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Abstract

The feature matching problem is a fundamental problem

in various areas of computer vision including image regis-

tration, tracking and motion analysis. Rich local represen-

tation is a key part of efficient feature matching methods.

However, when the local features are limited to the coor-

dinate of key points, it becomes challenging to extract rich

local representations. Traditional approaches use pairwise

or higher order handcrafted geometric features to get ro-

bust matching; this requires solving NP-hard assignment

problems. In this paper, we address this problem by propos-

ing a graph neural network model to transform coordi-

nates of feature points into local features. With our local

features, the traditional NP-hard assignment problems are

replaced with a simple assignment problem which can be

solved efficiently. Promising results on both synthetic and

real datasets demonstrate the effectiveness of the proposed

method.

1. Introduction

Finding consistency correspondences between two sets

of features or points, a.k.a. feature matching, is a key

step in various tasks in computer vision including image

registration, motion analysis and multiple object tracking

[6, 10, 15, 17, 4]. When effective visual features are avail-

able, e.g. from successful deep learning, simple inference

algorithms such as the Hungarian/Munkres algorithm [19]

can achieve quite good performance [27, 7, 16]. How-

ever, for geometric feature matching problems, strong lo-

cal features are not available; pairwise or higher order fea-

tures must be applied to find robust matchings. These fea-

tures, however, will transform the inference problem into

the Quadratic/Higher Order Assignment Problem, which is

NP-hard in general [2]. Due to the NP-hardness of the in-
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Figure 1: The graph neural netowrk transforms the coordinates

into features of the points, so that a simple inference algorithm

can successfully do feature matching.

ference problem in geometric feature matching, previous

works mainly focus on developing efficient relaxation meth-

ods [28, 13, 12, 4, 31, 14, 15, 26, 30, 25, 29].

In this paper, we attack the geometric feature match-

ing problem from a different direction. We show that it

is possible to learn a mapping from only the point coor-

dinates and the graph structure into strong local features

using a graph neural network, such that simple inference

algorithms outperform traditional approaches that are based

on carefully designed inference algorithms. This process is

shown in Figure 1 where point coordinates for the vertices

of two graphs are transformed into rich features for effective

matching using the Hungarian/Munkres algorithm.

To do the feature matching problem from the point coor-

dinates, various sources of information are likely to be use-

ful. Pairwise information such as length and angle of edges

are likely be very important. Multi-scale information may

also play a useful role; this can often be obtained with the

use of hierarchical structures. Earlier works with hierarchi-

cal handcrafted features such as hierarchical structured im-

age pyramid rely on strong local features to construct scale

invariant visual features [16, 1, 24]. In deep learning based

visual feature matching methods, the hierarchical structured

CNN has been applied to get rich local features. It is less

clear how to construct features that provide multi-scale in-

formation directly from just point coordinates.
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We seek to capture most of these information and trans-

form them into node features that are useful for matching.

To do that, we use graph neural networks (GNN). Graph

neural network extends normal convolutional neural net-

work (CNN) to irregular graph structured data. Unlike nor-

mal CNN, in GNN, each node and its neighbors are as-

sociated with different convolution operators. This allows

nodes and their neighbours at different relative positions

and distances to use different convolution operators, hence

providing different edge information. Furthermore, GNNs

use message passing algorithms to propagate information,

including those at multiple scales, as well as other more

global information about the graph structure, to the nodes

features. By learning the parameters of the GNN, we can

train the network to construct features that are appropriate

for the matching task.

Unfortunately, allowing each node and its neighbour

to have a different convolution operator requires a large

amount of computational resources as well as a large

amount of training data for learning. As a result, the general

graph neural network suffers from scalability problems. To

handle this issue, we proposed an effective method for com-

posing the local convolution kernel for each edge from a

global collection of kernels using an attention mechanism.

The resulting GNN, named Compositional Message Pass-

ing Neural Network (CMPNN), is highly efficient and gives

good results in the graph matching problem.

Our main results are summarized as follows:

1. We proposed to use a graph neural network in order to

exploit the global structure of a graph for transforming

weak local geometric features at points into rich local

features for the geometric feature matching problem;

2. With our rich local features, the hard Quadratic/Higher

Order Assignment Problem in traditional methods can

be downgraded to a simple Linear Assignment Prob-

lem, which can be solved by the Hungarian/Munkres

algorithm efficiently;

3. We proposed the Compositional Message Passing

Neural Network, which uses an attention mechanism

to compose a local convolution kernel from a global

collection of kernels, enabling us to train and run our

network efficiently.

