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Figure 1: Hand Mesh Recovery. Our framework provides a unified scheme for monocular hand image understanding. The

first column shows two examples from the STB [55] and RHD [59] dataset respectively. The second and third columns present

the estimated 2D joints and 3D joints locations. The fourth column demonstrate the projection mask of the reconstructed

hand mesh, while the last two columns illustrate the recovered mesh from several viewpoints. Note that our framework can

recover the mesh in a reasonable way even in the presence of severe occlusions.

Abstract

In this paper, we present a HAnd Mesh Recovery

(HAMR) framework to tackle the problem of reconstruct-

ing the full 3D mesh of a human hand from a single RGB

image.1 In contrast to existing research on 2D or 3D hand

pose estimation from RGB or/and depth image data, HAMR

can provide a more expressive and useful mesh representa-

tion for monocular hand image understanding. In particu-

lar, the mesh representation is achieved by parameterizing

a generic 3D hand model with shape and relative 3D joint

angles. By utilizing this mesh representation, we can eas-

ily compute the 3D joint locations via linear interpolations

between the vertexes of the mesh, while obtain the 2D joint

locations with a projection of the 3D joints. To this end,

1The code is available at https://github.com/MandyMo/HAMR.

*Indicates equal contribution.

†Corresponding author.

a differentiable re-projection loss can be defined in terms

of the derived representations and the ground-truth labels,

thus making our framework end-to-end trainable. Quali-

tative experiments show that our framework is capable of

recovering appealing 3D hand mesh even in the presence of

severe occlusions. Quantitatively, our approach also out-

performs the state-of-the-art methods for both 2D and 3D

hand pose estimation from a monocular RGB image on sev-

eral benchmark datasets.

1. Introduction

Hand image understanding targets the problem of recov-

ering the spatial configuration of hands from natural RGB

or/and depth images, which has many applications such as

human-machine interaction [20, 40], and virtual/augmented

reality [18, 33]. Estimating the spatial configuration is

very challenging due to the diverse appearance variation,

self occlusions and complex articulations. While many
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existing works considered markerless image-based hand

image understanding, most of them require depth cam-

eras [1, 11, 23, 34, 41, 44, 45, 53] or multi-view images

[2, 14, 38, 43, 51] to handle the above difficulties. As a re-

sult, most of these methods are impractical for real-world

scenarios where only monocular RGB images are available.

For the monocular RGB setting, many recent works have

investigated the specific problems of 2D and 3D hand pose

estimation [7, 15, 24, 38, 39, 59]. Considering 2D hand

pose, Simon et al. [38] utilized bootstrapping to estimate

2D joint locations from single-view RGB images, while the

approach has to leverage multi-view images for 3D cases.

Gomez-Donoso et al. [14] introduced a simple yet effective

deep learning architecture for 2D hand pose estimation and

also built a multi-view 3D hand pose dataset. Note that sin-

gle RGB image based 2D hand pose estimation is prone to

unreasonable predictions under self occlusions and complex

configurations.

Regarding 3D hand pose estimation from monocular

RGB, an obvious difficulty resides in the perspective am-

biguity caused by missing depth information. Zimmermann

and Brox [59] presented the first learning based formulation

which augments deep networks to learn a network-implicit

3D articulation prior for resolving perspective ambiguities.

Panteleris et al. [29] formulated the 3D pose estimation

from 2D pose as an inverse kinematics (IK) problem which

constrains the solution space to only plausible hand articula-

tions. Mueller et al. [24] also introduced several geometry-

consistent rules to enforce human hand constraints to relief

the hand parsing ambiguity.

Besides enforcing geometric constraints, several recent

works have investigated intricate learning strategies. Spurr

et al. [39] designed a generative hand model represented

by a coherent latent space across RGB, 2D and 3D pose

modalities, which enables semi-supervised learning. Iqbal

et al. [15] introduced an intermediate 2.5D pose representa-

tion which can be easily estimated from RGB images, and

then provided a solution to reconstruct the 3D pose from

2.5D. Cai et al. [7] proposed a weakly-supervised method

for 3D pose regression by leveraging depth images during

training. Though effective at large, the two types of strate-

gies are insufficient to fully capture the inherent properties

and diversity of hand articulations.

