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Abstract

Exploiting the prior information is fundamental for the

image reconstruction in computational hyperspectral imag-

ing. Existing methods usually unfold the 3D signal as a 1D

vector and treat the prior information within different di-

mensions in an indiscriminative manner, which ignores the

high-dimensionality nature of hyperspectral image (HSI)

and thus results in poor quality reconstruction. In this pa-

per, we propose to make full use of the high-dimensionality

structure of the desired HSI to boost the reconstruction

quality. We first build a high-order tensor by exploiting the

nonlocal similarity in HSI. Then, we propose a dimension-

discriminative low-rank tensor recovery (DLTR) model to

characterize the structure prior adaptively in each dimen-

sion. By integrating the structure prior in DLTR with the

system imaging process, we develop an optimization frame-

work for HSI reconstruction, which is finally solved via the

alternating minimization algorithm. Extensive experiments

implemented with both synthetic and real data demonstrate

that our method outperforms state-of-the-art methods.

1. Introduction

Hyperspectral imaging techniques capture reflectance of

a real scene across tens to hundreds of discrete bands. Com-

pared with the traditional RGB image, the hyperspectral im-

age (HSI) can provide more details and features with the ad-

ditional spectral dimension. Such characteristics have been

applied to various computer vision tasks, such as classifica-

tion [1], recognition [2], and tracking [3].

HSIs are 3D in nature, including one spectral dimen-

sion and two spatial dimensions. To obtain a HSI, the con-

ventional spectrometers [4, 5, 6, 7], which are equipped

with 1D or 2D detectors, need to scan the scene along

the spatial or spectral dimensions. Thus, the scanning-

based hyperspectral imaging methods suffer from low tem-

poral resolution and cannot be used to capture dynamic
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Figure 1: Illustration of the spectral-spatial correlation in a

local patch. (a) A local spectral-spatial patch of size 31×36.

(b) The 3D smooth surface of (a). (c) The vectoriezd 1D

signal of (a). It shows that the vectorization process breaks

the intrinsic structure information.

scenes. Thanks to the flourish of computational photogra-

phy, computational hyperspectral imaging has been devel-

oped to overcome this problem [8, 9, 10]. Among numerous

imaging systems, coded aperture snapshot spectral imaging

(CASSI) [11, 12] and its dual camera design (DCD) [13, 14]

have attracted increasing attention in recent years due to the

advantage of snapshot. With elaborate optical designs, they

encode the 3D HSI into the 2D compressive measurement.

Consequently, the bottleneck in computational hyperspec-

tral imaging is how to faithfully reconstruct the 3D HSI

from the compressive measurement.

Since the reconstruction is severely under-determined,

image prior information must be characterized to regular-

ize the reconstruction. So far considerable research efforts

in this field have been devoted to exploiting the prior infor-

mation [14, 15, 16, 17, 18, 19, 20, 21]. However, existing

methods usually unfold the 3D signal as a 1D vector and

treat the prior information within different dimensions in an

indiscriminative manner. The vectorization process ignores

the high-dimensionality nature of HSI and breaks the orig-

inal structure information in HSI. As an intuitive example,

Fig. 1 shows a comparison of pixel value distributions of

one spatial-spectral patch with and without vectorization. It

is clear that the structure information gets lost after vector-

ization.

Our key observation is that compared with the 1D-vector

based signal description, high-order tensors can provide a
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Figure 2: Overview of the proposed method. We first

obtain an initialization from the compressive measure-

ment. Then our reconstruction method, including matching,

dimension-discriminative low-rank tensor recovery (short-

ened as DLTR in the figure) and projection, is iteratively

performed. Finally, we output the reconstructed HSI.

more accurate representation to figure out the data diversity

in each domain and deliver the intrinsic structure of high-

dimensionality signals. Such observation motivates us to

exploit the tensor representation for HSI reconstruction to

address the problem of vectorization.

In this paper, we propose to make full use of the high-

dimensionality structure prior in HSI to boost the recon-

struction quality for computational hyperspectral imaging.

