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Abstract

Semantic Scene Completion (SSC) aims to simultaneous-

ly predict the volumetric occupancy and semantic category

of a 3D scene. It helps intelligent devices to understand

and interact with the surrounding scenes. Due to the high-

memory requirement, current methods only produce low-

resolution completion predictions, and generally lose the

object details. Furthermore, they also ignore the multi-

scale spatial contexts, which play a vital role for the 3D

inference. To address these issues, in this work we propose

a novel deep learning framework, named Cascaded Context

Pyramid Network (CCPNet), to jointly infer the occupancy

and semantic labels of a volumetric 3D scene from a single

depth image. The proposed CCPNet improves the labeling

coherence with a cascaded context pyramid. Meanwhile,

based on the low-level features, it progressively restores the

fine-structures of objects with Guided Residual Refinement

(GRR) modules. Our proposed framework has three out-

standing advantages: (1) it explicitly models the 3D spatial

context for performance improvement; (2) full-resolution

3D volumes are produced with structure-preserving details;

(3) light-weight models with low-memory requirements are

captured with a good extensibility. Extensive experiments

demonstrate that in spite of taking a single-view depth map,

our proposed framework can generate high-quality SSC re-

sults, and outperforms state-of-the-art approaches on both

the synthetic SUNCG and real NYU datasets.

1. Introduction

Human can perceive the real-world through 3D views

with partial observations. For example, one can capture the

geometry of rigid objects by only seeing the corresponding

2D images. Thus, understanding and reconstructing a 3D

scene from its partial observations is a valuable technique

for many computer vision and robotic applications, such as

object localization, visual reasoning and indoor navigation.

As an encouraging direction, Semantic Scene Completion

∗Corresponding author.

(SSC) has draw more and more attentions in recent years.

It aims to simultaneously predict the volumetric occupancy

and semantic category of a 3D scene. Given a single depth

image, several outstanding works [32, 10, 36] have been

proposed for single-view SSC. By designing 3D Convolu-

tional Neural Networks (CNNs), these methods can auto-

matically predict the semantic labels or complete 3D shapes

of the objects in the scene. However, it is not a trivial task

to utilize 3D CNNs for the SSC task. Vanilla 3D CNNs are

locked in the cubic growth of computational and memory

requirements with the increase of voxel resolution. Thus,

current methods inevitably limit the resolution of predic-

tions and the depth of 3D CNNs, which leads to wrong la-

bels and missing shape details in the completion results.

To achieve better SSC results, several works [8, 5, 23,

20] introduce the 2D semantic segmentation as an auxiliary,

which takes an additional RGB image and applies complex

2D CNNs for semantic enhancement. These methods can

fully exploit the high-resolution input, however, they ignore

the 3D context information of the scene. Thus, only based

on the 2D input image, they may not infer the invisible ob-

ject parts of the complex scene. Recently, Song et al. [32]

show that global 3D context helps the prediction of SSC.

However, the 3D CNN used in their work simply adopts the

dilated convolutions [34], and concatenates the multi-stage

features for predictions. It only considers the global seman-

tics, which result in low-resolution predictions, and lose the

scene details. In this work, we find that both local geomet-

ric details and multi-scale 3D contexts of the scene play a

vital role in the SSC task. The local geometric details help

the SSC system to identify the fine-structured objects. The

multi-scale 3D contexts can enhance the spatial coherence

and infer the occluded objects from the scene layout. How-

ever, designing a framework that can efficiently integrate

both characteristics is still a challenging task.

To address above problems, we propose a novel deep

learning framework, named Cascaded Context Pyramid

Network (CCPNet), for single depth image based SSC. The

proposed CCPNet effectively learns both local geometry de-

tails and multi-scale 3D contexts from the training dataset.

For semantic confusing objects, the CCPNet improves the
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prediction coherence with an effective self-cascaded con-

text pyramid. The self-cascaded pyramid helps the model

to reduce the semantic gap of different contexts and cap-

ture the hierarchical dependencies among the objects and

scenes [24]. In addition, we introduce a Guided Residual

Refinement (GRR) module to progressively restore the fine-

structures of complex objects. The GRR corrects the latent

fitting using low-level features, and avoids the high com-

putational cost and memory consumption of the 3D CNN.

With this module, the CCPNet can output full-resolution

completion results and show much better accuracy than

vanilla 3D networks. Experimental results demonstrate that

our approach outperforms other state-of-the-art methods on

both synthetic and real datasets. With only a single depth

map, our method generates high-quality SSC results with

much better accuracy and faster inference.