Aside from the perspective ambiguity, another challenge

is the lack of high-quality annotated 3D hand pose data. To

address this issue, Zimmermann et al. [59] turned to render

synthetic data with 3D models, from which the ground truth

annotations of 3D joints can be easily obtained. Mueller et

al. [24] employed CycleGAN [57] to synthesize training

data which can enhance the performance of 3D hand pose

estimation to some extend. However, networks trained on

synthetic data do not generalize well to real-world images

due to the domain shift.

In this paper, we propose a hand mesh recovery (HAMR)

framework which is also able to produce 2D and 3D pose

estimation as side products, as shown in Fig. 1. In con-

trast to current research on 2D or 3D hand pose estimation,

HAMR provides a more comprehensive and flexible mesh

representation for hand RGB image understanding. Inside

its core, HAMR parameterizes a generic 3D hand model to

define the mesh representation in terms of shape and rel-

ative 3D joint angles. With this mesh representation, the

3D joint locations can be computed by linearly interpolat-

ing between mesh vertexes. In addition, one can obtain the

2D joint locations with a simple projection of the 3D joints.

As a result, HAMR provides a graceful approach to han-

dle perspective ambiguities and data insufficiency. Firstly,

the introduced parametric model in HAMR has implic-

itly characterized the inherent properties of hand compre-

hensively. This is also validated by our ablation study

that adding several specific geometric constraints over fin-

gers can yield very slight improvements. Secondly, since

HAMR is end-to-end trainable thanks to the differentiable

re-projection loss, our method can exploit enormous incom-

pletely annotated 2D and 3D training samples. The effec-

tiveness of HAMR is evaluated via extensive qualitative and

quantitative experiments on benchmark datasets.

2. Related Work

In literature, 3D reconstruction is a long standing prob-

lem that has received considerable attention in computer

vision and computer graphics. Here, we present a brief

overview of two particular topics on 3D face and human

body reconstruction from a single RGB image.

Monocular Face Reconstruction. Thanks to the 3D

morphable model (3DMM) released by [4, 8, 32], the 3D

face reconstruction from single RGB has achieved great

success in recent yeas. For example, MoFA [47] provided

an end-to-end trainable framework by leveraging 3DMM

to define a differential parametric decoder for face pose,

shape, expression, skin reflectance and scene illumination.

As a step forward, Tewari et al. [46] further considered a

regressor for the face properties in addition to the differ-

ential parametric model. Genova et al. [13] proposed a

method for training a regression network for fitting parame-

ters of 3DMM using only unlabeled photographs. Sengupta

et al. [37] implemented an end-to-end learning framework

for producing an decomposition of an unconstrained human

face image into shape, reflectance and illuminance.

Monocular Human Body Recovery. Similar progress

have been achieved on human body mesh recovery from

single RGB. For instance, Bogo et al. [5] presented the first

method to automatically estimate the 3D pose of the human

body as well as its 3D shape from a single unconstrained im-

age. Kanazawa et al. [16] described an end-to-end frame-

work for recovering a full 3D mesh of a human body from
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Figure 2: Framework Architecture. Our framework consist of three parts: (1) a 2D pose estimation block aims at estimating

2D heat-maps from a single RGB image, (2) a regression module that regresses for 3D parameters Θ = {θmesh, θcam} by a

iterative way, (3) a mesh recovery part for generating the mesh representation, the 2D and 3D joints locations from Θ.

a single RGB image by employ a CNN to regression of the

parameters of a parametric model SMPL [19]. Similar to

[16], Omran et al. [28] performed a novel network struc-

ture for human mesh recovery and achieve state-of-the-art

result on task of 3D human pose estimation. Recently, Bo-

dyNet [50] provided an end-to-end trainable network that

considered a volumetric 3D loss, a multi-view re-projection

loss, and several kinds of intermediate supervision.

Aside from the above researche works, hand reconstruc-

tion from monocular RGB has not drawn sufficient attention

from the community. To the best of our knowledge, HAMR

provides one of the first approaches to achieve this target

among other concurrent works [6, 12].