2. Related Works

Geometric Feature Matching Traditionally the geomet-

ric feature matching problem is often formulated as a

Quadratic/Higher Order Assignment Problem with simple

features such as length/angle of edges, angles of triangles

and so on [31, 30, 13, 25]. These methods have difficul-

ties with the complexity of inference and the quality of

matching. To achieve better accuracy, the order of the fea-

tures usually needs to be increased. For example, to attain

scale and rotation invariance, order 3 features are required

and to attain affine invariance, order 4 features are required

[28, 12, 14, 26]. Recently, Milan et al. [18] used a recurrent

neural network to solve these hard assignment problems;

however the work was only demonstrated for small scale

problem with less than 10 feature nodes.

PointNet The PointNet is a recent geometric feature

learning framework for point cloud classification and seg-

mentation [23]. The authors also show that the learned fea-

tures can be used to establish correspondences between ob-

ject parts. In the vanilla PointNet, the global feature will

be extracted by global pooling and then be propagated to

every node. Such a structure is a good match for applica-

tion such as classification and semantic segmentation. For

feature matching, which requires rich local features, such

global information propagation procedures may fail due to

lack of local information exchange and failure to exploit the

hierarchical structure. The point pair feature (PPFnet) ex-

tended the PointNet with a hierarchical structure for point

cloud feature matching problems [3]. In the PPFnet, given

several local point patches, PointNet is used to extract one

feature vector for each local patch. Then the features are

passed to another PointNet-like network to get the feature

representation of each local patch. As the PPFnet strongly

depends on PointNet, it still lacks an efficient local infor-

mation propagation scheme. Thus it requires rich local ge-

ometric feature (i.e. local point cloud patch) to work. When

such features are not available and only the coordinate of

the point is given, it is reduced to the PointNet.

Message Passing Neural Network The message passing

neural network (MPNN) proposed by Gilmer et al. [5] pro-

vides a general framework for constructing graph neural

networks. We describe a particular instance of MPNN. As-

sume that we are given a graph organize as adjacency list,

a set of node features xi ∈ R
din and a set of edge fea-

tures eij , i ∈ {1, 2, . . . , n}, j ∈ N(i), where N(i) is set

of neighbors of node i, include the node itself. In MPNN,

the edge features are passed to a neural network to generate

a convolution kernel, that is

kij = hk(eij |θk), (1)

where the kernel kij ∈ R
dout×din will be used to map the

node feature nj to a dout-dimensional feature vector, and

then these features will be gathered to generated new node

features, that is 1

yi = A
j∈N(i)

kij xj , (2)

where the aggregation operator A can be any differentiable

set operator that maps a set of dout-dimensional feature vec-

tors to one dout-dimensional feature vector.

1To simplify the notation, we omit the activation function throughout

the paper, embedding it in A.
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The main drawbacks of vanilla MPNN is the memory

consumption. Assume that we are working on a graph with

100 nodes, each node is associated with 10 edges, and din =
dout = 512, then we will need approximately 100 × 10 ×
5122 × 4 ≈ 1GB memory for storing all kij in single float

precision. Doing back-propagation with kij may require

an additional 3-4GB memory. As a result, several MPNN

layers can easily exhaust the GPU memory. For large scale

data, a more efficient version of MPNN is required.

3. Methodology

3.1. Notations

Given two set of feature points F = {fi|i = 1, 2, . . . , n}
and G = {gi|i = 1, 2, . . . , n}, the feature matching

problem aims find an permutation π : {1, 2, . . . , n} 7→
{1, 2, . . . , n} which maximizes some similarity function

argmax
π∈Π(n)

S([fπ(i)]
n
i=1, [gi]

n
i=1), (3)

where Π(n) denotes all permutation over set {1, 2, . . . , n}.

Usually the similarity function S can be defined as sum of a

series of similarity function with different orders as follows

S([fπ(i)]
n
i=1, [gi]

n
i=1) (4)

=
∑

i

S1(fπ(i), gi) +
∑

ij

S2([fπ(i), fπ(j)], [gi, gj ]) + · · ·

In a geometric feature matching problem, the feature fi
and gi are often coordinates of points. Thus the first order

similarity function becomes meaningless and higher order

functions must be applied, which requires solving NP-hard

Quadratic or Higher Order Assignment Problems.