The overall framework of our method is illustrated in Fig. 2.

Specifically, we first build a high-order tensor by exploit-

ing the nonlocal similarity in the spatial and spectral do-

mains for each exemplar cubic patch. Then, to charac-

terize the structure prior in each dimension, we propose a

dimension-discriminative low-rank tensor recovery (DLTR)

model, where the spatial self-similarity, spectral correlation

and joint correlation will be fully exploited. By integrating

the tensor-based structure prior in DLTR with the system

imaging process, we develop an optimization framework for

HSI reconstruction, which is finally solved via an alternat-

ing minimization algorithm. To the best of our knowledge,

it is the first time to characterize the prior in HSI with a

dimension-discriminative model for computational hyper-

spectral imaging. Extensive experiments implemented with

both synthetic data and real capture data demonstrate that

our method outperforms state-of-the-art methods.

2. Related Works

2.1. Hyperspectral Image Reconstruction

Recovering the 3D HSI from the 2D compressive mea-

surement plays an essential role in computational hyper-

spectral imaging. So far methods for HSI reconstruction

can be generally grouped into two categories: prior knowl-

edge based methods and deep learning based methods.

Traditional methods reconstruct HSI by solving opti-

mization problems with prior knowledge based regulariza-

tion. Under the sparsity assumption, HSI can be recon-

structed by solving an ℓ0 or an ℓ1 relaxation optimization

problem. With the hypothesis that objects in the scene have

piecewise smooth structure, total variation (TV) regulariza-

tion based methods have been widely used in computational

hyperspectral imaging [15, 22, 23]. Various sparse recon-

struction methods have been developed [12, 14, 16, 17, 21,

24] by conducting wavelet transform or over-completed dic-

tionary as sparsity basis. Minimization of matrix rank based

methods were proposed in [18, 20] to exploit the spatial-

spectral correlation. However, existing methods always un-

fold the 3D signal as a 1D vector and treat the prior infor-

mation within different dimensions in an indiscriminative

way, which ignores the high-dimensionality nature of HSI

and results in poor reconstruction quality.

In recent years, deep learning techniques have been em-

ployed for image restoration. Several methods on deep neu-

ral network attempted to learn prior knowledge for natural

image compressive imaging [25, 26]. However, the hetero-

geneity of HSI makes those methods difficult to be extended

for computational hyperspectral imaging. A convolutional

autoencoder (AE) was proposed in [27] to learn a non-

linear sparse representation for CASSI. A recent method

named HSCNN used a convolutional network to finish the

reconstruction task [28]. But these methods all try to learn

a single prior information and can not exploit the high-

dimensionality intrinsic nature of HSI. Moreover, few ex-

periments are carried out to verify that these networks can

be applied to the actual hardware systems.

Based on our observation that high-dimensional tensors

are more faithful to deliver intrinsic properties, we propose

a DLTR based method to further promote the reconstruction

fidelity. Besides, extensive experiments on actual hardware

implementations validate the generalization of our method.

2.2. Low­rank Tensor Recovery

Low-rank tensor recovery has been widely used in var-

ious computer vision tasks[29, 30, 31, 32, 33] in recent

years. Based on the high-order singular value decompo-

sition (HOSVD) [34], low-rank tensor recovery can be re-

garded as a factorization based problem. However, HOSVD

needs to predefine the rank of each mode, which is a hard

and unstable task. Sum of ranks minimization based meth-

ods [29, 35] have been widely used for tensor completion.

However, these methods treat the rank of all modes equally,

which ignore the discrepant physical meaning of different

modes. To figure out this issue, a weighted tensor nuclear

norm regulation based model [36] was presented and its re-

laxation with non-convex forms [37, 38] were further devel-
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oped.

In this paper, we take advantage of the trend of this do-

main to boost the reconstruction quality for computational

hyperspectral imaging. To the best of our knowledge, it

is the first time that the DLTR model has been utilized for

computational hyperspectral imaging.

3. Dimension-differentiated Low-rank Tensor

Model

3.1. Notations and Preliminaries

We first introduce notations and preliminaries as follows.