3. Framework

The main goal of this paper is to present a unified frame-

work for providing a detailed mesh representation M ∈
R

N×3 together with 2D key points Φ2D ∈ R
K×2 and 3D

joint locations Φ3D ∈ R
K×3 of hand from a RGB image

centered on hand, where N is the vertex count of M and

K indicate the number of key points. We exploit a recent

parametric generative model for generating hand mesh, then

infer hand pose from the generated mesh. The overall archi-

tecture of our framework is illustrated as Fig. 2.

3.1. Hand Mesh Recovery

Hand Mesh Representation. We utilize MANO [36] as

the generic 3D hand model in our framework. In particu-

lar, MANO factors hand mesh into shape - mainly models

hand properties such as finger slenderness and palm thick-

ness and pose - how the 3D surface deforms with artic-

ulation. Similar to SMPL [19], MANO parameterizes a

triangulated mesh M ∈ R
N×3 with a set of parameters

θmesh = {
#»

β ,
#»

θ }, where
#»

β ∈ R
10 denote the shape param-

eters and
#»

θ ∈ R
K×3 are the pose parameters. Technically

speaking,
#»

β represents the coefficients of PCA components

that sculpting the identity subject and
#»

θ denotes the relative

3D rotation of K joints on Rodrigues Vector representation.

The model is defined by a mean template mesh T̄ ∈ R
N×3

represented by concatenating N vertices in rest pose
#»

θ ∗; a

set of blend weights J ∈ R
N×K and W ∈ R

N×K ; a blend

function BS : R
|
#»

β | 7→ R
N×3 that takes

#»

β as input and

outputs a blend shape to characterize the identity subject; a

pose dependent blend function BP : R|
#»

θ | 7→ R
N×3 that

compensates for the deformation caused by pose variations.

Following standard skinning procedure, the shape and

pose deformations BS(
#»

β ), BP (
#»

θ ) are applied to the mean

template T̄. To obtain the final mesh, the mesh is then posed

by rotating each finger part around joints J(
#»

β ) using the

blend skinning function W (·),

M(
#»

β ,
#»

θ ) = W (T (
#»

β ,
#»

θ ), J(
#»

β ),
#»

θ ,W), (1)

T (
#»

β ,
#»

θ ) = T̄+BS(
#»

β ) +BP (
#»

θ ). (2)

With the mesh model, one can easily reconstruct a hand

mesh by specifying certain values of the parameters
#»

β and

2356



#»

θ . It is worth mentioning that both T (·) and W (·) are dif-

ferentiable functions of
#»

β and
#»

θ [19, 36], which are favor-

able for composing the mesh model with other modules.

Derived Hand Pose Representations. Given the re-

covered mesh, we can compute the 3D joint locations Φ3D

via linear interpolations between the vertexes of the mesh,

while obtain the 2D joint locations Φ2D with a projection

of the 3D joints. More specifically,

Φ3D
k =

N
∑

i=1

JikMi, (3)

Φ2D
k =

∏

(

Φ3D
k |θcam

)

, (4)

where Φ3D is a set of 3D coordinates {(x, y, z)k}
K
k=1

, Φ2D

is a set of corresponding 2D coordinates {(u, v)k}
K
k=1

, and

θcam = {(s, tx, ty)} denotes the camera parameter. The

3D-to-2D projection function
∏

(·) is defined as below,

∏

((x, y, z)|(s, tx, ty)) = (s(x+ tx), s(y + ty)) , (5)

where we used the weakly perspective camera model.

Silhouette Constraints. By impose supervision over

2D/3D hand pose only, the mesh may simply deform to

best fit joint locations and ignoring hand surfaces, which

lead to abnormal mesh representation. For a hand image,

the projection of a well-defined hand mesh should be con-

sistent with the corresponding silhouette. This constraint

plays an indispensable role in single RGB image based 3D

reconstruction [4, 5, 17, 31, 49]. In this work, we intro-

duce the silhouette consistent loss to refine the hand mesh

and camera parameter estimation. In particular, we utilize

the Inverse Graphics technique [17, 21] to obtain a rendered

mask image from the reconstructed hand mesh given by Eq.

1, then penalize misalignment between the rendered mask

and the ground-truth silhouette to train the network.