We address this problem by developing a rich local fea-

ture extractor using graph neural network. Now we describe

the high level structure of the proposed model. The pro-

posed graph neural network is a set function as follows:

F = {fi} = h(F|θ), G = {gi} = h(G|θ), (5)

Then with selected first order similarity function, the corre-

spondence between feature sets can be found via

argmax
π∈Π(n)

∑

i

S1(fπ(i), gi). (6)

Loss function Eq. (6) gives the procedure for inference

with learned parameter θ. Now we define the loss function

for learning using cross-entropy loss. First we define

p(π(i) = j|θ) =
exp(S1(fj , gi))

∑

j exp(S1(fj , gi))
, (7)

Figure 2: Left: Normal CNN. Right: Compositional Message

Passing Neural Networks (CMPNN). The convolutional kernel in

normal CNN and CMPNN can be represented as a te × dout × din

tensor, where te is the number of types of edges. While in normal

CNN each edge is associated with a particular type represented

by the edge feature vector eij in one-hot form, in CMPNN the

type of the edge is estimated by a neural work he, and the node-

wise convolution kernel are composed by he and a global invariant

kenrel k. The aggregator A can be max or other set functions.

Then given the ground truth permutation π̂, the loss be-

comes

ℓ =−
∑

i

ln p(π(i) = π̂(i))

=
∑

i

[

ln
∑

j

expS1(fj , gi)− S1(fπ̂(i), gi)

]

. (8)

3.2. Network Architecture

In this section, we give the details of the proposed

network. Our neural network consists of several lay-

ers of Compositional Message Passing Neural Networks

(CMPNN). First of all, we will organize the input fea-

ture points as a graph. In our implementation, the graphs

are constructed by connecting the k-nearest neighbors with

edges. Then the graph and features will be passed to a mul-

tilayer CMPNN to get the final features.

Compositional Message Passing Neural Networks Here

we propose the CMPNN to get an accelerated version of

MPNN. A good properties of CNN is that it comes with

a shift invariant global kernel. Our main motivation is to

port such a properties to MPNN. Our key observation is that

CNN can be view as a graph neural network on a grid graph,

and each edge in the grid is associated with a one hot fea-

ture vector eij which indicates the type of the edge. For

example, in a convolution layer with 3 × 3 kernel (shown

in the left of Figure 2 ), there are 9 different types of edges.

Assume that we have a 2D convolutional layer which maps

a din-channel image to a dout-channel image with a m ×m

kernel, Then the convolutional kernel can be represented as

a m2 × dout × din tensor k, and the convolution operation
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can be rewrite as 2

yi =
∑

j∈N(i)

eij kxj . (9)

For a general graph, due to the irregular structure, it is diffi-

cult to associate each edge with fixed type. Thus, instead of

associating the type for each edge manually, we use a neu-

ral network he(·,θe) to predict the type of the edges (see

Figure 2). Then by introducing a globally invariant kernel

k ∈ R
te×dout×din , the MPNN (2) can be reformulated as

yi = A
j∈N(i)

he(eij ,θe)kxj , (10)

where the node-wise convolution kernel is composed of an

edge type classifier and a global invariant kernel k.

The above operation can be further decomposed as

x̂i = kxi, yi = A
j∈N(i)

he(eij ,θe)x̂j , (11)

where the first step can be done by matrix multiplication,

and the second step can be done by batch matrix multipli-

cation and pooling. As both the operation are implemented

efficiently in deep learning packages such as PyTorch[22],

the proposed CMPNN becomes quite easy to implement.

Extended CMPNN The original MPNN (2) can be ex-

tended as follows[5]

kij = hk(e |θk) ∈ R
dout×2din , (12)

yi = A
j∈N(i)

kij [xi,xj ], or yi = A
j∈N(i)

kij [xi,xj −xi]

to make the learning easier. This extension can also be han-

dled by our CMPNN. Instead of introducing one global k,

by introducing two different global invariant kernel korig

and kneighbor, the CMPNN (11) can be extended as follows,

x̄i = korig xi, x̂i = kneighbor xi, ∀i ∈ {1, 2, . . . , n}, (13a)

yi = A
j∈N(i)

he(eij ,θe)
[

x̄i + x̂j

]

or (13b)

yi = A
j∈N(i)

he(eij ,θe)
[

x̄i + x̂j − x̂i

]

. (13c)

Residual CMPNN He et al. [8] proposed the residual net-

work, which helps to train very deep neural works and led

to significant performance improvement in various areas in-

cluding classification, segmentation etc. In our network, we

also apply the residual link to make the training easier. In

normal CNN, a residual block consists of one 1×1 convolu-

tion layer, one m×m convolutional layer and another 1×1
convolution layer. While for GNN, equivalently the 1 × 1
convolution layer are replaced by fully connected layer, and

the m×m convolution layer is replaced by a CMPNN layer.