In summary, our contributions are three folds:

• We propose a novel cascaded context pyramid network

(CCPNet) for efficient 3D semantic scene completion.

The CCPNet automatically integrates both local geo-

metric details and multi-scale 3D contexts of the scene

in a self-cascaded manner.

• We also propose an efficient guided residual refine-

ment (GRR) module for restoring fine-structures of ob-

jects and full-resolution predictions. The GRR pro-

gressively refines the objects with low-level features

and light-weight residual connections, improving both

computational efficiency and completion accuracy.

• Extensive experiments on public synthetic and real

benchmarks demonstrate that our proposed approach

achieves superior performance over other state-of-the-

art methods.

2. Related Work

In this section, we briefly review related work on ana-

lyzing and completing a 3D scene from depth images. For

more details, we refer the readers to [17] for a survey of

deep learning based 3D data processing.

Semantic Scene Analysis. In recent years, many deep

learning based methods have been proposed for semantic

scene analysis with a depth image or RGB-D image pair.

In general, 2D image-based methods [26, 12, 33] treat the

depth image as additional information, and adopt complex

2D CNNs for semantic scene analysis tasks, e.g., salient

object detection, semantic segmentation and scene comple-

tion. Meanwhile, several works [13, 11, 1] extract deep fea-

tures from the depth image and the RGB image separately,

then fuse them for multi-mode complementarity. Although

effective, 2D image-based methods ignore the spatial occu-

pancy of objects, and can not fully exploit the depth infor-

mation. While 3D volume-based methods usually convert

the depth image into a volumetric representation, and ex-

ploit rich handcrafted 3D features [27, 30] or learned 3D C-

NNs [31] for detecting 3D objects. Although existing meth-

ods can detect and segment visible 3D objects and scenes,

they cannot infer the objects that are totally occluded. In-

stead, our method can predict the semantic labels and 3D

shapes for both visible and invisible objects.

3D Scene Completion. Semantic scene completion is a

fundamental task in understanding 3D scenes. To achieve

this goal, Zheng et al. [41] first complete the occluded

objects with a set of pre-defined rules, and then refine

the completion results by physical reasoning. Geiger and

Wang [6] propose a high-order graphical model to joint-

ly reason about the layout, objects and superpixels in the

scene image. Their model leverages detailed 3D geometry

of scenes, and explicitly enforces occlusion and visibility

constraints. Then, Firman et al. [4] utilize the random for-

est to infer the occluded 3D object shapes from a single

depth image. These methods are based on handcrafted fea-

tures, and perform semantic scene segmentation and com-

pletion in two separate steps. Recently, Song et al. [32] pro-

pose the Semantic Scene Completion Network (SSCNet) to

simultaneously predict the semantic labels and volumetric

occupancy of the 3D objects from a single depth image. Al-

though this method unifies the semantic segmentation and

voxel completion, the expensive 3D CNN limits the input

resolution and network depth. Thus the SSCNet only pro-

duces low-resolution predictions and generally lacks of ob-

ject details. By combining the 2D CNN and 3D CNN, Guo

and Tong [10] propose the View-Volume Network (VVNet)

to efficiently reduce the computation cost and enhance the

network depth. Garbade et al. [5] propose a two-stream ap-

proach that jointly leverages the depth and semantic infor-

mation. They first construct an incomplete 3D semantic ten-

sor for the inferred 2D semantic information, and then adopt

a vanilla 3D CNN to infer the complete 3D semantic tensor.

Liu et al. [23] propose a task-disentangled framework to se-

quentially carry out the 2D semantic segmentation, 2D-3D

re-projection and 3D semantic scene completion. However,

their multi-stage method may cause the error accumulation,

producing mislabeling completion results. Similarly, Li et

al. [20] introduce a Dimensional Decomposition Residual

Network (DDRNet) for the 3D SSC task. Based on the fac-

torized and dilated convolutions [2], they utilize the multi-

scale feature fusion mechanism for depth and color images.

Although effective, current methods only consider the

global semantics, which usually result in low-resolution

predictions and lose the scene details. Different from pre-

vious works, we propose to integrate both local geomet-

ric details and multi-scale 3D contexts of the scene for the

SSC task. To reduce the semantic gaps of multi-scale 3D

contexts, we propose a self-cascaded context aggregation

method to generate coherent labeling results. Meanwhile,
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Figure 1. Illustration of our Cascaded Context Pyramid Network (CCPNet). Taking a single-view depth map as input, the CCPNet predicts

the occupancy and object labels for each voxel in the view frustum. With light-weight operations, the CCPNet can produce full-resolution

3D completion results. The convolution parameters are shown as (number of filters, kernel size, stride, dilation, number of subvolumes).

the local geometric details are also incorporated to identify

the fine-structured objects in a coarse-to-fine manner. We

note that the proposed modules are general-purpose for 3D

CNNs. Thus, they can be easily applied to other 3D tasks.

