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Abstract

We propose a new model for fast and accurate video

object segmentation. It consists of two convolutional neu-

ral networks, a Dynamic Targeting Network (DTN) and a

Mask Refinement Network (MRN). DTN locates the object

by dynamically focusing on regions of interest surrounding

the target object. The target region is predicted by DTN

via two sub-streams, Box Propagation (BP) and Box Re-

identification (BR). The BP stream is faster but less effec-

tive at objects with large deformation or occlusion. The

BR stream performs better in difficult scenarios at a higher

computation cost. We propose a Decision Module (DM)

to adaptively determine which sub-stream to use for each

frame. Finally, MRN is exploited to predict segmentation

within the target region. Experimental results on two pub-

lic datasets demonstrate that the proposed model signifi-

cantly outperforms existing methods without online train-

ing in both accuracy and efficiency, and is comparable to

online training-based methods in accuracy with an order of

magnitude faster speed.

1. Introduction

Video object segmentation (VOS) aims to segment target

objects across video frames. It is a challenging task due to

the motion, occlusion and deformation of objects. Given

the first frame with mask annotations, our task is to track

the specific objects in the following video frames, which is

known as semi-supervised VOS.

Recently, semi-supervised VOS has achieved impressive

progress thanks to the advances of Convolutional Neural

Networks (CNNs). Precise object segmentation is able to

facilitate the performance of various applications, such as

video object tracking, surveillance and interactive video

editing. Except for the demand of high accuracy, the pro-

cessing efficiency of the algorithms is also required in time-

critical applications. To achieve a well-performed model,
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Figure 1: Comparison results with state-of-the-art methods

on the DAVIS 2016 dataset in terms of J Mean (mIoU) and

run time (fps).

existing CNN-based methods usually conduct online train-

ing, in which the pretrained models are finetuned on the first

frame of the given test video. The online training is effec-

tive at improving the model’s generalization to appearance

variations of target objects. However, it incurs a significant

computation overhead and thus limits the applications of the

existing VOS models in time-critical scenarios.

Some recent works [23, 2, 3, 5] combine the merits of

object re-identification and instance segmentation for video

object segmentation. Typically, the target RoI in the current

frame is re-identified by matching the box candidates with

the annotated object in the first frame. Then the mask is

further segmented out within the selected RoI. Such object

re-identification mechanism has shown promising effective-

ness in dealing with object occlusion or drifting. However,

the matching process among hundreds of candidates often

brings large computation cost, thus limiting its use in real-

time applications.

In this work, we propose a new model for fast and accu-

rate video object segmentation. Our model consists of two

sub-networks with a shared backbone, which are Dynamic

Targeting Network (DTN) and Mask Refinement Network

(MRN). Specifically, we first exploit the DTN to automat-

ically zoom in to the potential region of the target object.
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Then the MRN is used to predict accurate segmentation

mask within the target region in a coarse to fine manner.

The dynamic targeting network contains two sub-

streams, Box Propagation (BP) stream and Box Re-

identification (BR) stream, for producing target RoI from

different aspects. In the BP stream, we exploit the tem-

poral continuity via optical flow [16] to efficiently prop-

agate the box coordinates between adjacent frames. De-

spite the fast processing time, BP has limited ability in han-

dling objects with occlusion or large deformation. To this

end, we propose the BR stream in which the target box is

re-identified from a set of candidates generated by Condi-

tional Region Proposal Network (CRPN). Compared with

BP, BR is slower but more robust for complicated scenes.

To achieve an equilibrium between segmentation accuracy

and computation efficiency, we further propose a switch-

able architecture to automatically pick a sub-stream for each

incoming video frame. Specifically, we first use a Deci-

sion Module (DM) to produce a confidence score for each

frame, which reflects whether the BP stream could gener-

ate the correct box. The frames whose confident scores are

higher than a fixed threshold can go through the BP stream

to generate target box and vice versa. The DTN can flexibly

achieve various trade-offs between accuracy and efficiency

by adjusting the value of the confidence score.

Given the potential target region, we then leverage mask

refinement network to produce the corresponding segmen-

tation mask. We first use RoI Align [11] to extract multi-

level features for the target RoI. The object mask in the last

frame is warped by optical flow to serve as a prior guidance.