Our residual block for CMPNN is shown in Figure 3.

2We slightly abuse the notation of matrix multiplication for tensors. A

k×m× n tensor times a n-d vector will be a k×m matrix. Similarly, a

k-d vector times a k ×m× n tensor will be a m× n matrix.

Global Pooling In PointNet and its following works [23],

global pooling are widely used to help to model to cap-

ture more global information to improve the performance

of classification and segmentation information. For the fea-

ture matching problem, global transformation such as rota-

tion can not be captured by local features easily. As a result,

we are also using global pooling to help the network to im-

prove its performance under global deformation.

Implementation Details With the proposed CMPNN and

residual CMPNN module, we propose our geometric fea-

ture net shown in the right of Figure 3. First we build a

directed graph by using k-nearest neighbor from the input

feature point. In our implementation, k is set to 8. Then

each edge vector can be computed by subtracting the source

point from the sink point, and each edge vector is passed to

a edge type network, which is a 2-layer MLP. In our im-

plementation, we consider 16 different types of edges (i.e.

te = 16). For all CMPNN layers, we are using the exten-

sion shown in (13c), and we use maximization as the ag-

gregation function A. In our network, all MLP layers and

CMPNN layers except for the output layer of the edge-type

network and the geometric feature network, are followed

with a batch-normalization layer [9] and a RELU activation

function [20]. In the output layer of the edge-type network,

we use softmax as the activation function, and the output of

the geometric feature network is normalized to a unit vector.

Thus we can use inner product to measure the similarity be-

tween the features. Overall our feature matching pipeline is

shown on the right of Figure 3. The feature point F and G is

input to the same geometric feature network to get two new

sets of local features F and G. We then use the inner prod-

uct to generate the similarity matrix. Finally, the Hungar-

ian/Munkres algorithm is used to find the correspondence

which maximizes the feature similarity.

3.3. Relationship with Existing Methods

In this section, we will discuss the relationship of our

CMPNN with existing methods.

Message Passing Neural Networks Here we show that

CMPNN is equivalent to MPNN. Without loss of general-

ity, we assume that the last layer in the kernel generator of

MPNN is a linear layer without any activation function3.

Then the kernel generator hk can be reformulated as

kij = ĥk(eij |θ̂k)wk, (14)

where ĥk(eij |θ̂k) is a neural network with d-dimensional

output, and wk is a d × dout × din tensor. Then the MPNN

3If the last layer is non-linear, we can simply append a linear identical

mapping layer.
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Figure 3: The network architecture used in our network. Left: The geometric feature net consists of multiple CMPNN layers. Right: The

Siamese net framework for the feature matching problem.
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Figure 4: Comparison of feature matching for synthetic datasets.

Left: Accuracy with different noise level. Middle: Accuracy with

different number of outliers with noise level 0. Right: Accuracy

with different number of outliers with noise level 0.025.

(2) can be reformulated as

yi = A
j∈N(i)

ĥk(eij |θ̂k)wk xj , (15)

which has exactly the same formulation as our CMPNN.

PointNet One of the kernel part, the global pooling, in

PointNet [23] can be viewed as a special type of Message

Passing Neural Network. Assume that for some particu-

lar i, we let N(i) = {1, 2, . . . , n} and we let all other

N(i′) = ∅. Under this assumption, we let the aggregation

operator to be maximization operator. Viewed in that way,

the Point Pair Feature Net (PPFNet) [3] can also be viewed

as a two layer Message Passing Neural Network with a spe-

cific graph structure. As a result, the proposed method can

be view as a generalization of PointNet and PPFNet from a

specific graph structure to more general graph structures.

4. Experiments

In this section, we compare the proposed methods with

existing feature matching methods on the geometric feature

matching problem, where only the coordinate of the points

are available. In this scenario, the feature matching algo-

rithm must be good enough to capture the geometric and

topological relation between feature points. For traditional

methods, we compare against two slow but accurate feature

matching method that are based on pairwise features:

• Branch and Bound (BaB): Zhang et al. [30] proposed

a Branch and Bound based method, in which a La-

grangian relaxation based solver is used in a Branch

and Bound framework.