Matrices are denoted as boldface capital letters, e.g., X ,

vectors are represented with blodface lowercase letters, e.g.

x, and scalars are indicated as lowercase letters, e.g., x. We

denote a tensor of order N as boldface Euler script X ∈
R

I1×I2×···IN and its Frobenius norm is the square root of

the sum of the squares of all its elements, i.e., ‖X‖F =
√

∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 x(i1, i2, · · ·, iN )2. By varying

index in while keeping the others fixed, the mode-n fiber

of X can be obtained. By arranging the mode-n fibers of

X as column vectors, we get the mode-n unfolding matrix

of X , which is denoted as X(n) ∈ R
In×(I1···In−1In+1···IN ).

foldn(·) is the operator that converts the matrix back to the

tensor format along the mode-n.

3.2. Model Formulation

The fundamental solution for HSI reconstruction is to

solve an optimization problem with prior knowledge based

regularization. Therefore, it is essential to fully leverage the

intrinsic properties behind the desired signal and develop

an appropriate regularization. So far two kinds of utilized

priors for HSI recovery are the spectral correlation and the

spatial self-similarity. The spectral correlation states a fact

that HSI contains a small amount of basis materials and thus

exhibits rich spectral redundancy. While the spatial self-

similarity indicates that, for each exemplar patch, we can

find many similar patches sharing the homologous struc-

ture. It has been shown that such two prior knowledge are

very helpful for HSI processing [29, 30, 31, 32]. Take such

prior knowledge into full consideration, we formulate 3D

tensors to promote the reconstruction performance.

We first partition the HSI X into overlapped cubic

patches with the spatial block size of s× s across full spec-

tral bands. After lexicographically reordering the spatial

block of each band into a 1D column vector, we search k
nearest similar neighbors for each patch and get a corre-

sponding 3D tensor P with the size of s2 × Λ × (k + 1),
where Λ is the spectral number. Although it is someway

reasonable to construct a 4D tensor to preserve the 2D spa-

tial structure, the spatial size s×s is usually set to be small,

which can not extract the intrinsic spatial features. While
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Figure 3: Low-rank property analysis. We exploit the non-

local similarity across spatial and spectral domain to refor-

mulate a low-rank tensor in the first row. We unfold the

tensor along each mode in the second row and show the

corresponding singular value in the third row.

for a large s, unaffordable computation and memory burden

will be introduced in practice.

The constructed 3D tensors simultaneously utilize the

spatial self-similarity (mode-1), the spectral correlation

(mode-2) and the joint correlation (mode-3), which would

benefit us for investigating the priors in a unified frame-

work. Consequently, we can obtain a basic representation

towards low-rank tensor recovery:

Γ(P) = τ ‖R(X )−P‖
2
F + rank(P), (1)

where R(·) represents the operator extracting the 3D tensor

from X and τ denotes the penalty factor.

With the Tucker decomposition [39], the tensor rank is

characterized by the sum of ranks of unfolding matrices

along each mode, i.e. rank(P) =
∑3

n=1 rank(P(n)). How-

ever, simply summing the ranks lacks a clear investigation

on different subspaces. In Fig. 3, we analyze the low-rank

property of the constructed 3D tensor. We extract a nonlo-

cal tensor from a clean HSI and implement SVD along each

mode. The singular values of each unfolding matrix tend

to be dropping to zero fleetly. But discrepancy exists in the

descending rates of singular values of different modes. For

example, due to the strong redundancy in non-local similar

patches, the magnitude of singular values in mode-3 tends

to decrease to zero with a relatively faster speed. Thus, a

single penalty factor acted on all modes would produce poor
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tensor recovery results. Modes of lower rank still contain

biased redundancy while those of higher rank are overesti-

mated.