3. Cascaded Context Pyramid Network

Fig. 1 illustrates the overall architecture of our CCPNet.

Given a single-view depth map of a 3D scene, the goal of

our CCPNet is to map the voxels in the view frustum to

one of the semantic labels C = [c0, c1, ..., cN+1], where N

is number of semantic categories and c0 stands for empty

voxels. Our CCPNet is a self-cascaded pyramid structure

to successively aggregate multi-scale 3D contexts and local

geometry details for full-resolution scene completions. It

consists of three key components, i.e., 3D Dilated Convo-

lution Encoder (DCE), Cascaded Context Pyramid (CCP),

and Guided Residual Refinement (GRR). Functionally, the

DCE adopts multiple dilated convolutions with separated

kernels to extract 3D feature representations from single-

view depth images. Then, the CCP performs the sequential

global-to-local context aggregation to improve the labeling

coherence. After the context aggregation, the GRR is in-

troduced to refine the target objects using low-level features

learned by the shallow layers. In the following subsections,

we will describe these components in detail.

3.1. 3D Dilated Convolution Encoder

Input Tensor Generation. For the input of our front-

end 3D DCE, we follow previous works [32, 5, 10] and ro-

tate the 3D scene to align with the gravity and room orien-

tation based on the Manhattan assumption. We consider the

absolute dimensions of the 3D space with 4.8 m horizontal-

ly, 2.88 m vertically, and 4.8 m in depth. Each 3D scene is

encoded into a flipped Truncated Signed Distance Function

(fTSDF) [32] with grid size 0.02 m, truncation value 0.24

m, resulting in a 240×144×240 tensor as the network input.

Our method produces the completion result with the same

resolution as input. However, due to the fully convolutional

structure and the light-weight network design, our method

certainly can take larger depth images as input, even full-

resolution depth maps (e.g., 427×561 from depth sensors).

During the model training, we render depth maps from vir-

tual viewpoints of 3D scenes and voxelize the full 3D scenes

with object labels as ground truth.

Encoder Structure. Processing 3D data needs large

memories and huge computations. To reduce the memory-

requirement, we propose a light-weight encoder to extract

the 3D feature representations of scenes, as shown in Fig. 1.

As demonstrated in dense labeling tasks [40, 39, 2, 37],

large contexts can provide valuable information for under-

standing the scenes. For the 3D scenes and depth images,

spatial context is more useful due to the lack of high fre-

quency signals. To effectively learn spatial contextual in-

formation, we make sure our encoder has a big enough re-

ceptive field. A direct method is using the 3D dilated con-

volution proposed in [34, 32], which can exponentially ex-

pand the receptive field without a loss of resolution or cover-

age. However, the computation of 3D dilated convolutions

is rather huge, because we need to perform convolutions

with large volumes. To address this problem, we propose
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Figure 2. Comparison of (a) Vanilla 3D convolution [18], (b) 3D

dilated convolution [32] and (c) Our proposed method.

the 3D dilated convolutions with separated kernels. More

specifically, we first separate the input tensor into several

subvolumes, then apply the 3D dilated kernels to each sub-

volume for the convolutions. The reasons are two-fold. On

the one hand, our method can reduce the model parameters

and computations, and inherit all characteristics of dilated

convolutions. On the other hand, our method considers the

characteristic of depth profiles, in which the depth values

are continuous only in neighbour regions. Fig. 2 shows the

differences of vanilla 3D convolution [18], 3D dilated con-

volution [32] and our proposed method. To build our 3D

DCE, we stack the proposed 3D dilated convolution several

times with 3D pooling. Besides, to avoid the extreme sepa-

ration, we reduce the number of subvolumes along with the

network depth. The detailed parameters are shown in Fig. 1.

3.2. Cascaded Context Pyramid

For scene completion, different objects have very differ-

ent physical 3D sizes and visual orientations. This implies

that the model needs to capture information at different con-

texts in order to recognize objects reliably. Besides, for

confusing manmade objects in indoor scenes, obtaining co-

herent labeling results is not easily accessible, because they

are of high intra-class variance and low inter-class variance.