• Factorized Graph Matching (FGM) [31]: the factor-

ized graph matching algorithm is based on Convex-

Concave Relaxation Procedure. It is one of the most

accurate feature matching algorithm that has been pro-

posed so far.

We also compare with a third-order feature based method:

• Block Coordinate Ascent Graph Matching (BCAGM):

Ngok et al. [21] proposed an efficient higher order as-

signment solver based on multi-linear relaxation and

block coordinate ascent. The algorithm outperforms

various higher order matching methods.

For deep learning based methods, as far as the authors know,

there is no existing work on the matching problem that uses

only the coordinates of feature points. Thus we use the most

representative work, PointNet [23], as a baseline. Here we

use the same network structure as used in the PointNet for

semantic segmentation, but with the last softmax layer re-

placed by a ℓ2 normalization layer. We also slightly adapt

the code to make PointNet work for 2d feature points. We

adopt the same Siamese network structure for PointNet as

shown in Figure 3.

Training Protocol The training data available for the fea-

ture matching problem using only the coordinate is quite

limited. In existing annotated datasets such as Pascal-PF

[7], only thousands of matching pairs are provided, where

each pair have no more than 20 feature points. Thus in our

experiments, we train our model and the comparison meth-

ods on the same randomly generated synthetic training set.

To do that, we generated 9 million matching pairs synthet-

ically. For each pair, we first randomly generate 30-60 2d

reference feature points uniformly from [−1, 1]2, then do a

random rotation and add Gaussian noise from N (0, 0.052)
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to the reference feature points in order to generate the target

feature points. Finally, we randomly add 0-20 outliers from

[−1.5,+1.5]2 to each pair. In our training, we use the Adam

[11] method with learning rate 10−3 to optimize all meth-

ods, and each method is run on one epoch on the generated

data; the algorithms converges after only 0.5 epoch4.

4.1. Synthetic Dataset

We perform a comparative evaluation of the traditional

methods and the two deep learning based methods on ran-

dom generated feature point sets. In each trial, we generated

two identical feature point set F , G with 20 inliers from

[0, 1]2 and later we will add nout outliers to each feature

point sets. Then feature points in the second set will then

be perturbed by an additive Gaussian noise from N (0, σ2).
For the traditional second-order methods, the feature points

are connected by Delaunay triangulation and the length of

each edge serves as the edge feature; the edge feature sim-

ilarity is computed as s(e, e′) = exp(− (e1−e2)2

0.15 ). For the

third order methods, we use the three angles of the triangles

from Delaunay triangulation as features, and the similarity

function is defined as in [21]. The node similarities of tradi-

tional methods are set to 0. For the deep learning methods,

the feature points from F are first normalized as follows

F ′ =

{

f ′
i

∣

∣

∣

∣

∣

f ′
i =

fi −
1

| F |

∑

f∈F f

∥fi −
1

| F |

∑

f∈F f∥2
, fi ∈ F

}

, (16)

and the feature points from G are also normalized in the

same way to G′. Then the normalized feature points are

passed to the deep learning based methods.

The experiment tested the performance of the methods

under three different scenarios; 100 different instances are

generated in each parameter setting of each scenario to get

the average matching accuracy. In the first scenario (left

of Figure 4), the number of outliers nout is set to 0 and we

increase the noise level σ2 form 0 to 0.1 with step-length

0.01. In the second scenario (middle of Figure 4), we set

the noise level σ2 = 0, and we increase the number of out-

liers from 0 to 10 with step-length 1. In the third setting,

we σ2 = 0.025, we increase the number of outliers from 0

to 10 with step-length 1. Under various different settings, it

can be observed that the proposed methods outperforms the

others in most cases. The traditional methods are particu-

larly sensitive to noise on feature points, while our methods

is more robust. When there is no noise and the number of

outlier is less than 5, the BCAGM method get slight better

results than others; the FGM and BaB method get compara-

ble accuracy with the proposed method, while the proposed

method generalized better with more outliers. The PointNet

4The code is available at https://github.com/zzhang1987/

Deep-Graphical-Feature-Learning.

becomes the worst in most cases, this might be caused by

its poor ability in propagating local information.