Considering such discrepancy among different modes,

it is beneficial to estimate rank(P) in a dimension-

discriminative manner. To address this issue, we propose to

utilize the sum of weighted ranks regularization to exploit

the multi-dimensionality diversity:

Γ(P) = τ ‖R(X )−P‖
2
F +

∑3

n=1
wnrank(P(n)), (2)

where wn > 0 is the weight factor that can be regarded as

the importance measurement of mode-n. In the following,

we will illustrate the DLTR based reconstruction method for

computational hyperspectral imaging.

4. Dimension-discriminative Low-rank Tensor

Recovery Based Reconstruction

4.1. Representative Systems

We give a brief introduction on two representative com-

putational hyperspectral imaging systems, i.e., CASSI and

DCD. It is worth noting that our method is also suited

for other computational imaging systems, such as multiple

snapshot imaging system [40, 41], spatial-spectral encoded

imaging system[42] and so on.

The incident light in the CASSI system, as shown in

Fig. 4, is first projected onto the plane of a coded aper-

ture through the objective lens. After spatial modulation

by a coded aperture, the incident light goes through a relay

lens and is spectrally dispersed in the vertical direction by

Amici prism. Finally, the modulated and dispersed spec-

tral information is captured by a grayscale camera. Let

X ∈ R
M×N×Λ denotes the original HSI and x(i, j, λ) is its

element, where 1≤i≤M , 1≤j≤N index the spatial coordi-

nate and 1≤λ≤Λ indexes the spectral coordinate. The com-

pressive measurement at position (i, j) on the focal plane of

CASSI can be represented as:

yc(i, j) =
∑Λ

λ=1
ρ(λ)ϕ(i−φ(λ), j)x(i−φ(λ), j, λ), (3)

where ϕ(i, j) denotes the pattern of the coded aperture,

φ(λ) denotes the dispersion introduced by Amici prism and

ρ(λ) is the spectral response of the detector. For brevity, let

Y
c denote the matrix representation of yc(i, j). Then the

matrix form of CASSI imaging can be expressed as:

Y
c = Φ

c(X ), (4)

where Φ
c is the forward imaging function (jointly deter-

mined by ρ(λ), ϕ(i, j) and φ(λ)).
The incident light in the DCD system, as shown in Fig. 4,

is first divided into two directions by the beam splitter

equivalently. The light in one direction is captured by the

Scene Beam
splitter

Objective
lens

Relay
lens

Amici 
prism

Grayscale 
camera

Grayscale camera

Coded 
aperture

CASSI

DCD

Figure 4: Diagram of two representative computational hy-

perspectral imaging systems.

CASSI system, while the light on the other direction is cap-

tured directly by a grayscale camera. The compressive mea-

surement on the panchromatic detector can be represented

as:

yp(i, j) = 0.5
∑Λ

λ=1
ρ(λ)x(i, j, λ). (5)

Similar to the CASSI formulation in Equation (4), Equa-

tion (5) can also be rewritten in the matrix form as:

Y
p = Φ

p(X ), (6)

where Y
p denotes the uncoded measurement and Φ

p is the

forward imaging function of the grayscale camera.

A general imaging representation of computational hy-

perspectral imaging can be derived as:

Y = Φ(X ). (7)

For CASSI, Y = Y
c and Φ = Φ

c, For DCD, Y =
[Y c;Y p] and Φ = [Φc;Φp]. Actually, the goal of com-

putational imaging reconstruction is to estimate X from the

compressive measurement Y .

4.2. Reconstruction Formulation

To exploit the multi-dimensional intrinsic property of
HSI analyzed in Section 3, a general reconstruction model
with DLTR can be derived as follows:

min
X ,Pl

1

2
‖Y −Φ(X )‖2

F
+

∑L

l=1

(

τ

∥

∥

∥
R

l(X )−P
l
∥

∥

∥

2

F

+
∑3

n=1
wnrank(P l

(n))
)

,

(8)

where L denotes the total number of exemplar tensors.
Minimizing the rank of matrix in Equation (8) is a NP-hard
problem. To make a more explicit and accurate estimation,
we further propose to introduce a non-convex relaxation of
nuclear norm using a log-sum form:

min
X ,Pl

1

2
‖Y −Φ(X )‖2

F
+

∑L

l=1

(

τ

∥

∥

∥
R

l(X )−P
l
∥

∥

∥

2

F

+
∑3

n=1
wnΘ(P l

(n), ǫ)
)

,

(9)
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where Θ(P l
(n), ǫ) =

∑

r log(σr(P
l
(n)) + ǫ), ǫ is a small

positive constant number and σ(P l
(n)) defines the singular

values of P l
(n).