Geometric Constraints. Upon the derived 3D hand

pose representation, it is also helpful to apply several kinds

of geometric constraints. Let Pa, Pb, Pc, Pd be the 4 joints

of the fingers (except thumb) in turn (tip to palm order),

where Pi ∈ R
3, i ∈ {a, b, c, d}. For convenience, we define

#   »

Vab as Pa − Pb, which is similar to
#   »

Vbc and
#   »

Vcd. A cor-

rect hand articulation should obey the following constraints.

First, Pa, Pb, Pc, Pd are in the same plane, which implies:

(
#   »

Vab ×
#   »

Vbc) ·
#   »

Vcd = 0. (6)

Second, the rotate direction from
#   »

Vab to
#   »

Vbc is consistent

with that of
#   »

Vbc to
#   »

Vcd, which implies:

(
#   »

Vab ×
#   »

Vbc) · (
#   »

Vbc ×
#   »

Vcd) ≥ 0. (7)

Note that these two types of geometric constraints can be re-

formulated as regularizers in a loss minimization problem

by the Lagrangian multiplier method [35].

Loss Function. For our target, to recover the hand mesh

from a single RGB image, we leverage deep convolutional

networks to fit the mesh parameters θmesh. However, in

real-world scenario, it is almost impossible to obtain the

ground-truth mesh parameters when annotating from sin-

gle RGB images. Fortunately, our HAMR framework can

define derived 3D and 2D joint locations from the mesh. By

doing so, we can train HAMR with widely-available 3D and

2D annotations thus enable the mesh reconstruction.

We shall point out there is an issue coming from the cam-

era parameters θcam. To make our framework fully auto-

matic and accurate, we direct another flow from the base

deep convolutional networks to estimate the camera param-

eters. During training, the “ground-truth” camera parame-

ters are computed from the ground-truth paired 3D and 2D

annotations. More specifically, the “ground-truth” scale s is

calculated as the ratio between the average 2D and 3D bone

lengths. Then, the “ground-truth” offsets are computed as

(tx, ty) =
1

K

∑K

k=1
((uk, vk)/s− (xk, yk)).

Considering training the base deep convolutional net-

works, we resort to the intermediate supervision to make

sure the earlier stage well captures the image semantics. In

particular, the 2D pose estimation block is supervised by

stacked heatmaps of 2D ground-truth labels. For each 2D

joint, the ground-truth heatmap is defined as a Gaussian-

blurred confidence image centered at that joint location.

To this end, we employ L2 loss between the derived 3D

and 2D representations and ground-truth labels which re-

sult in L3D and L2D respectively. In addition, the geomet-

ric constraints are reformulated as regularizers leading to

Lgeo which defines over the predicted 3D poses. Equally

important, we penalize the misalignment between the ren-

dered mask and ground-truth silhouette via L1 loss leading

to Lseg . Furthermore, L2 loss is utilized to supervise the

estimated camera parameters with ground-truth camera pa-

rameters leading to Lcam. As for the intermediate super-

vision, we compute the pixel-wise distances between the

predicted and ground-truth 2D heatmaps that yield Lht.

The whole process is fully differentiable with respect

to all the learnable parameters, thus making our HAMR

framework end-to-end trainable. The overall loss function

is summarized as

L = λ3DL3D + λ2DL2D + λgeoLgeo

+ λcamLcam + λhtLht + λsegLseg,
(8)

where {λ3D, λ2D, λgeo, λcam, λht, λseg} are hyper-

parameters to trade-off among different types of supervision

over the whole framework.

3.2. Iterative Regression Module

We apply a regression module to fit the camera pa-

rameters θcam and the mesh parameters θmesh. How-

ever, the complicated domain gap makes it difficult to
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Figure 3: Architecture of Iterative Regression Module.

This module takes the cross-level features as input and re-

gresses the camera and mesh parameters in an iterative way.

produce reasonable estimates in one go. Several works

[9, 10, 27, 52, 58] revealed that a cascade and coarse-to-fine

method shall be more appropriate than a one-pass solution.

Inspired by these studies, we implement an iterative regres-

sion module to fit the camera and mesh parameters from

semantic features extracted from previous 2D pose module.