We then refine it in a coarse to fine way to generate the cur-

rent target mask. To verify the effectiveness of the proposed

model, we conduct experiments including overall compar-

isons and ablation studies on the DAVIS dataset [29, 30].

The results show that the proposed model significantly out-

performs existing methods without online learning, and is

comparable with the online training-based methods.

Our contributions can be summarized as follows:

• We propose a new method by seamlessly integrating

target RoI generation and mask prediction for video

object segmentation.

• We propose a novel decision module to dynamically

assign frames to two sub-stream networks (box re-

identification and box propagation) to allow balanc-

ing/prioritizing between accuracy and efficiency.

• We perform experiments to show that our model sig-

nificantly outperforms existing methods without online

training, and is comparable to the online training-based

methods in accuracy at a much faster speed.

2. Related Work

Unsupervised video object segmentation. Unsuper-

vised video object segmentation (Un-VOS) models focus on

segmenting the foreground objects within the whole video

without any manual annotations. Previous methods usually

exploit visual saliency [33, 15] or motion cues [19, 23, 18,

22] to obtain prior information of the prominent objects.

Recently, some CNN-based methods [23, 4] have shown

impressive performance by using rich features and large

training datasets. However, the Un-VOS methods could not

be applied to segment a specific object due to the ambiguous

definition of foreground object via motion.

Semi-supervised video object segmentation. Semi-

supervised video object segmentation (Semi-VOS) aims to

segment the objects specified by users in the first frame.

Inspired by the successful applications of CNNs on image

segmentation [8, 7, 6, 40, 39], many deep learning based

methods have been proposed for semi-VOS and shown im-

pressive performance. These approaches can be divided

into two categories, propagation-based and detection-based.

The propagation-based methods [17, 14, 34, 28, 1, 26]

exploit deep network to implicitly model the motion in-

formation and propagate the segmentation frame by frame

from the first annotation. For example, [17] proposes a

unified framework of temporal bilateral network and spa-

tial refinement network for adaptively propagating struc-

ture information through the entire video. In [14], Hu et

al. present a recurrent network to propagate the mask and

bounding box from previous outputs simultaneously. Per-

azzi et al. [28] build a MaskTrack model, where the re-

sults are calculated based on both the current frame and the

previous mask. The continuous offline training and online

finetuning boost the performance of the network. A recent

work [34] puts forward a siamese network to utilize make

guidance from both previous and the first frames for mask

propagation.

Another category in Semi-VOS is the detection-based

methods, which exploit referring frame as a target to de-

tect the object mask in each frame. [2] proposes a one-shot

online learning strategy, in which the pre-trained network is

finetuned with the first annotated frame for each test video.

In [31], Yoon et al. use multi-level CNN features for cal-

culating the pixel-level similarity between testing and ref-

erence frames. Some methods propose to utilize both ini-

tial and previous frame to provide more reliable references.

Yang et al. [35] put forward to use referring annotation and

spatial prior from the last frame to automatically modulate

the network. In [3], Cheng et al. leverage tracker and RoI

segmentation network to localize and segment the partial

regions of the object, which are further fused to generate

the final segmentation. Li et al. [23] propose a model to

jointly re-identify the object and temporally propagate the

mask along the entire video. In this paper, we propose a
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Figure 2: An overview of our proposed method. Our model contains two sub-networks, Dynamic Targeting Network (DTN)

and Mask Refinement Network (MRN). For the i-th frame, we first exploit Resnet50 [12] to extract multi-level features.

Then the DTN automatically generates a potential foreground RoI, which is further processed by MRN to obtain its object

mask. The DTN consists of a faster Box Propagation (BP) stream and a more accurate but slower Box Re-identification

(BR) stream. We use a Decision Module (DM) to formulate a confidence score to assign frames into different sub-streams.

The MRN takes the object mask of the last frame (warped by optical flow) as input and refines it using four stacked mask

refinement modules.

new model for fast and accurate Semi-VOS that segments

the object via dynamically focusing on regions of interest

surrounding the target.