Therefore, it is insufficient to use only the single-scale and

global information of the target objects [32, 24]. We need

to introduce multi-scale context information, which charac-

terizes the underlying dependencies between an object and

its surroundings. However, it is very hard to retain the hier-

archical dependencies in contexts of different scales, using

common fusion strategies (e.g., direct stack [2, 40]). To ad-

dress this issue, we propose a novel self-cascaded context

pyramid architecture, as shown in Fig. 3 (a). Different from

previous methods, our method sequentially aggregates the

global-to-local contexts while well retains the hierarchical

dependencies, i.e., the underlying inclusion and location re-

lationship among the objects and scenes in different scales.

Architecture Details. To build the context pyramid, we

perform 3D dilated convolutions on the last pooling layer

of the 3D DCE to capture multi-scale contexts. By setting

varied dilation rates (30, 24, 18, 12, 6 and 1 in the exper-

iments) and feature reduction layers, a series of 3D fea-

ture maps with global-to-local contexts are generated. The

large-scale context contains more semantics and wider vi-

sual cues, while the small-scale context retains object ge-

3D DCE

Context1

Context2

ContextN

Context3

…

Aggregated 
Context

3D DCE

Context1

Context2

ContextN

Context3

…

(a) (b)

Aggregated 
Context

Figure 3. Comparison of different multi-scale context aggrega-

tion methods. (a) Our self-cascaded context aggregation approach,

which reduces the semantic gaps of different scales. (b) Existing

parallel concatenations, such as PSPNet [40], Deeplab variants [2].

“Context” denotes the dilated convolution for context extraction.

ometry details. Meanwhile, the obtained feature maps with

multi-scale contexts can be aligned automatically due to

their equal resolution. To well retain the hierarchical de-

pendencies of multi-scale contexts, we sequentially aggre-

gate them in a self-cascaded pyramid manner. Formally, it

can be described as:

Xsa =

{

f(· · · f(f(X1 ⊕X2)⊕X3)⊕ · · · ⊕Xn),

d1 > d2 > d3 > · · · > dn.
(1)

where Xn denotes the n-scale context, Xsa is the final ag-

gregated context and dn is the dilation rate for extracting

the context Xn. ⊕ denotes the element-wise summation. f

denotes the Basic Residual Block (BRB) [16], as shown in

Fig. 4 (a). In our proposed method, we first aggregate the

large-scale context with big dilation rates, then the context

with small dilation rates. This aggregation rule is consistent

with the human visual mechanism, i.e., large-scale context

could play a guiding role in integrating small-scale context.

We also notice that there are other outstanding structures

for multi-scale contexts, such as PPM [40] and ASPP [2], as

shown in Fig. 3 (b). In order to aggregate information with

different contexts, they add a layer that parallelly concate-

nates the feature maps with different receptive fields:

Xpa =

{

g([X1, X2, X3, · · · , Xn]),

d1 > d2 > d3 > · · · > dn.
(2)

where g denotes the aggregation function, which usually is

an 1 × 1 × 1 convolutional layer. [· · · ] is the concatena-

tion operation in channel-wise. However, our proposed self-

cascaded pyramid architecture has several advantages: 1)

Our self-cascaded strategy enhances the hierarchical depen-

dencies in different context scales. Thus, it is more effective

than the parallel strategies such as PSPNet [40], DeepLab

variants [2], which directly fuse the multi-scale contexts

with large semantic gaps; 2) Our method introduces more

complicated nonlinear operations (Equ. 1), thus it has a

stronger capacity to model the relationship of different con-

texts than simple convolution operations. 3) By adopting
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Figure 4. The used residual modules in our CCPNet. (a) The Ba-

sic Residual Block (BRB) [16]. (b) The proposed Guided Residual

Block (GRB). In the GRB, we add a tangent function-based con-

nection to amplify the fused features.

the summation, the sequential aggregation significantly re-

duces the parameters and computations. Experiments also

verify the effectiveness of our proposed method.

3.3. Guided Residual Refinement

Besides semantic confusing categories, fine-structured

objects also increase the difficulty for accurate labeling in

3D scenes. However, current methods usually produce low-

resolution predictions, thus it is very hard to retain the fine-

grained details of objects. To address this problem, we pro-

pose to reuse low-level features with the Guided Residu-

al Refinement (GRR), as shown in the bottom of Fig. 1.