4.2. CMU House Dataset

The CMU house image sequence is a common dataset

to test the performance of feature matching algorithms

[13, 28, 12, 31, 30, 25]. The data consists of 111 frames of a

toy house, and each of the image has been manually labeled

with 30 landmarks. For traditional second order method, we

use the settings in [31] to construct the matching model, and

for BCAGM, we use the same feature and similarity func-

tion as Section 4.1. For deep learning model based methods,

we normalize the coordinate of the 30 landmarks as in (16).

The performance of different methods are tested on all pos-

sible image pairs, with separation 10:10:100 frames. Figure

6 show an instance of a matching pair of two frames.

We tested the accuracy and running time on the dataset.

In terms of accuracy, all methods except the PointNet get

perfect matching when the separation is small. For running

time, the Branch and Bound methods can achieve similar

speed with the our method when the separation is small.

It is notable that when the separation is small, the match-

ing pairs are quite similar to the matching pairs from our

training set, where feature points in one frame can be ap-

proximately transformed to another frame with rotation and

shift. When the separation is very large (see the example

in Figure 6, such transformations do not exists due to large

view changes; this is quite far away from the cases in our

training set. As our algorithm is able to extract features

from local geometric structures, it generalizes to the large

view change cases. For runtime with large separation where

the view angle changes a lot, our methods is hundreds of

times faster than FGM and BaB.

4.3. Real Image Matching

In this experiment, we use the PF-Pascal dataset [7] to

evaluate the performance of feature matching algorithms on

key-points matching on real images. The PF-Pascal dataset

consists of 20 classes of 1351 image pairs. In each image

pair, there are 6-18 manually annotated ground-truth corre-

spondences. Here, for traditional methods, the feature sim-

ilarity model is the same as in the CMU house dataset. For

deep learning based methods, we also follow the same pro-

tocol as in the CMU house dataset. Typical images pairs

and matching results are shown in Figure 5. In this dataset,

we consider two different settings. In the first setting, we

directly use the coordinate of feature points as input for all

algorithms. In the second settings, we first apply a random

rotation to the feature points in the first points, and use the

rotated feature points as input. The matching accuracy are

shown in Table 1. When no random rotation is applied, the

proposed method outperforms all other algorithms, and the

PointNet is the second best. When random rotations are
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Table 1: Matching Accuracy On Pascal-PF Dataset. Top four rows: Results on original feature points. Bottom four rows: Results on

random rotated feature points

aero-

plane
bicycle bird boat bottle bus car cat chair cow

dining-

table
dog horse

motor-

bike
person

potted-

plant
sheep sofa train

tv-

monitor
average

#pairs 69 133 50 28 42 140 84 119 59 15 38 106 39 120 56 35 6 59 88 65

BaB[30] 70.0 80.5 73.7 74.6 37.3 64.4 81.2 60.6 68.3 63.2 52.5 50.5 67.5 74.3 52.3 38.8 26.7 73.1 86.8 29.8 61.3

FGM[31] 57.4 73.3 67.6 71.0 40.9 60.1 74.0 54.2 63.9 51.7 52.5 48.1 62.0 70.5 50.1 49.2 36.2 65.9 87.5 29.0 58.3

BCAGM[21] 60.0 62.8 59.6 66.3 32.7 58.2 70.6 61.7 62.6 52.3 52.9 45.2 48.4 51.7 40.5 48.2 29.5 73.1 87.0 37.2 55.0

PointNet[23] 54.8 70.2 65.2 73.7 85.3 90.0 73.4 63.4 55.2 78.4 78.4 52.5 58.0 64.2 57.4 68.9 50.5 74.0 88.1 91.9 69.7

Ours 76.1 89.8 93.4 96.4 96.2 97.1 94.6 82.8 89.3 96.7 89.7 79.5 82.6 83.5 72.8 76.7 77.1 97.3 98.2 99.5 88.5

BaB[30] 69.7 80.2 73.7 74.6 37.3 64.4 81.2 60.4 68.3 63.2 52.5 51.0 67.2 74.2 53.7 38.8 26.7 73.1 86.8 29.8 61.3