Let f(σ, ǫ) = log(σ + ǫ), f(σ, ǫ) derives a mean-

ingful outcome that the singular values can be disposed

adaptively. Specifically, f(σ, ǫ) can be approximated us-

ing the first-order Taylor expansion at σ = σt, i.e.,

f(σ, ǫ) = f(σt, ǫ)+ < ∇f(σt, ǫ), σ − σt >, where

σt denotes the result of the t-th iteration. Actually, the

solution of min
σ

f(σ, ǫ) can be reasonably approximated

by min
σ

(σ/(σt + ǫ)) since the constants in the first Tay-

lor expansion don’t influence the minimization problem

and can be neglected. Therefore, minΘ(P l
(n), ǫ) =

min
∑

r(σr(P
l
(n))/(σ

t
r(P

l
(n)) + ǫ)). It means that those

greater singular values of the tth iteration, which deliver

more important information, will get a smaller weight and

be shrunk by a lower amplitude at (t+1)-th iteration. There-

for, structure information can be preserved.

The log-sum based regularization model, which can be

effectively solved by singular value thresholding, benefits

us for reconstructing HSI with DLTR. An numerical algo-

rithm for solving Equation (9) is then proposed in the fol-

lowing section.

4.3. Optimization Algorithm

To optimize Equation (9), we adopt an alternating mini-

mization scheme to split it into two finer subproblems: up-

dating low-rank tensor P l and updating the whole HSI X .

4.3.1 Updating Low-rank Tensor P
l

By fixing HSI X , we can estimate each low-rank tensor P l

independently by solving the following reformulated equa-

tion:

min
Pl

∥

∥

∥
R

l(X )−P
l
∥

∥

∥

2

F
+
∑3

n=1
wnΘ(P l

(n), ǫ). (10)

Here, we employ an alternating minimization strategy to

facilitate the problem. Specifically, by initializing P
l
(0) =

R
l(X ), we estimate low-rank tensor P

l in a mode-wise

way:

min
Pl

(n)

1

2

∥

∥

∥
P

l
(n−1) −P

l
(n)

∥

∥

∥

2

F
+ αn

∑

r
log(σr(P

l
(n)) + ǫ),

(11)

where αn = wn/2τ . For n = 1, 2 and 3, Equation (11)

admits a closed-form and can be updated by the following:

P
l
(n) = foldn(UΣαn

V
T ), (12)

where Σαn
= diag(Sαn,ǫ(σ1),Sαn,ǫ(σ2), ...,Sαn,ǫ(σDn

)),

and Udiag(σ1, σ2, ..., σDn
)V T is SVD of P

l
(n−1). The

singular value thresholding operation Sα,ǫ(σ) is defined as:

Sα,ǫ(σ) =

{

0

sign(σ)(
c0+

√
c1

2 )

if c1 ≤ 0
if c1 > 0

(13)

with that c0 = |σ| − ǫ, and c1 = (c0)
2 − 4(α − ǫ |σ|)

[43]. Finally, we update the low-rank tensor with P
l =

fold3(P
l
(3)).

4.3.2 Updating Whole HSI X

Once we obtain the low-rank tensor P l, the whole HSI X

can be updated by solving the following problem:

min
X

1

2
‖Y −Φ(X )‖

2
F +

∑L

l=1
τ
∥

∥

∥
R

l(X )−P
l
∥

∥

∥

2

F
.

(14)

Actually, Equation (14) is a quadratic optimization prob-

lem and admits a straightforward least-square solution:

X =
(

Φ
T
Φ+ 2τ

∑

l
R

lT
R

l
)−1(

Φ
T (Y )

+2τ
∑L

l=1
R

lT (P l)
)

,
(15)

which can be solved by a conjugate gradient algorithm.