Specifically, the rich low-level features are progressively

reintroduced into the prediction stream by guided residu-

al connections. As a result, the coarse feature maps can be

refined and the low-level details can be restored for full-

resolution predictions. The used Guided Residual Block

(GRB) is shown in Fig. 4 (b), which can be formulated as:

X̂ = X ⊕G, (3)

Xrf = ReLu(X̂ ⊕ X̂Tanh(X̂)⊕ h(X̂)) (4)

= ReLu(X̂(I ⊕ Tanh(X̂))⊕ h(X̂)) (5)

= ReLu(X̂G ⊕ h(X̂)). (6)

where X is the input semantic context feature and G is the

guidance feature coming from a shallower layer. ⊕ de-

notes the element-wise summation and h is the standard

non-linear transform in residual blocks. Xrf is the refined

feature map. ReLu(·) and Tanh(·) are the rectified linear

unit and hyperbolic tangent activation, respectively. To re-

store finer details with the shallower layer, we first integrate

the input feature and the guidance (Equ. 3), then we intro-

duce an auxiliary connection to the BRB [16]. More specif-

ically, we use the hyperbolic tangent activation to amplify

the integrated features (resulting in X̂G), as shown in Fig. 4

(b) and Equ. 4-6. It is very beneficial to fuse low-level fea-

tures by the guided refinement strategy. On the one hand,

the feature maps of X and G represent different semantics

at varied levels. Thus, due to their inherent semantic gaps,

directly stacking all these features [14, 28, 3] may not be an

efficient strategy. In the proposed method, the influence of

semantic gaps is alleviated when a residual iteration strategy

is adopted [7]. On the other hand, the feature amplification

connection enhances the effect of low-level details and gra-

dient propagations, which helps the effectively end-to-end

training. There also exist effective refinement strategies for

detail enhancement [25, 22, 38]. However, they are very d-

ifferent from ours. First, our strategy focuses on amplifying

low-level features considering the 3D data properties, e.g.,

high computation and memory requirements. In contrast,

previous methods introduce complex refinement modules,

which are hardly executable for the 3D data. Besides, we

only choose specific shallow layers for the refinement, as

shown in the bottom of Fig. 1. Other methods incorporate

all the hierarchical layers that inevitably contain boundary

noises [25, 22]. To build our model, several GRB modules

are elaborately embedded in the prediction part, which can

greatly prevent the fitting residual from accumulating. As a

result, the proposed CCPNet effectively works in a coarse-

to-fine labeling manner for full-resolution predictions.

3.4. Network Training

Given the training dataset (i.e., the paired depth images

and ground truth volumetric labels of 3D scenes), our pro-

posed CCPNet can be trained in an end-to-end manner. We

adopt the voxel-wise softmax loss function [32] for the net-

work training. The loss can be expressed as:

L(p, y) =
∑

i,j,k

wijkLsm(pijk, yijk), (7)

where Lsm is the softmax cross-entropy loss, yijk is the

ground truth label, pijk is the predicted probability of the

voxel at coordinates (i, j, k). The weight wijk ∈ {0, 1} is

used to balance the loss between different semantic cate-

gories. Due to the sparsity of 3D data, the ratio of empty vs.

occupied voxels is extremely imbalanced. To address this

problem, we follow [32] and randomly sample the training

voxels with a 2:1 ratio to ensure that each mini-batch has a

balanced set of empty and occupied examples.

4. Experiments

4.1. Experimental Settings

Datasets. The synthetic SUNCG dataset [31] consists

of 45622 indoor scenes. Technically, the depth images and

semantic scene volumes can be acquired by setting different

camera orientations. Following previous useful works [32,

5, 10], we adopt the same training/test split for our network

training and evaluation. More specifically, the training set

contains about 150K depth images and the corresponding
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scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet [32] 76.3 95.2 73.5 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4

VVNet [10] 90.8 91.7 84.0 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7

DCRF [36] – – – 95.4 84.3 57.7 24.5 28.2 63.4 55.3 34.5 19.6 45.8 28.7 48.8

ESSCNet [35] 92.6 90.4 84.5 96.6 83.7 74.9 59.0 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5

SATNet [23] 80.7 96.5 78.5 97.9 82.5 57.7 58.5 45.1 78.4 72.3 47.3 45.7 67.1 55.2 64.3

Ours 98.2 96.8 91.4 99.2 89.3 76.2 63.3 58.2 86.1 82.6 65.6 53.2 76.8 65.2 74.2

Table 1. The performances of different scene completion methods on the SUNCG dataset. The best results are in bold.