Dynamic network. The core idea of the dynamic net-

work is to adaptively conduct different processing for dif-

ferent image regions or video frames. It can accelerate the

processing speed while maintain good performance, and has

been applied to many video-level tasks [24, 37, 36]. In [36],

Zhu et al. exploit deep network to extract the features for

the key frames and propagate them to nearby frames via a

fast flow network. In [24], Li et al. propose an adaptive

scheduler for key frame selection and use spatially variant

convolution for feature propagation. Xu et al. [37] propose

a decision network for assigning different regions to either

a faster flow network or a slower segmentation network.

In this paper, we propose a dynamic targeting network, in

which different frames are assigned to different sub-streams

for generating target object regions.

3. Method

3.1. Overall Architecture

An overview of our model architecture is illustrated in

Fig. 2. It consists of two sub-networks, Dynamic Targeting

Network (DTN) and Mask Refinement Network (MRN).

We use a shared backbone network to produce general fea-

tures for both DTN and MRN. Specifically, we choose

Resnet50 [12] as the shared feature extractor due to its well-

balanced capacity and efficiency. Given an input frame

sequence Ii ∈ {I1, ..., IN}, we employ the last output

from Res2 x to Res5 x to construct the multi-level features,

which are represented as Fi = {f ji }
5
j=2. We then use the

proposed DTN to automatically generate a zoomed-in RoI

which potentially contains the target object specified in the

first frame. The DTN is designed as a switchable two-

stream architecture with Box Propagation (BP) stream and

Box Re-identification (BR) stream. The BP leverages tem-

poral consistency between adjacent frames to conduct box

propagation. It is faster but less accurate when handling ob-

jects with large deformation or occlusion. While the BR

has better performance in such difficult cases, it is slower

due to the burdensome box re-identification. To balance

the accuracy and efficiency, we propose a Decision Module

(DM) which learns to predict a confidence score to decide

which stream each frame will pass through. Specifically,

the frames whose confidence scores are higher than a pre-

defined threshold will go through the faster BP stream and

vice versa. Once we obtain the RoI of the target object in

the current frame via DTN, we use MRN to refine the de-

tails of the RoI in a coarse to fine manner to obtain the final

segmentation mask. In the following sections, we will intro-

duce the details of DTN, MRN, and their training strategy,

respectively.
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Figure 3: The framework of dynamic targeting network

(DTN). The DTN has two sub-streams, box propagation

(BP) and box re-identification (BR), for generating target

RoI. The BP exploits optical flow for propagating box from

the last frame, while the BR proposes a conditional RPN

(CRPN) for box re-identification. The decision module is

used to calculate confidence score for assigning frames to

different streams. The frames with larger confidence scores

than a threshold would be passed to BP, vice verse.

3.2. Dynamic Targeting Network

Some previous works utilize the advances in video track-

ing [3, 5] or object re-identification [23] to first attend to the

target object. They have demonstrated that such methodol-

ogy is beneficial for improving the accuracy in both object

localization and segmentation. The above-mentioned two

types of approaches have their own advantages. For exam-

ple, the trackers [3, 5] have faster computation speed but

might be unstable to localize objects with occlusion or fast

movement. The detector [23] is more robust to deal with

such difficult cases, but is slower due to the re-identification

among hundreds of candidates. To balance the accuracy and

efficiency, we propose a dynamic targeting network (DTN),

in which frames are adaptively assigned to different sub-

streams for generating target RoI. Our DTN has a decision

module (DM) with two sub-streams, i.e., box propagation

(BP) stream and box re-identification (BR) stream. The BP

is a fast and light network, which leverages optical flow [16]