Formally, we take the current parameters (θtcam, θtmesh) as

additional inputs upon the image feature φ, and estimate the

more accurate (θt+1
cam, θt+1

mesh). As illustrated in Fig. 3, the

iterative regression module consists of a simple fully con-

volutional encoder and multiple fully connected layers.

To make the predicted θcam more accurate, we enforce

a strong supervision by utilizing the ground-truth camera

parameters computed from paired 3D and 2D annotations.

The camera parameters θcam consist of three real numbers

(s, tx, ty) for projecting 3D joint (x, y, z) to 2D key point

(u, v), and the projection function follows Eq. 5.

3.3. 2D Pose Estimation

Similar to recent methods [22, 56, 59], we employ a cas-

cade encoder-decoder style network to predict the 2D Gaus-

sian like heat-maps Φht ∈ R
K×H×W for the 2D pose esti-

mation task, where K indicates the number of joints and

{H,W} are the resolutions of the heat-maps. Each key

point has a corresponding heat-map, and each pixel value on

the heat-map indicates the confidence of the key point locat-

ing in that 2D position. Further, we share the similar view

with [7, 24] that one can hardly resolve perspective ambi-

guity when applying a direct regression from heat-maps to

3D pose. Actually, different 3D joint locations may be pro-

jected to the same 2D key point. Therefore, aside from the

K heat-maps for the 2D key point’s locations, this block

outputs an extra M −K(M > K) heat-maps to handle the

issue. In addition, we concatenate the intermediate-layer

features with the M heat-maps, and feed them into the fol-

lowing iterative regression module.

As for the network architecture, we utilize the Stacked

Hourglass network [26] for 2D hand pose estimation with

several slight modifications. Similar to [25], we replace

the residual block with simple 3 × 3 convolution, and use

average-pooling to replace the max-pooling. Besides, a

batch-normalization layer is added after each 3 × 3 con-

volution layer for faster training.

4. Experiments

To evaluate the efficacy of HAMR, we first present qual-

itative results on the recovered mesh from single RGB im-

ages. Secondly, since there exists no ground-truth mesh rep-

resentation for comparison study, we quantitatively evaluate

the superiority of HAMR on the task of 3D and 2D hand

pose estimation instead. Finally, we perform ablation stud-

ies to better understand the impact of different design strate-

gies on the 3D hand pose estimation task.2

4.1. Experiment Settings

Datasets. We mainly involve the Rendered Hand

Dataset (RHD) [59], the Stereo Hand Pose Tracking Bench-

mark (STB) [55] and the Dexter Object (Dexter) [42]

dataset. The RHD is a 3rd view based synthetic dataset

that provides 41258 training and 2728 testing samples, and

each sample contains an RGB image, a depth image, a seg-

mentation mask image and both 2D and 3D annotations of

the 21 standard key points. In this paper, we follow the

standard training/testing division of RHD. Furthermore, for

each sample, we only exploit the RGB images and the cor-

responding 2D and 3D annotations.

The STB dataset contains sequences with six differ-

ent backgrounds, and each background has two sequences

(1500 frame per-sequence). Similar to [7], we shift the root

joint of STB to make it consistent with RHD, and we split

the dataset into training and testing part following the rule

given by [59]. Besides, we only exploit the RGB image and

corresponding 3D annotations.

The Dexter dataset consists of six sequences with 2 ac-

tors (1 female), and various interactions with a simple ob-

ject shape. Fingertip positions and cuboid corners are man-

ually annotated for all sequences. Due to the incomplete

hand annotation, therefore, similar to [59], we use this

dataset for evaluating the cross-dataset generalization per-

formance of our framework.

We shall point out that, for RHD dataset we obtain the

hand mask by parsing the rendered depth map to train the

network, Fig. 5 illustrate some paired hand images and cor-

responding masks.

Data Augmentations. Both RHD and STB share the

same augmentation algorithm. We crop each image cen-

tered on hand and resize it to 256× 256, then apply scaling

(0.9 - 1.2), rotation (-/+60◦). Finally, to resist the color va-

riety, we perform color-jittering with the following configu-

2In practice, the MANO model only has 16 key points and lacks 5

fingertip endpoints. Thus, in our experiments, we manually select vertexes

with the index of 734, 333, 443, 555, 678 from generated mesh as the

locations of five fingertip endpoints.
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Figure 4: Mesh Recovery Results. The left four columns present five representative examples from the STB dataset, while

the right four columns from the RHD dataset. For each sector, the first column shows the RGB images, the second to fourth

columns are the rendered meshes from different views.