(a) (b) (c) (d) (e) (f) (g)

Ceil floor wall window Chair bed sofa table tvs furn objects

Figure 5. Completion results with different methods on the SUNCG dataset. From the left to right: (a) Input Depth; (b) fTSDF Surface; (c)

Ground Truth; (d) SSCNet [32]; (e) VVNet [10]; (f) ESSCNet [35]; (g) Ours. It can be observed that, our results constantly contain more

accurate and detailed structures compared to the baselines. The figure is best viewed in color with 200% zooming-in.

ground truth volumes. The test set consists of totally 470

pairs sampled from 170 non-overlap scenes.

The real NYU dataset [29] includes 1449 depth images

captured by the Kinect depth sensor. The depth images are

partitioned into 795 for training and 654 for test. Following

previous works, we adopt the ground truth completion and

segmentation from [9]. Some labeled volumes and their cor-

responding depth images are not well aligned in the NYU

dataset. Thus, we also use the NYU CAD dataset [4], in

which the depth map is rendered from the label volume. The

NYU dataset is challenging due to the unavoidably mea-

surement errors in the depth images collected by Kinect. As

in [32, 10, 23], we also pre-train the network on the SUNCG

dataset before fine-tuning it on the NYU dataset.

Evaluation Metrics. We mainly follow [32] and report

the precision, recall, and Intersection over Union (IoU) of

the compared methods. The IoU measures the overlapped

ratio between intersection and union of the positive predic-

tion volume and the ground truth volume. In this work, two

tasks are considered: Scene Completion (SC) and Seman-

tic Scene Completion (SSC). For the SC task, we treat all

voxels as binary predictions, i.e., occupied or non-occupied.

The ground truth volume includes all the occluded voxels

in the view frustum. For the SSC task, we report the IoU of

each class, and average them to get the mean IoU.

Training Protocol. We implement our CCPNet in the

modified Caffe toolbox [19] for 3D data processing. We

perform experiments on a quad-core PC with an Intel i4790

CPU and one NVIDIA TITAN X GPU (12G memory).

For the CCPNet, we initialize the weights by the “msra”

method [15]. During the training, we use the standard SGD

method with a batch size 4, momentum 0.9 and weight de-

cay 0.0005. We set the base learning rate to 0.01. For the

SUNCG dataset, we train the CCPNet with 200K iterations

and change the learning rate to 0.001 after 150K iterations.

To reduce the performance bias, we evaluate the results at

every 5K steps after 180K iterations, and average them as

the final results. For both the NYU Kinect and NYU CAD

datasets, we follow previous works [32, 10, 5, 35, 23], and

fine-tune the CPPNet pre-trained from the SUNCG dataset

with 10K iterations. After that, we test the models at every

2K iterations and pick the best one as the final result.

4.2. Experimental Results

4.2.1 Comparison on the SUNCG dataset.

For the SUNCG dataset, we compare our proposed CCPNet

with SSCNet [32], VVNet [10], DCRF [36], ESSCNet [35]

and SATNet [23] for both SC and SSC tasks. As shown in

Tab. 1, our approach achieves the best performance in both

SC and SSC tasks. Compared to the SSCNet, the overall

IoUs of our CCPNet significantly increase about 18% and

28% for SC and SSC tasks, respectively. In spite of taking

a single depth map, our approach gets higher IoUs than the

RGB-D based SATNet (Ours 91.4% vs. SATNet 78.5%).
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scene completion semantic scene completion

Methods Trained on prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Lin et al. [21] NYU 58.5 49.9 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0

Geiger and Wang [6] NYU 65.7 58.0 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6

SSCNet [32] NYU 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

SSCNet [32] SUNCG 55.6 91.9 53.2 5.8 81.8 19.6 5.4 12.9 34.4 26.0 13.6 6.1 9.4 7.4 20.2

SSCNet [32] NYU+SUNCG 59.3 92.9 56.6 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5

CSSCNet [8] NYU+SUNCG 62.5 82.3 54.3 – – – – – – – – – – – 27.5

VVNet [10] NYU+SUNCG 69.8 83.1 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9

DCRF [36] NYU – – – 18.1 92.6 27.1 10.8 18.8 54.3 47.9 17.1 15.1 34.7 13.0 31.8

TS3D,V2 [5] NYU 65.7 87.9 60.4 8.9 94.0 26.4 16.1 14.2 53.5 45.8 16.4 13.0 32.9 12.7 30.4

TS3D,V3+ [5] NYU 64.9 88.8 60.2 8.2 94.1 26.4 19.2 17.2 55.5 48.4 16.4 22.0 34.0 17.1 32.6

ESSCNet [35] NYU 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0.0 33.4 11.8 26.7