to propagate bounding box between adjacent frames. While

the BR is a more computational-cost network, in which the

target boxes are re-identified from the candidate set via fea-

ture matching. For the current input Ii, the goal of DTN is

to produce K target RoIs {T k
i }

K
k=1 that match with the K

annotated objects in the first frame. The framework of DTN

is shown in Fig. 3

Decision module. A recent work [37] proposes that di-

viding frame regions into various networks could achieve

a good trade-off between speed and accuracy. A decision

network [37] is put forward to determine that the simple

regions in a frame are processed with a faster network,

while the hard ones are fed to a more precise but slower

network. Inspired by [37], we build a similar decision

module (DM) to justify whether the faster box propagation

stream could generate convincing target RoI for the current

frame. Since the BP stream leverages optical flow to for-

mulate box propagation, we construct the DM on the fast

and well-performed FlowNet2-S [16]. Specifically, we first

feed the current frame Ii along with the last frame Ii−1 into

the FlowNet2-S [16]. Our DM takes the features from the

Conv6 of the FlowNet2-S as input. Then we exploit an aver-

age pooling layer and two fully connected layers to predict a

confidence score Ci. The confidence score aims to indicate

whether the flow-based BP stream is capable of producing

proper target RoI for the current frame Ii.

For training DM, we define a ground truth confidence

score as follows,

Ĉi =
1

K

K∑

k=1

M(T k
i , T̂

k
i ) (1)

where Ĉi is the ground truth confidence score. T k
i is the

predicted target RoI by BP stream and T̂ k
i is the ground

truth target RoI of frame Ii. M indicates the formulation

of Intersection over Union (IoU) between T k
i and T̂ k

i . The

DM is trained with mean squared error (MSE) loss between

predicted confidence score and the corresponding ground

truth. During inference, DM compares the predicted confi-

dence score with a pre-defined threshold θc. If it is higher

than θc, the current frame would be fed to BP stream for fast

box propagation from the last frame. Otherwise, it would be

passed to BR stream. Fig. 4 shows the confidence scores of

various frames, which verify that our DM can adaptively

determine the proper sub-stream for each frame.

Box propagation stream. We propose to build a fast

box propagation between adjacent frames. The optical

flow [16] is exploited to capture the object motion between

two frames. We begin with feeding the current frame Ii
and the last frame Ii−1 to Flownet2-S [16] to generate their

optical flow map Oi. Note the flow net is shared in both

decision module and box propagation stream. Then we take

the predicted binary mask of the last frame {Y k
i−1}

K
k=1 and

warp it to {Y k
(i−1)→i

}Kk=1 according to flow map Oi with

bilinear operation. Finally, we obtain the bounding boxes

of the warped mask {Y k
(j−i)→j

}Kk=1 and take them as the

target RoIs {T k
i }

K
k=1 for the current frame Ii.

Box re-identification stream. The box propagation

stream has a fast computation speed. However, the perfor-

mance of optical flow might be influenced by object occlu-

sion, fast movement or large deformation. This would drop

the precision of box propagation stream for predicting target

RoIs. To this end, we also propose a box re-identification

stream for better handling such complicated scenarios. The

re-identification process aims to find out the box candidates

that are best-matched with the annotated objects in the first

frame. A previous work [23] exploits Region Proposal Net-
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Figure 4: Visual samples for dynamic targeting network. We show some input frames along with their optical flow maps.

The tagged values indicate the frame indexes and the corresponding confidence scores predicted by decision module. The

frames with smaller confidence scores mean that the box propagation is not convincing, and they would go through the box

re-identification stream.

work (RPN) [11] to generate a set of box candidates. How-

ever, the matching process is performed among hundreds

of proposals, which is very time-consuming. To solve this

problem, we put forward a Conditional RPN (CRPN), in

which the generation of anchors in the current frame are

conditioned on the prediction of previous frame. An outline

of our CRPN and the original RPN is shown in Fig. 5.

Given a feature map f
j
i with resolution hj×wj , the orig-

inal RPN [14] proposes anchors at each location with three

scales and aspect ratios (See Fig. 5 (c)). Such large num-

ber of proposals (hi × wi × 9) would burden the computa-

tion cost of re-identification. While, in our CRPN, the area,

scales and aspect ratios are calculated based on the output

{Y k
i−1}

K
k=1 of last frame. Specifically, we first obtain the

center coordinates {lki−1}
K
k=1, scales {ski−1}

K
k=1 and aspect

ratios {rki−1}
K
k=1 from the last target RoIs {T k

i−1}
K
k=1. Usu-

ally, the location and shape of objects would not change

largely between two adjacent frames. In the current fea-

ture map f
j
i , the anchors are predicted in a 3 × 3 grid

centered at lki−1 (the gray grid in Fig 5 (b)). Meanwhile,

the current scales ski and aspect ratios rki are defined as

ski = {(j) × 0.5ski−1}
3
j=1 and rki = {(j) × 0.5rki−1}

3
j=1.