5. Experiments on Synthetic Data

In this section, we compare the performance of our

method with both prior knowledge based methods and deep

learning based methods via experiments on synthetic data.

5.1. Implementation Details

Datasets. Three public HSI datasets, including the

Columbia dataset [44], the Harvard dataset [45] and the

KAIST dataset [27] are used as synthetic data. These

datasets contain various real-world objects of different ma-

terials. In our experiment, the resolution of all tested images

is cropped into 256 × 256 and 31 spectral bands (400nm

to 700nm in Columbia, while 420nm to 720nm in Harvard

and KAIST). And all tested HSIs are scaled into the interval

[0,1].

Comparison Methods. Our algorithm is compared with

5 prior knowledge based methods, i.e., TV regularization

integrated TwIST [46], gradient projection for sparse re-

construction (GPSR) [16], approximate message passing

(AMP) [24], nonlocal sparse representation (NSR) [17] and

low-rank matrix approximation (LRMA) [18] and 3 deep

learning based methods, i.e., AE [27], HSCNN [28] and

ISTA [26].

Parameters Setting. For the competitive methods, we

make efforts to achieve their best results according to

their released codes or publication suggestions. For our

method, the penalty factor τ = 1, the adaptive weight

w = [0.1, 0.1, 1]c, and c = 10−4∼10−3 is a constant. We
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Table 1: Reconstruction results (PSNR(dB)/SSIM/ERGAS) of the 10 HSIs for different methods on CASSI.

Methods Indexes Average

TV[12]

PSNR 20.13 18.51 34.58 25.46 20.98 20.19 23.63 20.89 21.42 25.83 23.16

SSIM 0.675 0.429 0.928 0.845 0.643 0.626 0.571 0.794 0.770 0.846 0.713

ERGAS 304.93 315.73 160.80 168.38 253.94 341.67 210.29 303.65 251.24 272.62 258.32

GPSR[16]

PSNR 20.74 18.74 31.79 22.37 19.89 19.89 22.32 21.74 21.60 25.36 22.44

SSIM 0.581 0.431 0.838 0.721 0.556 0.576 0.507 0.732 0.679 0.703 0.632

ERGAS 295.29 308.48 227.97 238.21 287.67 353.09 246.55 281.43 244.13 291.71 277.46

AMP[24]

PSNR 19.61 18.49 33.68 23.94 21.19 19.86 22.91 20.91 22.96 28.30 23.18

SSIM 0.570 0.399 0.901 0.770 0.605 0.546 0.524 0.739 0.720 0.827 0.660

ERGAS 322.56 320.12 178.82 201.53 246.97 354.04 229.17 304.57 207.02 202.82 256.76

NSR[17]

PSNR 23.46 19.12 37.06 29.53 23.41 21.52 24.49 24.25 26.90 31.60 26.13

SSIM 0.756 0.453 0.959 0.901 0.705 0.672 0.583 0.827 0.840 0.919 0.761

ERGAS 207.60 297.59 122.49 105.15 193.31 293.67 191.57 208.17 131.18 141.20 189.19

LRMA[18]

PSNR 22.73 19.31 37.38 30.98 24.14 22.04 25.02 23.00 24.93 29.89 25.94

SSIM 0.806 0.470 0.948 0.944 0.771 0.743 0.608 0.847 0.863 0.933 0.793

ERGAS 228.00 292.05 117.27 91.65 179.84 279.03 181.52 243.49 167.42 176.00 195.63

Ours

PSNR 24.27 19.70 37.41 32.50 25.58 23.20 25.62 24.43 27.16 31.57 27.15

SSIM 0.855 0.495 0.948 0.948 0.802 0.788 0.626 0.870 0.901 0.939 0.817

ERGAS 193.35 279.83 116.57 75.29 153.06 245.12 169.83 212.34 129.62 146.50 172.15

(17.89 / 0.792) (12.83 / 0.643) (19.49 / 0.751) (23.88 / 0.861) 