SATNet [23] NYU+SUNCG 67.3 85.8 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4

DDRNet [20] NYU 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

Ours NYU 74.2 90.8 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5

Ours NYU+SUNCG 78.8 94.3 67.1 25.5 98.5 38.8 27.1 27.3 64.8 58.4 21.5 30.1 38.4 23.8 41.3

Table 2. The performances of different scene completion methods on the NYU Kinect dataset. The best results are in bold.

scene completion semantic scene completion

Methods Trained on prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Zheng et al. [41] NYU 60.1 46.7 34.6 – – – – – – – – – – – –

Firman et al. [4] NYU 66.5 69.7 50.8 – – – – – – – – – – – –

SSCNet [32] NYU 75.0 92.3 70.3 – – – – – – – – – – – –

SSCNet [32] NYU+SUNCG 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

VVNet [10] NYU+SUNCG 86.4 92.0 80.3 – – – – – – – – – – – –

DCRF [36] NYU – – – 35.5 92.6 52.4 10.7 40.0 60.0 62.5 34.0 9.4 49.2 26.5 43.0

TS3D,V2 [5] NYU 81.2 93.6 76.9 33.9 93.4 47.0 26.4 27.9 61.7 51.7 27.6 27.3 44.4 21.8 42.1

TS3D,V3+ [5] NYU 80.2 94.4 76.5 34.4 93.6 47.7 31.8 32.2 65.2 54.2 30.7 32.5 50.1 30.7 45.7

DDRNet [20] NYU 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

Ours NYU 91.3 92.6 82.4 56.2 94.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2

Ours NYU+SUNCG 93.4 91.2 85.1 58.1 95.1 60.5 36.8 47.2 69.3 67.7 39.8 37.6 55.4 37.6 55.0

Table 3. The performances of different scene completion methods on the NYU CAD dataset. The best results are in bold.

Our approach also perform better than the previous best ES-

SCNet with a considerable margin. Tab. 1 also lists the IoU

for each object category. Our approach also achieves the

highest IoUs in each category. Thus, the quantitative results

demonstrate that our approach is superior in 3D SSC. Fig. 5

illustrates the qualitative results on the SUNCG dataset. Al-

though previous methods works well for many scenes, they

usually fail in the objects which have complex structures

and confusing semantics (the first and second rows). In

contrast, our method leverages the low-level features and

multi-scale contexts to overcome these difficulties.

4.2.2 Comparison on the NYU dataset.

For the NYU dataset, we compare our CCPNet with other

outstanding methods. Tab. 2 and Tab. 3 illustrate the per-

formances on the NYU Kinect and NYU CAD datasets,

respectively. From the results, we can see that our CCP-

Net also achieves the best performance. For the SC task, it

outperforms the SSCNet (8.4% on NYU Kinect and 12.1%

on NYU CAD) when only the NYU dataset is used as the

training data. Meanwhile, even the SSCNet uses the addi-

tional SUNCG training dataset, our CCPNet still achieves

a substantial improvement (7% on NYU Kinect and 9.2%

on NYU CAD). We observe that the SSCNet achieves a

rather high recall but a low precision for the SC task. Our

model pre-trained with the SUNCG dataset achieves better

performances, and outperforms previous best methods, i.e.,

VVNet and SATNet, with a large margin.

For the SSC task, our approach achieves 41.3% on NYU

Kinect and 55.0% on NYU CAD, and outperforms the SS-

CNet [32] by 10.8% and 15%, respectively. With the same

training data, our approach constantly performs better than

existing best methods with a considerable margin. Tab. 2

and Tab. 3 also include the results of each category. In

general, our method tends to predict more occluded voxels

than previous methods, such as window, chair and furni-

ture. Fig. 6 shows the qualitative results in which cluttered

scene completions can be observed. Our method performs

substantially better than other approaches.

4.2.3 Efficiency Analysis

Current methods usually depend on expensive 3D CNNs

and feature concatenations, while our CCPNet utilizes a

light-weight 3D dilated encoder and a self-cascaded pyra-

mid. Thus, it significantly reduces memory requirement and

computational cost for inference. Tab. 4 lists the param-

eters and computations of different methods. Our CCPNet

achieves much better accuracy, and significantly reduces the

model parameters, and speeds up for inference.

4.3. Ablation Studies

To verify the effect of our proposed modules, we also

perform ablation experiments on the SUNCG dataset.