As such, the number of anchors produced in our CRPN de-

creases to 9 × 9 for each target object. Our CRPN could

largely fasten the box re-identification process and help to

remove the noise boxes for better re-identification. The ex-

ample of anchor generation in our CRPN is shown in Fig. 5

(b). With these anchors, we then predict the objectness

scores and box regression for producing bounding boxes

like the original RPN [11].

Our CRPN is built after the Res4 x. After obtaining the

box candidates {Bk,j
i }N

k

j=1, k = 1, ..,K, we compare them

with the target object by calculating a matching score,

Sk
j = D(f(Bk,j

i ), f(T k
1 )) +D(f(Bk,j

i ), f(T k
i−1)) (2)

Sk
j is the matching score for the j-th candidates B

k,j
i . D

indicates L2 distance metric. f(∗) is the feature vector of

bounding box, which is the average pooling of feature map

generated by RoI Align [11] on Res4 x. Eq. 2 indicates that

the matched candidate should have large feature similarity

with the target object in both 1-th and (i− 1)-th frames. We

Figure 5: The implementation details of our CRPN.

From left to right: (a) the (i-1)-th frame and target RoI

{T k
i−1}

K
k=1, (b)-(c) anchor generation of our CRPN and the

original RPN. The gray grid denotes the location for an-

chor formulation. In our CRPN, anchor boxes are gener-

ated at the 3 × 3 area surrounding the center of last tar-

get RoI. Besides, the aspect ratios and scales are calculated

based on the last target RoI. The number of proposals in our

CRPN is 9 × 9 × K vs hj × wj × 9 in the original RPN

(K × 9 << hj × wj).

choose the candidates with the largest score as the target

RoIs {T k
i }

K
k=1 in the current frame.

3.3. Mask Refinement Network
With the target RoIs from DTN, the next step is to seg-

ment the corresponding object masks. We propose a Mask

Refinement Network (MRN), which leverages multi-level

features to enhance the details in a coarse to fine manner.

Specifically, we use the features from Res2 x to Res5 x

(denoted as {f
j
i}

5
j=2) for mask generation. For the feature

at j-th level, we extract the feature maps for target RoIs

{T k
i }

K
k=1 and resize them to mj×mj using RoI Align [11].

We set mj = M
2(j−2) , j = 2, ..., 5 to meet the feature

resolution in different layers. We use the warped masks

{Y k
(i−1)→i

}Kk=1 from the last output as prior maps and stack

four mask refinement modules (MRM) to fuse them with the

multi-level RoI features. The details of MRM is illustrated

in Fig. 2. First, the RoI feature in j-th layer is combined

with the output of the last MRM by

fU
j (T k

i ) = Conv2(fj(T
k
i ) + Up(fM

j+1(T
k
i ))) (3)

where fj(T
k
i ) is the RoI feature of T k

i at level j. fM
j+1(T

k
i )

indicates the output of the last MRM. Up() is the upsam-

pling operation with stride 2. Conv2() indicates two con-

volutional layers with 3×3 kernel size. Then we exploit the
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Table 1: Overall comparison with state-of-the-arts on

DAVIS-2016 validation dataset. We use “X” to indicate

whether the method is constructed with Online Finetuning

(OF) or Post-processing (PP).

