layer attention. In different

columns, we report the counting accuracy of each config-

uration, using the MAE and MSE metrics. Qualitatively,

we visualize the density maps generated by representive

method (MCNN [41]), the current best-performing method

(SANet [3]), and our ANF on the ShanghaiTech Part A

dataset in Figure 4. ANF generates density maps closer to

the ground truth, and produces more accurate crowd counts.

It is worth noting that although SANet [3] achieves higher

counting accuracy, the results by our ANF closer to the

ground truth in terms of density estimation.

Table 4. Comparison of model sizes and Performance

Method # Parameter PSNR SSIM MAE

MCNN [41] 0.13M 21.4 0.52 110.2

CP-CNN [28] 68.4M 21.72 0.72 73.6

CSRNet [19] 16.26M 23.79 0.76 68.2

ANF (Ours) 7.9M 24.1 0.78 63.9

Density Map Quality. To demonstrate that our method

produces high quality density maps, we use the measure-

ments of SSIM and PSNR to compare with representative

methods, in Table 4. We compare with CP-CNN, CSR-

Net and MCNN which have released codes publicly avail-

able. Morever, CP-CNN and CSRNet also emphasize that

they can generate high-quality density maps, as mentioned

in Section 2, and MCNN [41] is one of the most repre-

sentative methods in density estimation based crowd count-

ing. Our method achieves the best performance in terms of

both SSIM and PSNR. In addition, we have also compared

by model sizes with parameter numbers in Table 4, which

shows that our ANF has relatively low computational cost

while performing the best of all.

5. Conclusion

In this work, we have presented the attentional neural

fields (ANF) for crowd counting. The ANF integrates the

conditional random fields and an attention mechanism into

the convolutional encoder-decoder framework, which en-

hances their abilities to fuse multi-scale features and capture

long-range dependencies. With both quantitative and quali-

tative results, we have demonstrated that the ANF can intro-

duce consistent performance improvements on four popular

datasets, including ShanghaiTech, WorldEXPO 10, UCF-

CC-50 and UCF-QNRF, showing its great effectiveness for

crowd counting.

Acknowledgment This paper was supported by National

Key Research and Development Program of China un-

der Grant 2016YFB1200100, National Key Scientific In-

strument and Equipment Development Project under Grant

61827901, and Natural Science Foundation of China under

Grant 91538204, 91738301, 61871016, 61571147.

5721



References

[1] Lokesh Boominathan, Srinivas SS Kruthiventi, and

R Venkatesh Babu. Crowdnet: A deep convolutional

network for dense crowd counting. In Proceedings of the

2016 ACM on Multimedia Conference, pages 640–644.

ACM, 2016.

[2] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local

algorithm for image denoising. In 2005 IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recogni-

tion (CVPR’05), volume 2, pages 60–65. IEEE, 2005.

[3] Xinkun Cao, Zhipeng Wang, Yanyun Zhao, and Fei Su. Scale

aggregation network for accurate and efficient crowd count-

ing. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 734–750, 2018.

[4] Antoni B Chan, Zhang-Sheng John Liang, and Nuno Vas-

concelos. Privacy preserving crowd monitoring: Counting

people without people models or tracking. In Computer Vi-

sion and Pattern Recognition, 2008. CVPR 2008. IEEE Con-

ference on, pages 1–7. IEEE, 2008.

[5] Ke Chen, Chen Change Loy, Shaogang Gong, and Tony Xi-

ang. Feature mining for localised crowd counting. In British

Machine Vision Confernce (BMVC), volume 1, page 3, 2012.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2018.

[7] Xiao Chu, Wanli Ouyang, Hongsheng Li, and Xiaogang

Wang. Crf-cnn: Modeling structured information in human

pose estimation, 2016.

[8] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 1, pages 886–893. IEEE, 2005.

[9] Adam W Harley, Konstantinos G Derpanis, and Iasonas

Kokkinos. Segmentation-aware convolutional networks us-

ing local attention masks. In IEEE International Conference

on Computer Vision (ICCV), volume 2, page 7, 2017.

[10] Yuanjun Huang, Xianbin Cao, Xiantong Zhen, and Jungong

Han. Attentive temporal pyramid network for dynamic scene

classification. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 8497–8504, 2019.

[11] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak

Shah. Multi-source multi-scale counting in extremely dense

crowd images. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2547–2554,

2013.

[12] Haroon Idrees, Muhmmad Tayyab, Kishan Athrey, Dong

Zhang, Somaya Al-Maadeed, Nasir Rajpoot, and Mubarak

Shah. Composition loss for counting, density map esti-

mation and localization in dense crowds. arXiv preprint

arXiv:1808.01050, 2018.

[13] Xiaolong Jiang, Zehao Xiao, Baochang Zhang, Xiantong

Zhen, Xianbin Cao, David Doermann, and Ling Shao.

Crowd counting and density estimation by trellis encoder-

decoder networks. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019.

[14] Dan Kong, Douglas Gray, and Hai Tao. A viewpoint in-

variant approach for crowd counting. In Pattern Recogni-

tion, 2006. ICPR 2006. 18th International Conference on,

volume 3, pages 1187–1190. IEEE, 2006.
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