Separated Convolution Kernels. Based on the SSC-

Net [32], we replace the 3D dilated convolutions of SSCNet
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(a) (b) (c) (d) (e) (f) (g)

Ceil floor wall window Chair bed sofa table tvs furn objects

Figure 6. Completion results with different methods on the NYU dataset. From the left to right: (a) Input Depth; (b) fTSDF Surface; (c)

Ground Truth; (d) SSCNet [32]; (e) DDRNet [20]; (f) VVNet [10]; (g) Ours. The figure is best viewed in color with 200% zooming-in.

Methods Params/k FLOPs/G Speed/ms SC-IoU SSC-IoU

SSCNet [32] 930 163.8 578 55.1 24.7

VVNet [10] 685 119.2 74 61.1 32.9

ESSCNet [35] 160 22.0 121 56.2 26.7

SATNet [23] 1200 187.5 1300 60.6 34.4

DDRNet [20] 195 27.2 658 61.0 30.4

Ours 89 11.8 57 67.1 41.3

Table 4. Comparison of efficiency with different methods.

Methods SC-IoU SSC-IoU Params/k FLOPs/G

SSCNet [32] 73.5 46.4 930 163.8

SSCNet [32]+SK 76.8 52.5 532 100.3

Table 5. Quantitative results on separated convolution kernels.

with our proposed separated kernels. For simplification, we

set the number of subvolumes to 4. Tab. 5 shows the quanti-

tative performances. For SC and SSC tasks, our method has

fewer parameters and computations, while provides 3.3%

and 6.1% IoU improvements compared to the SSCNet.

Cascaded Context Pyramid. To verify the effect of our

CCP, we replace the CCP with the outstanding PPM [40]

and ASPP [2] modules, and keep other modules unchanged.

The first three rows of Tab. 6 show the quantitative results.

With the PPM and ASPP, the IoUs of the CCPNet decrease

4.1% and 2.3% for the SC task, respectively. For the SSC

task, it has a similar trend, which proves that our CCP is

more effective. Note that the PPM and ASPP need more

memories and parameters for the context aggregation.

Guided Residual Refinement. To evaluate the effect of

our GRR, we compare the performances with different re-

finements. As shown in the 4-th row of Tab. 6, with the

BRBs, the CCPNet shows worse results, decreasing 8.1%

and 8.4% for SC and SSC, respectively. However, when

introducing the guidance (the 5-th row), the model shows

significant improvements for both SC and SSC tasks. Only

with the feature amplification (the 6-th row), we observe a

considerable improvement compared to the BRBs. A pos-

sible reason is that it is not enough for the detail recovery

when only amplifying on the 3D context information. How-

ever, with the whole GRB, our approach shows best results.

Full-Resolution Prediction. To evaluate the benefits of

Methods SC-IoU SSC-IoU Params/k FLOPs/G

CCPNet 91.4 74.2 89 11.8

CCPNet (CCP→ PPM) 87.3 71.6 120 87.2

CCPNet (CCP→ ASPP) 89.1 72.3 145 140.2

CCPNet (GRB→BRB) 83.3 65.8 89 9.2

CCPNet (GRB w/o Ampli) 88.7 73.6 89 11.5

CCPNet (GRB w/o Guidance) 84.3 67.4 89 11.2

CCPNet-Quarter 86.5 69.1 76 6.5

CCPNet-Half 88.4 73.1 81 10.4

Table 6. Ablation results of components on the SUNCG dataset.

full-resolutions, we also re-implement our approach with

the quarter and half resolution. To achieve this goal, we re-

move the corresponding layers after the deconvolution op-

erations in Fig. 1. The last two rows of Tab. 6 show the

performances. From the results, we can see that the low-

resolution-based model shows worse performances. The

main reason is that it cannot preserve the geometric details.

However, our model still performs better than most state-of-

the-art methods. This further demonstrates the effectiveness

of our proposed modules. With full-resolution outputs, our

model can fully exploit the geometric details, improving the

IoUs by 4.9% and 5.1% respectively.

5. Conclusion

In this work, we propose a novel deep learning frame-

work, named CCPNet, for full-resolution 3D SSC. The C-

CPNet is a self-cascaded pyramid structure to successive-

ly aggregate multi-scale 3D contexts and local geometry

details. Extensive experiments on both synthetic and real

benchmarks demonstrate that our CCPNet significantly im-

proves the semantic completion accuracy, reduces the com-

putational cost, and offers high-quality completion results

with full-resolution. In the future work, we will explore

color information for semantic and boundary enhancement.
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