Method OF PP J Mean F Mean Time

OnAVOS [32] X X 86.1 84.9 13s

OSVOS [2] X X 79.8 80.6 9s

DyeNet [23] X 86.2 - 2.3s

PLM [31] X X 70.0 62.0 0.3s

SegFlow [4] X 74.8 74.5 7.9s

MaskRNN [14] X 80.7 80.9 -

Lucid [20] X X 84.8 82.3 40s

MoNet [35] X X 84.9 84.8 14.4s

CRN [13] X 84.4 85.7 0.73s

BVS [27] 60.0 58.8 0.37s

VPN [17] 70.2 65.5 0.63s

RGMP [34] 81.5 82.0 0.13s

TrackPart [3] X 77.9 76.0 0.6s

OSMN [38] 74.0 72.9 0.14s

Ours 83.7 83.5 0.07s

warped object mask Y k
(i−1)→i

(refer to the box propagation

stream in Sec. 3.2) as a prior to guide the mask segmenta-

tion for the current frame, which is conducted by

fM
j (T k

i ) = Conv2(fU
j (T k

i ))⊙ Y k
(i−1)→i + fU

j (T k
i ) (4)

fM
j (T k

i ) is the output feature map of the j-th MRM and ⊙
means element-wise multiplication. Note that the warped

object mask Y k
(i−1)→i

should be resized to the resolution of

the current feature fM
j (T k

i ). By stacking four MRMs, the

features from deeper layers are gradually aggregated with

the ones in shallower layers (i.e., from Res5 x to Res2 x).

To obtained the object masks {Y k
i }Kk=1 of the current target

RoIs {T k
i }

K
k=1, we feed the output of the last MRM into a

3× 3 convolutional layer with sigmoid activation function.

3.4. Training and Inference

Implementation details. We exploit Resnet50 [12] as

the backbone network and Flownet2-S [16] for formulat-

ing optical flow. For the decision module in the dynamic

targeting network (see Sec. 3.2), we set the threshold θc
as 0.83 to balance the accuracy and efficiency. The chan-

nel size of two fully connected layers in DM is set to 256

and 1, respectively. In the box re-identification stream, the

features from Res4 x are used for box classification and re-

gression of CRPN. For feature matching, we utilize the RoI

Align [11] to produce 7× 7 feature maps for each box can-

didates B
k,j
i . In the mask refinement network, the size of

features by RoI Align is set to mj =
112

2(j−2) , j = 2, ..., 5 for

each feature level. The channel number of the convolutional

layers in the mask refinement module is set to 256.

Training. The overall loss of our model is defined as

Table 2: Overall comparison with state-of-the-arts on

DAVIS-2017 validation dataset.

Method OF PP J Mean F Mean G Mean

OnAVOS [32] X X 61.6 69.1 65.4

OSVOS [2] X X 56.6 63.9 60.3

MaskRNN [14] X 60.5 - -

RGMP [34] 64.8 68.6 66.7

TrackPart [3] X 54.6 61.8 58.2

OSMN [38] 52.5 57.1 54.8

Ours 64.2 70.6 67.4

follows:

L = LDM + LCRPN + LMRN (5)

where LDM is the mean squared error loss between pre-

dicted confidence score Ci with ground truth confidence

score Ĉi defined in Eq. 1. LCRPN is the bounding box

classification and regression losses with the same definition

as [11]. LMRN indicates the cross entropy loss between

predicted masks {Y k
i }Kk=1 and ground truth mask {Ŷ k

i }Kk=1.

Following the previous VOS methods [23, 34, 20], we

pre-train our backbone network, the original RPN and

mask refinement network on instance object segmentation

task. Specifically, we exploit the instance masks from

MSCOCO [25] and PASCAL VOC [9, 10]. We conduct

data augmentation on both datasets with image flip, random

rotation and crop. The input size is set to 512 × 512 in

the pre-training stage. The three networks are trained us-

ing SGD with an initial learning rate 0.0025, batch size 2

and momentum 0.9. The learning rate is decrease by 0.1 in

every 50k iterations.

After the pre-training stage on static images, we fur-

ther finetune our model on DAVIS training set [29, 30]. In

this stage, all the modules including backbone network, dy-

namic targeting network, and mask refinement network are

jointly trained. We exploit the loss defined in Eq. 5 to train

our model. We use SGD optimizer with a fixed learning rate

0.0001, batch size 1 and momentum 0.9. The data augmen-

tation is also conducted in video dataset.

Inference. For each testing video sequences {Ii}
N
i=1,

the ground truth masks of target objects are provided in the

first frame. The subsequent frames with original size are

fed into the model for producing object masks. Our model

does not conduct the online training on the first frame of the

test videos [2, 20].