(23.06 / 0.894) (22.82 / 0.830) (21.55 / 0.829) (25.47 / 0.936) 

Ground truth

CA
SS

I

TV AMPGPSR NSR LRMA Ours

D
CD

(24.05 / 0.910) (26.75 / 0.943) 

(30.07 / 0.977) (32.60 / 0.982) 

(PSNR / SSIM) 

Figure 5: Visual results comparison for stuffed toys on CASSI and DCD at 410nm. The average PSNR and SSIM values are

presented in parenthesis. Our proposed method obtains better results on both computational imaging systems.

set the spatial patch size s = 6 with the overlapping size of

5 empirically. We search 45 nearest similar patches within

a [−20, 20]× [−20, 20] window.

Evaluation Measures. For quantitative evaluation, three

image quality indexes are adopted: peek signal-to-noise ra-

tio (PSNR), structure similarity (SSIM) [47] and erreur rel-

ative globale adimensionnelle de synthèse (ERGAS)[48].

PSNR measures the visual quality, SSIM measures the

structure similarity and ERGAS measures the spectral fi-

delity. Generally, a bigger PSNR and SSIM and a smaller

ERGAS suggest a better reconstruction accuracy.

5.2. Performance Evaluation

We first compare our method with prior knowledge

based methods on both CASSI and DCD to verify its per-

formance. The quantitative results on the Columbia dataset

are shown in Table 1 and Table 2, respectively. The best

results for each image are highlighted in bold. Compar-

ing the results within the same system, we can see that our

method obtains a noticeable promotion in PSNR, SSIM and

ERGAS on both systems. We show the reconstructed im-

ages of stuffed toys on both systems in Fig. 5, which can

also demonstrate the superiorty of our method. Specifi-
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Table 2: Reconstruction results (PSNR(dB)/SSIM/ERGAS) of the 10 HSIs for different methods on DCD.

Methods Indexes Average

TV[12]

PSNR 29.25 21.17 47.19 26.84 22.73 25.54 27.15 30.08 26.87 28.28 28.51

SSIM 0.921 0.793 0.994 0.912 0.822 0.880 0.873 0.854 0.956 0.934 0.894

ERGAS 156.67 250.06 38.57 155.41 217.18 188.39 150.89 126.06 142.41 245.79 167.14

GPSR[16]

PSNR 27.62 25.99 36.97 25.86 24.69 25.13 27.88 29.48 26.47 27.92 27.80

SSIM 0.846 0.866 0.937 0.855 0.833 0.851 0.779 0.851 0.929 0.892 0.864

ERGAS 181.06 133.41 140.06 164.91 172.74 194.91 138.77 144.54 151.69 241.40 166.35

AMP[24]

PSNR 27.66 23.52 38.77 28.92 26.53 24.97 27.38 26.44 28.38 32.62 28.52

SSIM 0.829 0.793 0.955 0.880 0.841 0.819 0.882 0.760 0.869 0.897 0.853

ERGAS 137.55 174.13 102.23 119.43 137.27 197.58 139.14 163.35 111.78 125.03 140.75

NSR[17]

PSNR 31.01 22.27 48.49 36.77 30.87 27.21 28.02 35.45 30.11 35.58 32.58

SSIM 0.944 0.831 0.996 0.976 0.943 0.904 0.966 0.884 0.973 0.959 0.938

ERGAS 135.46 223.83 33.61 47.36 85.87 156.51 137.69 59.04 98.78 98.90 107.71

LRMA[18]