Figure 5: Paired Mask Samples. Each sample contains

two columns. The first column shows the original RGB im-

age; the second column presents the corresponding mask.

rations: brightness (0.2 - 1.8), contrast (0.3 - 1.7), saturation

(0.4 - 1.6), hue (0.2 - 1.8), and add random noise governed

by Gaussian distribution N (0, 0.01).

Network design. We use a two-stack Stacked Hourglass

as the pose module, the hourglass module output 64 heat-

maps which is numerically larger than the number of hand

joints (21) for providing more features, the resolution of

heat-maps is 64× 64 and the σ2 used for generating Φht is

set as 2.5. The iterative regression block consists of a fully

convolutional encoder and a fully connected regressor. The

encoder is built with 6 stride convolutional layers, for each

convolutional layer, the kernel size is 3 × 3, and the stride

is 2. The regressor is composed of 2 fully connected layers

with 2048 neurons, followed by a final layer of 22 neurons.

After each fully-connected layer, we insert a dropout layer

with drop probability of 0.4 to prevent overfitting.

Training. We implement our framework with Pytorch

[30], and we adopt the end-to-end training manner. We min-

imize the total loss in Eq. 8 to train the whole model, where

the value of hyper-parameters λ3D, λ2D, λgeo, λcam, λht,

λseg are empirically set to 1000, 1, 1, 0.1, 100 and 10 re-

spectively, while one can also tune these hyper-parameters

via the grid search method [3]. The RMSprop [48] is

used to optimize the framework. We begin training the

whole framework with a learning rate 2 × 10−4, then de-

cays the learning rate by a factor of 0.7 when validation

loss plateaus.All the experiments are conducted on GeForce

GTX TITAN Xp GPU with CUDA 8.0.

4.2. Visualization of Appealing Mesh

In order to verify the quality of the generated mesh and

the robustness of the framework in various cases, we draw

some representative samples from STB and RHD testing

sets as illustrated in Fig. 4. Experiments demonstrate that

our framework is capable of generating high-quality, ap-

pealing hand meshes.

Further, our framework is robust to reconstruct hand

meshes accurately even in severe hard scenarios such as

poor lighting, image truncation, self-occlusion, and exag-

gerated articulation. For illustration, we refer Si to the ith
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Figure 6: Quantitative Evaluation. The left plot presents the 3D PCK performance on the STB dataset, in which our

approach is comparable with state-of-the-art methods. The middle plot shows the 3D PCK performance on the RHD dataset

and our method achieves the best results compared with state-of-the-art methods. The right plot demonstrate the 3D PCK

performance on the Dexter dataset, our framework outperform state-of-the-art methods by a large margin.

sample drawn from STB in Fig. 4, which is similar to

Ri for RHD. The comparison among R1, R4 and R5 re-

veals that our method can reconstruct the mesh correctly

even with poor lighting. Beside, R2 indicates our approach

can estimate the mesh reasonably even in the presence of

image truncation. By comparing S1 to S5 together with

R3, one can conclude that our framework is capable of

recovering anthropometrically reasonable mesh representa-

tion even with heavily self-occlusion or complex exagger-

ated hand pose.

4.3. Quantitative Evaluation

To be consistent with [7, 24, 39, 59], we evaluate the per-

formance of 3D hand pose estimation with the measure of

the area under the curve (AUC) on the percentage of correct

key points (PCK) score with different thresholds. All the

comparison methods are evaluated on both RHD, STB and

Dexter datasets, experimental results are shown by Fig. 6.

On STB dataset, the 3D PCK curves of [7, 15, 24]

are intertwined to each other for the reason that STB

dataset is relatively small, and lacks diversity. Our method

performs competitively with all the comparison methods

[7, 15, 24, 29, 39, 54, 59], which is reasonable considering

the saturated performance on this dataset. In contrast, RHD

dataset is relatively complex and more diverse, our method

is superior to those proposed by [7, 39, 59] and achieves

state-of-the-art result. Similarity, on Dexter Object dataset,

our method largely outperform most state-of-the art meth-

ods [6, 15, 24, 39, 59]. It is consistent with our expectation

that introducing the parametric hand model can greatly help

solving the perspective ambiguity issue which in turn im-

proves the accuracy of hand pose estimation.