FGM[31] 59.4 70.8 68.9 67.5 38.6 61.6 76.4 48.8 61.8 49.7 53.2 45.4 67.6 71.7 49.9 43.5 27.6 67.9 85.0 28.9 57.2

BCAGM[21] 60.0 62.9 59.6 66.3 32.7 58.2 70.4 61.8 62.6 52.3 52.9 45.1 48.4 50.9 41.1 48.2 29.5 73.1 87.0 37.2 55.0

PointNet[23] 35.3 34.2 57.0 50.1 38.7 31.7 45.4 45.8 32.7 64.3 45.5 36.9 45.3 45.8 22.2 38.8 49.0 28.8 54.1 28.9 41.5

Ours 74.5 88.5 89.6 70.8 85.7 53.6 87.2 66.8 77.9 89.3 45.9 65.4 79.6 81.4 75.2 36.7 52.9 83.3 68.9 26.6 69.9

Figure 5: Key-points Matching Results on Pascal-PF dataset. From top to down the methods are BaB, FGM, BCAGM, PointNet and

Ours. The correct matchings are in green and the wrong matchings are in purple.

applied, the proposed methods outperforms the other in 14

classes, and its over-all accuracy also outperforms the oth-

ers. However, the accuracy of the PointNet drops to being

the worst, which suggests that the PointNet does not gener-

alize well for rotation.

4.4. Architecture Design Analysis

In this section, we present the ablation study results, par-

ticularly on the effects of the hyper parameters of our mod-

ule. We train different network using the same protocol, and
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Figure 6: Performance comparison of different feature matching

methods on CMU house data. Left: Our typical matching result.

Right: Accuracy and running time v.s. separation.

0 0.2 0.4 0.6 0.8
Angle

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

0 0.2 0.4 0.6 0.8
Angle

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

with global pooling W/o global pooling

Figure 7: Accuracy comparison for network with/without global

pooling. Left: No outlier, noise-level σ
2

= 0.025; Right:

nout = 2, noise-level σ2
= 0.

test the network with random generated matching pairs.

The global pooling As mentioned in Section 3.2, we use

the CMPNN to get rich local features and the global pool-

ing layer is used to provide global features. Here we trained

a network with the global pooling layer removed, and com-

pare its performance to the complete model. Intuitively, the

global pooling layer may help the network to be more ro-

bust under global deformation (e.g. rotation). Thus we an-

alyzed the performance of the two network with respect to

different rotations using the same random feature generat-

ing scheme as Section 4.1. Here we consider two different

scenarios. In the first scenario, Gaussian noise is added to

the feature points and in the second scenario we add outliers

to the feature points. The typical result for the two scenarios

is shown in Figure 7. When there are no outliers, there is

no significant performance difference between model, and

when there are outliers, global pooling can significantly im-

prove the performance of the model.

Network depth & width We compared the accuracy, in-

ference time and inference memory usage (batch size=1)

of different models. The inference time are broken down

into the neural network inference time and the linear as-

signment problem (LAP) inference time. By removing the

first residual CMPNN layer and the second CMPNN layer

in our model, we get a shallower model; by repeating the

second CMPNN layer three times we get a deeper model.
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(a) Results of network with different size; σ2=0.05, #outliers=0. GPU

Mem(MB): shallower:59; normal:76; deeper:103; narrower:20; wider:297.
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Figure 8: Performance comparison of different network models.

From Left to Right: accuracy, neural network inference time and

LAP inference time.

We shrink/enlarge the dimension of intermediate features

by a factor of 2 to get a narrower/wider model. Figure 8

(a) show that the shallower and narrower model have worse

performance with high noise level. The deeper and wider

model have similar performance as the normal one, but uses

longer inference time and more memory.

We also evaluated different dimensions of output fea-

tures from 8 to 4096 by modifying the number of output

units in the last layer (Results in Figure 8 (b)). In terms

of running time, there is no significant difference between

different settings. Meanwhile, the accuracy of different set-

ting varies when there is outlier and rotation, the setting

dim=8 has significant lower accuracy than the others, and

the setting dim=4096 has lower accuracy than dim=64 and

dim=512. The setting dim=512 is slight better than dim=64.

5. Conclusion

In this paper, we proposed a graph neural network which

can transform weak local geometric features into rich local

features for the geometric feature matching problem. The

proposed model is trained with synthetic data, and is then

applied to both synthetic and real-world feature matching

problems with feature deformations caused by noise, rota-

tion and outliers. The experimental results suggest that the

local features produced by our graph neural networks can

be used with simple inference algorithms to outperform tra-

ditional methods that use handcrafted inference algorithms.

The results suggest that with quite limited local informa-

tion, the graph neural network is still able to get rich local

representations through message passing between nodes.
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