PSNR 40.65 28.87 48.20 40.11 34.31 33.85 34.71 41.22 37.57 35.03 37.45

SSIM 0.989 0.927 0.991 0.989 0.971 0.970 0.973 0.945 0.991 0.986 0.973

ERGAS 34.49 99.71 35.34 32.24 57.01 72.43 59.72 30.35 40.41 111.30 57.30

Ours

PSNR 42.02 29.79 48.91 40.67 35.37 34.80 35.27 41.94 38.30 35.88 38.29

SSIM 0.991 0.938 0.991 0.990 0.976 0.976 0.977 0.950 0.992 0.988 0.977

ERGAS 25.98 89.58 33.08 30.13 50.36 64.68 55.79 27.90 37.06 103.58 51.81
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Figure 6: Reconstructed quality comparison. The average PSNR and SSIM values are presented in parenthesis. The offside

curves show the absolute spectral error of the white labels on ground truth. Our proposed method outperforms all three deep

learning based methods in terms of spatial vision and spectral accuracy.

cally, our method produces remarkable spatial quality pro-

motion compared with TV, AMP and NSR. It indicates that

low rank prior can recover more structure information than

sparse prior. Further, the promotion upon LRMA indicates

that the high-dimensional tensor is more powerful than ma-

trix to exploit the intrinsic characteristic of HSI.

Then, we carry out a thorough comparison with three

deep learning based methods on both the Harvard dataset

and the KAIST dataset. Specifically, for the Harvard

dataset, we use 35 HSIs for training and 9 HSIs for test-

ing, for the KAIST dataset, we use 29 HSIs for training

and 3 HSIs for testing. The average numerical results of

CASSI are presented in Table 3. It can be seen that our

method outperforms all three deep learning based methods

as well. Extensive comparison, including the visual results

and the absolute error in the spectral distribution, are shown

in Fig. 6. For better vision, we convert the reconstructed

HSI into RGB using the CIE color mapping function. It

shows that our method can exhibit not only clearer spatial

details but also higher spectral fidelity.
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(a) CASSI image (b) TV-CASSI (c) NSR-CASSI (d) LRMA-CASSI (e) AE-CASSI (f) Ours-CASSI

(g) DCD image (h) TV-DCD (i) NSR-DCD (j) LRMA-DCD (k) AE-DCD (l) Ours-DCD

Figure 7: Reconstruction performance comparison on real data. Compared with other methods, our method can produce

better visual details.

Table 3: Comparison with 3 deep learning based methods

on CASSI. The results are obtained by averaging the test-

ing images on 2 datasets. Our method produces a notable

promotion upon deep learning based methods.

Datasets Indexes AE HSCNN ISTA Ours

Harvard

PSNR 29.20 27.60 29.87 31.14

SSIM 0.912 0.900 0.913 0.932

ERGAS 91.62 105.90 85.21 74.92

KAIST

PSNR 26.03 21.06 28.57 34.87

SSIM 0.920 0.814 0.909 0.962

ERGAS 172.32 273.37 151.49 37.40

5.3. Real Data

We further evaluate the performance of the proposed

method using the real data. The captured scene is a cartoon

cover under the laboratory ambient light condition. The

compressive measurement of CASSI is shown in Fig. 7(a)

and the panchromatic image of DCD is shown in Fig. 7(g).

It can be seen that the proposed method can obtain better re-

sults with clearer contents and abundant textures compared

with the other methods on both systems. By contrast, TV

produces over-smoothing results, both NSR and LRMA in-

troduce noise and lost spatial details, while AE suffers from

severe artifacts. Therefore, our method is also potential to

be applied into the real nature scene.

6. Conclusion

In this paper, we have proposed a general reconstruc-

tion model for computational hyperspectral imaging based

on the dimension-discriminative low-rank tensor recovery.

We utilized 3D tensors to exploit the intrinsic properties of

hyperspectral image, including spatial self-similarity, spec-

tral correlation and joint correlation to boost the reconstruc-

tion performance. To clearly figure out the multi-dimension

diversity, a dimensional-discriminative low-rank tensor re-

covery model based on a weighted nuclear norm regular-

ization is developed. Then the low-rank regularization and

the imaging process are unified in a general reconstruction

model, which is effectively solved by an iterative numerical

algorithm. The executive experiments on CASSI and DCD

have verified the superior performance and the application

perspective of our method. In our future work, we will in-

vestigate the dimension-discriminative low-rank tensor re-

covery to more actual computational imaging systems.
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