4.4. Generalization Performance Evaluation

Similar to [15, 24, 59], we evaluate the generaliza-

tion performance of our framework on Dexter dataset [42].

Figure 7: Generalization Performance Evaluation. The

plot illustrates the results of 2D hand pose estimation on

the Dexter Object dataset. Our method outperforms those

proposed in [15, 24, 59].

Specifically, we train the model on RHD and STB datasets,

then perform cross-dataset testing in two ways without fine-

tuning. Firstly, following conventional practice, we take the

AUC of 2D PCK as evaluation metric to evaluate the per-

formance on 2D hand pose estimation. As shown in Fig. 7,

our method achieves better result than those reported in

[15, 24, 59] where the Dexter dataset contains certain ratio

of occluded hand images. It is not astonishing that the mesh

is capable of modeling inherent geometric prior of hand,

which further solve uncertainty caused by occlusion.

Secondly, we examine the quality of estimated hand

mesh. As illustrated by Fig. 9, our framework is capable

of reconstructing high-quality mesh even the finger is oc-

cluded by some foreign matter or in the presence of high

dynamic range lighting. The above experiments verified the

generalization performance of our framework, proved the
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Figure 8: Ablation Studies. The left plot shows the 3D PCK performance on the STB dataset and the right plot on the RHD

dataset. Note that w/ and w/o abbreviates with and without respectively. Besides, w/ mesh means obtaining the 3D hand

pose from the estimated mesh, w/o mesh denotes estimating the 3D joint locations with the iterative regression module, w/

cam applies supervision over the pose camera parameters, w/ geo denotes taking the geometric loss into consideration, w/

seg indicates considering the silhouette consistent constraint.

Figure 9: Recovered Meshes from Dexter Dataset. Each

row presents two examples. For each example, the first col-

umn shows the RGB image, the second to third columns

illustrate the recovered mesh from different views.

usefulness of mesh in solving the ambiguity caused by oc-

clusion, and implied the essential importance of introducing

the parametric model for hand pose estimation.

4.5. Ablation Studies

To better understand the impact of different design

choices, we evaluate our framework in various settings.

Four main design choices exist in this work: the effect of

introducing parametric model on the task of pose estima-

tion, the effect of the silhouette consistent constraint, the

impact of pose supervision over camera parameters, and the

influence of the geometric loss. We still take AUC of 3D

PCK as the evaluation metric for RHD and STB datasets.

Fig. 8 compares our full scheme (w/ mesh + w/ cam + w/

geo + w/ seg) with four alternatives, experiments a , b, c and

d, under various settings.

We find that introducing parametric mesh model im-

prove the performance of hand pose significantly, since the

mesh model captures comprehensive properties of hand.

Besides, adding specific geometric constraints over fingers

yield marginal performance improvement because the mesh

model has already covered the inherent geometric con-

straints of hand. Furthermore, pose supervision over camera

parameters gained certain accuracy improvement because

the Lcam term plays the role of calibrating the projection

procedure from 3D to 2D. Equal important, penalize mis-

alignment between the rendered mask and the ground-truth

silhouette also gained performance improvement since the

Lseg term can refine the hand shape and pose prediction.

5. Conclusion

Hand image understanding is a widely researched topic

and has many real-world vision applications. While hand

pose estimation has been well studied in the literature, there

still exists little research on the problem of hand mesh re-

covery from single RGB images. The proposed HAMR en-

riches this field by leveraging from a generic 3D hand model

to achieve a mesh representation. With the mesh model, the

framework can produce 2D and 3D hand pose estimations

as well. Qualitatively, HAMR successfully recovered rea-

sonable hand meshes from single RGB images even under

severe occlusions. Quantitatively, the superiority of HAMR

was empirically confirmed on 2D and 3D hand pose estima-

tion tasks compared with state-of-the-art methods. Along

this direction, one can expect future advancements in both

hand mesh recovery and pose estimation.
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