4. Experiment

4.1. Dataset and Metrics

Dataset. To validate the effectiveness of our proposed

model, we conduct our experiments on DAVIS bench-

marks [30, 29]. The DAVIS 2016 dataset [29] consists of

50 high-quality videos, in which total 3455 frames are an-

notated with densely pixel-wise object masks. The 50 video
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Figure 6: The trade-off between accuracy (GMean) and

frame rate (fps) under various thresholds (θc) in decision

module. The curves are plotted based on the results in

DAVIS-2016 dataset. The threshold θc varies from 0.5 to

1.0 for decision module. The sampling percentage for box

propagation varies from 0 to 100% for random assignment.

In the periodic assignment, the frames are chosen at ev-

ery [2,11] fps to be processed with the box re-identification

stream.

sequences are divided into 30 ones for training and the other

20 ones for validation. In the DAVIS 2016 dataset, only one

foreground object is annotated for each video. The DAVIS

2017 dataset augments the DAVIS 2016 dataset by adding

another 30 and 10 sequences to the training and validation

datasets, respectively. Unlike DAVIS 2016 dataset, more

than one objects are annotated with pixel-level masks in

each video of the DAVIS 2017. In total, 10459 frames with

376 object instances are annotated in the DAVIS 2017.

Metrics. To evaluate our model as well as other state-of-

the-art approaches, we exploit three metrics including the

mean region similarity (J Mean), mean contour accuracy

(F Mean) and their average (G Mean) as [30]. Besides,

we also provide the run time of each method for efficiency

evaluation. The results of other methods are obtained from

their published reports or codes. All the experiments are

conducted on one NVIDIA 1080Ti GPU.

4.2. Comparison with Stateofthearts

DAVIS 2016. We compare the performance of our

method with state-of-the-art approaches on DAVIS 2016

dataset [29]. In Tab. 1, we list some common operations re-

mains in the existing methods, including online finetuning

(OF) and post-processing (PP) (e.g., CRF [21]). In semi-

supervised VOS, existing methods usually exploit time-

consuming online finetuning or CRF [21] to improve the

accuracy of segmentation. For a fair comparison in algo-

rithm speed, the run time of OF and PP is also included.

According to the quantitative results as well as run time in

Tab. 1, our proposed model achieve the fastest speed with

comparable accuracy against state-of-the-arts.

Compared with the existing efficient methods with-

out online finetuning, our model outperforms the best-

performed RGMP [34] by 2.5%, 2.2% on J Mean and F-

Mean, respectively. Besides, the computation speed of our

model is 2× faster against RGMP. For the methods with

online finetuning, our model is much more efficient and

achieves similar performance.

Table 3: Ablation study of each module on DAVIS-2016

validation dataset.

Method J Mean F Mean G Mean

w/o FT 67.1 66.5 66.8

w/o PT 68.4 69.9 69.2

w/o DTN 72.7 71.8 72.3

BR with ori RPN 81.7 81.6 81.6

MRN w/o mask guidence 82.1 81.7 81.9

Ours 83.7 83.5 83.6

Table 4: The analysis on the run time of each component

in our model. The reported time is tested with DAVIS-2016

dataset on one NVIDIA 1080Ti GPU.

Module Backbone DM BP BR MRN

Time 0.021s 0.003s 0.003s 0.071s 0.015s

DAVIS 2017. We also conduct the comparison experi-

ments on DAVIS 2017 [30] dataset to verify the effective-

ness of our method on multi-object segmentation. Tab. 2

shows the quantitative comparisons with six state-of-the-

arts on three metrics. These results demonstrate that our

model is able to achieve better performance than other ap-

proaches on DAVIS 2017 dataset.

Qualitative results. We illustrate the visual results of

our model on DAVIS 2016 and 2017 datasets in Fig. 7. The

qualitative results demonstrate that our model can not only

consistently track the target objects but also produce accu-

rate segmentation masks with well-defined details.

4.3. Ablation Study

In this section, we analyze the contribution of each com-

ponent in our model, including dynamic targeting network

(DTN), mask refinement network (MRN). The results on

DAVIS 2016 dataset are shown in Tab. 3.

Effectiveness of dynamic targeting network. In our

model, we employ the DTN to generate a zoomed-in target

RoI and produce an object mask within it. To demonstrate

the effectiveness of DTN, we feed the raw multi-level fea-

tures without RoI Align to MRN for generating segmenta-

tion (namely “w/o DTN”). The quantitative results in Tab. 3

verify the efficacy of DTN on producing more accurate lo-

calization and segmentation. Besides, to verify the effect of

confidence score in decision module, we add a comparison

model named “Random Assignment”, in which the input

frames are randomly sampled by various percentages to go

through the box propagation stream. For a fair comparison,

we report the average result of four various random sam-

pling. The results in Fig. 6 demonstrate the efficacy of DM

on assigning proper sub-streams for various frames.

Effectiveness of conditional RPN. We propose a condi-

tional RPN (CRPN), in which the proposals in the current

frame are generated based on the location, scale and aspect

ratio of previous target RoI. To compare with the original
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(a)                           (b)                         (c)                        (d)                         (e)                        (f)

Figure 7: Qualitative results of our proposed model on DAVIS 2016 and DAVIS 2017. From left to right: (a) initial frame

with user annotation, (b)-(f) segmentation results of subsequent frames.

RPN [11], we sort all the proposals (totally hi × wi × 9)

according to their objectness scores and choose the top-100

ones as box candidates for re-identification. We name this

model as “BR with ori RPN”. Its comparison result with our

CRPN is shown in Tab. 3, which proves that our CRPN is

able to facilitate more efficient computational speed as well

as more precise RoIs for segmentation.

Effectiveness of mask refinement network. In MRN,

we use the warped mask from the previous frame as a prior

to guide the mask generation in the current frame. To testify

its effectiveness, we remove the mask guidance in MRM

and name this module as “MRN w/o mask guidence”. The

comparison results in Tab. 3 demonstrate the contribution of

mask guidance in our MRN.

Analysis on training strategy. For training our pro-

posed model, we conduct a two-stage training strategy, in-

cluding pre-training on instance object segmentation task

and finetuning on video object segmentation datasets. In

Tab. 3, we report the results of the model skipped the pre-

training stage (termed as “w/o PT”) and the model skipped

the finetuning stage (named as “w/o FT”). The results ver-

ify that both training stages contribute to the generation of

accurate segmentation in our model.

Analysis of speed vs accuracy. In the DTN, a thresh-

old is pre-defined for determining the model’s trade-off be-

tween segmentation accuracy and computational efficiency.

To verify the influence of thresholds on the overall per-

formance of our model, we report the accuracy (G Mean)

versus frame rate (fps) under various thresholds. The data

points on each curve indicate different values of threshold

θt. It can be observed that as θt increases, the data points

move to the upper-left corner. This indicates that the seg-

mentation performance increases but the fps decreased. On

the contrary, when θt decreases, the data points move to-

ward the opposite bottom-right corner, which means that

more frame regions pass through the faster box propagation

stream. By adjusting the threshold, our proposed model can

be customized to meet various requirement for accuracy and

efficiency.

Run time analysis. Our model is able to achieve accu-

rate performance with a high speed of 14 fps. In Tab. 4, we

analyse the run time of each component in our model, in-

cluding backbone network, dynamic targeting network, box

propagation stream, box re-identification stream and mask

refinement network. From the results on run time, we can

observe that the box propagation stream is much more effi-

cient than box re-identification stream.

5. Conclusion

We propose a dynamic targeting network and a mask

refinement network for video object segmentation. The

dynamic targeting network contains two sub-streams, box

propagation stream and box re-identification stream, for

producing target RoI. The former is faster but less effective

at objects with large deformation or occlusion. The latter

performs favorable in difficult scenarios but is slower. We

utilize a decision module to adaptively determine the sub-

stream for each frame. Finally, the segmentation mask of

each target RoI is generated by mask refinement network.

The experimental results on two benchmarks demonstrate

that our model performs favorable against the state-of-the-

arts and achieves the highest speed of 14fps.
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